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Abstract: With the increase of data storage demands, the energy consumption of data centers is also
increasing. Energy saving and use of power resources are two key problems to be solved. In this
paper, we introduce the fuel cells as the energy supply and study power resource use in data center
power grids. By considering the limited load following of fuel cells and power budget fragmentation
phenomenon, we transform the main two objectives into the optimization of workload distribution
problem and use a deep reinforcement learning-based method to solve it. The evaluations with
real-world traces demonstrate the better performance of this work over state-of-art approaches.
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1. Introduction

With the increasing number of cloud computing and Internet services, high energy consumption
contributed by data center loads has become a crucial issue [1]. For example, Google and Microsoft
pay tens of millions of dollars for electricity, and 50 tons of carbon dioxide a year areproduced due
to the high power consumption [2–4]. Besides the rising pressure from energy consumption and the
deterioration of the climate, the power budget provided by the power transmission infrastructure
of data centers usually limits the number of servers that can be added to address the growing
load [5,6]. Usually, the problem is alleviated by developing new data center facilities and new power
infrastructure, but this is expensive and time-consuming. Therefore, in this resource-constrained
environment, maximizing the use of the existing power infrastructure and becoming environmentally
friendly are two important goals that should be considered.

On the one hand, as one alternative green energy resource, fuel cells have emerged as a promising
energy source for data centers due to their advantages of high energy efficiency, high reliability, and low
carbon dioxide emission [7,8]. Although fuel cells show many advantages, they are slow in changing
the output power [9], i.e., it may take a few minutes to reach the energy requirement. In order to
address this challenge, some research was proposed introducing energy storage devices to reduce the
effect of limited load following, which may add extra costs [10,11].

On the other hand, to maximize power resource use of the existing power infrastructure,
a major challenge arises from power provisioning in the power delivery infrastructure of data centers.
This challenge is called power budget fragmentation [12]. In the multi-level power delivery infrastructure,
if some servers with synchronous power consumption mode are connected to the same power node,
a high amplitude fast peak will be produced at this low-level node, which may quickly consumes
the local power budget. In such a data center, although the high-level node still has a large power
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budget, there is no space to add more servers to these low-level power nodes. As servers can only
be powered by low-level power nodes, if the power budget is highly dispersed in the lower-level
power supply infrastructure, the abundant power budget on the high-level node will never be used,
resulting in low data center efficiency. Therefore, how to effectively reduce the rapid peaks at the
low-level nodes and increase local power headrooms for supplying a greater number of servers is still
a challenging problem. Recent work has paid much attention to power capping and load balancing
for energy management in data centers. However, their potential is still largely limited by the power
budget fragmentation. These efforts are mainly focused on the operations at high-level nodes while
there are still amounts of power headroom which can be used at low-level nodes. Little work has
been investigated in this field [5,13]. Hsu et al. [12] proposed a framework for modeling and rating
the temporal heterogeneity between different services, achieving an efficient power infrastructure for
data centers. If loads with the same energy consumption mode are placed at the same low-level node,
high peaks will emerge. A clustering algorithm based on numerical analysis is used to distribute these
loads among different low-level nodes. The proposed framework provides a promising option for
exploring energy management at low-level nodes, but it still requires much more information about
the performance metrics of the history-based loads.

Considering the above two aspects, there are two key objectives to efficiently handling the energy
management: (1) reducing the effect of limited load following; (2) mitigating the peak values at low
level nodes. The above two objectives can be transferred as an optimization problem that makes
the energy consumption curve more smooth at the low-level nodes in real time. However, there are
still two challenges to solve this optimization problem. First, existing works need the knowledge
of future data requests to control the energy supply of fuel cells. Unfortunately, it is difficult to
accurately estimate future energy consumption of data centers, which was shown in [14,15]. Second,
in order to ensure the energy demand gap between each time slots is as low as possible, the traditional
methods are difficult to deal with high-dimensional calculation [16]. Due to the difficulty of directly
solving this problem through conventional optimization methods, we employ the deep Q-learning
Network (DQN)-based methods to conquer this challenge. Introducing the DQN-based methods
to improve the energy efficiency of data centers is not new, some previous work has focused on
this combination [17–20]. However, contrast to existing work, our objective is to propose a green
workload approach that jointly realizes the effective use of fuel cells and the reduction of power budget
fragmentation. More precisely, we design a fine-grained DQN-based method, aimed at optimizing the
above-mentioned two objectives at the same time. To improve the efficiency of the proposed method,
we also introduce an acceleration mechanism to deal with high dimensional computing. With the
support of real-world traces, our approach can achieve stable performance and restrict training loss into
a low bound. In addition, our approach can effectively reduce the power budget fragmentation and
the variation of energy consumption. Consequently, the proposed approach requires less peak energy
consumption and a greater proportion of energy available over state-of-the-art methods, including the
Static, Random and k-means.

The contributions of our work are summarized as follows:

• By jointly considering the applying of fuel cells and maximization of power resource use for data
centers, we formulate this objective as a workload optimization problem and identify the key to
achieving this target by mitigating the variation of energy consumption.

• We propose an effective use of the power resources approach by employing improved deep
Q-learning methods. A real state experience pool is introduced in the DQN agent, aimed at
reducing the number of redundant state calculations.

• We evaluate the performance of our approach through a simulation with real-world data center
traces. Simulation results show that the proposed approach has good effectiveness and feasibility
compared with state-of-the-art methods.
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The rest of this paper is organized as follows. Section 2 presents the motivation. In Section 3,
we introduce the system model, and the F-DQN algorithm design is discussed in Section 4. We evaluate
the performance of our approach in Section 5. Finally, Section 6 presents the related work, and Section 7
concludes the paper.

At present, most conventional data center infrastructure is deployed by a multi-level transmission
design which is a tree-like structure [21]. The power from the grid is not directly delivered to servers.
In fact, each server is powered by a leaf power node which is powered by the higher-level power
node. This method can improve the stability and reliability of data center infrastructure. However,
a particular problem that this causes is the bad effects on the power budget use which is called
Power Budget Fragmentation. More specifically, if the power demand in leaf power node changes with
high amplitude, the local power budget will be consumed quickly. Although the power demand in
higher-level power nodes has not changed much over time, there is some power headroom at the
higher-level node that has not been exploited, leading to inefficient data centers. On the contrary,
if there are not many rapid power peaks at leaf power nodes, much more available power headroom
can be used at higher power nodes. For ease of understanding, we show an example in Figure 1.
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(a) Low efficiency power-budget-fragmented data center.
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(b) Efficient,lightly-fragmented data center

Figure 1. Power budget fragmentation.

2. Motivation

On the other hand, fuel cells are a promising energy resource for powering data centers due
to the high energy efficiency and lower carbon emission. Nevertheless, fuel cells are subject to the
weakness of limited load following. When the power demand changes with many rapid power peaks
or valleys, fuel cells cannot provide sufficient energy supply in time [22]. Therefore, if we apply fuel
cells as the energy supply for data centers, the amplitude of the power demand should not be too
high. Traditional methods use energy storage devices to make up the insufficient energy supply in
time caused by the limited load following. However, due to the limited capacity of energy storage
devices, this solution cannot perform well when it meets large rapid local peaks. In addition, as can
be seen from the above example, the stable power demand arising at higher nodes may not mean
that the power demand at the leaf power nodes is also stable. The changes of power demand may
be totally different at different power node levels. If we realize that the power demand in each level
of power nodes is stable, the data centers can be powered by fuel cells with high efficiency and light
fragmentation. Therefore, we take one step forward by studying how to manage the workloads from
different servers to further optimize the power demand in each leaf power nodes.

3. System Model

Large-scale data centers usually apply tree-like and multi-level power infrastructure for better
workload management, such as Google and Facebook. Each data center consists of several suits which
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is equipped with several top-level power nodes. Each top-level power node is equipped with some
secondary power nodes, which are further fed to a group of reactive power panels. Therefore, each rack
consists of dozens of servers and the power budget at each node is the sum of its children’s budget [23].

For better presentation, we consider a simplified model that includes several data centers, servers,
fuel cells, and their workloads, as shown in Figure 2. Data centers distributed in different suits are
denoted by a set D = {d0, d1, . . . , dn}. Each data center is linked with several severs, which is denoted
by a set S = {sn0, sn1, . . . , snm}. Each server receives a workload from the information network,
which can be scheduled by the servers themselves. Therefore, we consider a set of users’ workloads
W = {wn0, wn1, . . . , wnm}, each of which require more or less energy supply in different time slots.
In addition, our model considers a discrete time series, which is denoted as T = {0, 1, . . . , t}.

Fuel cells Data Centers Servers Workloads

Figure 2. System model.

If a large amount of workloads arrive, the improvement of computing resources use will consume
more energy. We denote the energy consumed by workloads of server wnm data center dn at server snm

in the time slot t as fnm(t)}. The relationship between fnm(t) and wnm(t) can be expressed by:

fnm(t) = Fnm(wnm(t)), ∀n, m, t (1)

where F()̇ is a non-decreasing function. According to the existing works [14,15], a linear function is
considered in this paper.

Based on the definition above, the energy demand of each server snm in time slot t is given as

unm(t) =
K

∑
k=0

f k
nm(t), ∀n, m, t (2)

Let Gn(t) be the energy supply of fuel cell for data center n at time slot t. Because of the
characteristic of slow load following of fuel cells, Gn(t) is given as

Gn(t) = Gn(t− 1) + ∆Gn(t− 1), ∀n, t (3)

Because of the limited capacity of fuel cells, Gn(t) is constrained by Gmax
n (t), as follows

0 ≤ Gn(t) ≤ Gmax
n (t), ∀n, t (4)
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Our proposal aims to manage the coming workloads among servers to get with the limited
variation of energy supply from fuel cells, which can be defined as

unm(t) ≤ Gn(t), ∀n, t (5)

Therefore, we are going to optimize the sum of energy variation of energy demand from each data
center by planning the servers at each time slot. The future workload information should be obtained
in advance. However, only the current workload information can be knew in practice. The solution is
performed without the knowledge of future incoming workloads. Although some data profiles can be
predicted in advance, the online energy management is a very popular topic in recent research [24,25].
It is difficult to predict energy demand profiles in all cases. In addition, the constraints (3) may cause
the ”time coupling” property. To be specific speaking, the current energy variation can have an effect
on the future energy output of fuel cells. Dynamic programming is an alternative solution to deal
with this issue. However, it will also bring the ”curse of dimensionality” problem. Consequently,
these challenges motivate us to propose a deep learning-based approach to solve the problem.

4. Deep Reinforcement Learning Based Distribution Method

4.1. Deep Reinforcement Learning Problem Formulation

In this section, we investigate Reinforcement learning-based energy management optimization.
Reinforcement learning is an effective method that can learn to realize the maximum profits

in different situations [26]. The key elements are state, reward, action, and agent. Reinforcement
learning is to use an agent to learn a series of actions and the corresponding rewards. Each state
corresponds to the rewards produced by all actions according to the agent’s reward function. Then,
the agent will choose the appropriate operation according to a strategy and the state will be changed.
Reinforcement learning is a promising method that does not need any prior knowledge, which is
an ideal choice to optimize the energy demand in data centers. However, traditional reinforcement
learning is limited to the action space and the sample space. The realistic tasks often have a large
state space and continuous action space. If the input data is image or sound, it often has a very high
dimension, which is difficult for traditional reinforcement learning to deal with. Deep reinforcement
learning is proposed to solve this challenge, which is to combine the high dimension input of deep
learning with reinforcement learning.

First, we need to define the elements of reinforcement learning in our model, including state,
action, and reward.

• s is the state space. The goal of our proposal is to decide which data center is assigned to each
request. n denotes the number of data centers in the previous section. Hence, we denote the state
space swnm ,t,n = {0, 1, . . . , nm− 1}

• a is the action space defined as choosing the data center n. Therefore, we also have awnm ,t,n =

{0, 1, . . . , nm− 1}
• In this problem, our goal is to mitigate the variation of power demand of all the data centers.

The sum of all the data centers’ power demands in each time slot is defined as:

PD(t) =
n

∑
n=0

pn
D(t), ∀t (6)

where pn
D(t) is the total power demand of data center n in each time slot, which can be

calculated by

pn
D(t) =

m

∑
m=0

fnm(t), ∀n, t (7)
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where fnm(t) is the energy demand of each workload wnm in time slot t, which was defined before.
Then, the variation of power demand for all the data centers between the adjacent time slots is

∆Pn
D(t) = pn

D(t)− pn
D(t− 1), ∀n, t (8)

In addition, the variation in power demand of all the data centers cannot exceed the capacity of
fuel cells. Therefore, the reward function can be defined as

R(t) =


0 ∆Pn

D(t) > ∆Gn(t) (9)
n

∑
n=0

pn
D(t)

|∆Pn
D(t)|

others (10)

Finally, the state transition samples of Reinforcement learning can be represented as
(swnm ,t,n, awnm ,t,n,R(t), swnm ,t+1,n)

4.2. F-DQN Algorithm Design

The dimensions of action space and state space can be very large in our system model. In each
step of the learning process, the number of actions which are learnt by the agent can be reached up
to nmT. Therefore, with the increasing dimensions of action space and state space, the amount of
decisions needed will increases exponentially, which is hard to implement by applying traditional
DQN. In addition, there are many meaningless actions during the learning process because of data
center architecture. For example, there are four racks in each data center. If we move a workload from
one rack to another that belongs to the same data center, there is no effect on the result of the reward.
It means that the efficiency of learning is greatly reduced. Facing the high dimensional numerical
calculation, we proposed an acceleration method based on deep Q-learning called F-DQN to find
optimal action which brings the maximum reward function in our proposed model and the workflow
of F-DQN is shown in Figure 3.

Real state

 memory

DQN

agent

s Sreal

... Action Reward
Experience 

reply 

memory

Batch of experience
Yes

No

Add real 
state

Next state

Figure 3. The workflow of F-DQN.

To improve the efficiency of the deep Q-learning algorithm, an additional state space sreal
wnm ,t,n is

introduced, which is defined as:

sreal
wnm ,t,n = {0, 0, . . . 1, 1, . . . , n, n} (11)
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The relationship between swnm ,t,n and sreal
wnm ,t,n is:

sreal
wnm ,t,n = [

sreal
wnm ,t,n

n
] (12)

In each episode, before the current status swnm ,t,n is sent to evaluate Q-networks, it will be
transferred to sreal

wnm ,t,n according to 11. Then, the new status will be put into an sreal experience memory.
If the new status is the same as the status which is stored in the sreal experience memory, F-DQN will
skip this episode and conduct the next state. If the new state is different from the state which is stored in
the sreal experience memory, it will be sent to the DQN network and will conduct the learning process.

Then, we propose the use of F-DQN as an online method to perform optimal workload allocation
at the lower level nodes. The general architecture of our proposed method is depicted in Figure 3.
With the four fundamental properties given in Section 4.1, we can present the learning methodology.
The key rationale of our methodology is the policy π. Then, π(a(t)|swnm ,t,n) is denoted as the probability
of choosing action a(t) when the environment state is swnm ,t,n. Given swnm ,t,n and awnm ,t,n, we define an
action-value function Qπ(st, at) to evaluate the expected reward of policy π as follows.

Qπ(st, at) = Eπ [
∞

∑
k=0

λkR(t + k + 1)|st, at] (13)

where λ is a discount factor. Let λ ∈ [0, 1] so that the rewards in the nearer future have larger weights.
Then, the evaluation method of Q((st, at) is updated as follows:

Q(st, at) = Q((st, at) + α(R(t) + λ max
a′t

Q(s′t, a′t)−Q((st, at)) (14)

where α is a learning rate, which satisfies α ∈ (0, 1]. Q(s′t, a′t) represents the optimal future value.
Due to the influence of many elements on future rewards, the traditional Reinforcement learning cannot
obtain Qπ(st, at) accurately. Hence, DQN (Deep Q-Network) is used to train a function Q(st, at, θt) that
approximates the action-value function with high accuracy. DQN can be considered to be a composite
function, which takes state st as input and outputs an operation at. To minimize the loss after updating
the weights, we define the loss function as the variance between the target value and the predicted
value. The loss function is expressed as follows:

L(θt) = E[(R(t) + λ max
a′t

Q(s′t, a′t, θ′t)−Q(st, at))
2] (15)

In addition, another independent network with the same structure named target network
Qtarget((st, at, θtarget,t)) is introduced to make the method more efficient. Every few steps, the weights
of the main network are copied to the weights of the target network. As the target network remains
unchanged for a period of time, the correlation between the current Q value and the target Q value is
reduced and the stability of the algorithm will be improved. In each step, the samples (st, at,Rt.st+1)

obtained from the interaction between agent and environment are stored in experience replay memory.
A batch of the samples will be randomly selected for training DNN, in order to make the agent learn
from past experimences stored in the memory.

5. Experimental Results

5.1. Simulation Settings

We use several kinds of workload traces collected from the Wiki data center, which show different
characteristics [27]. In this experiment, the length of each time slot is set to 1 hour. To facilitate
calculation and comparison, all the energy consumption data are normalized. We use a CPU-based
server. which has 16 GB DDR4 memory, 2.8 GHz Inter Core i7, and 512 GB drive. Python 3.6.8 with
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Pytorch 1.6.0 is used to provide software environment. The other key experimental settings are given
in Table 1.

Table 1. Experimental parameter settings

Parameter Value Parameter Value

T (hour) 600 α 0.01
n 2–9 λ 0.1
m 3–4 memory cappacity 2000

∆Gmax (kW/h) 10 target update frequency 100
G0 (kW/h) 5 batch size 128

We compare our proposed F-DQN-based method with the following schemes.

• Static: assuming the coming workloads are not changed to other servers.
• Random: The coming workloads in each time slot are changed randomly to all the servers.
• K-means: The coming workloads are transferred through k-means to get with the optimal variation

of energy consumption. For each workload, the asynchrony score is calculated and each server
will be considered to be a data point. Then we apply k-means clustering to these data points and
obtain a set of cluster [12].

5.2. Simulation Results

As our objective is to minimize the variation of energy consumption and unusable power budget
for fuel cell powered data centers, we focus on the metrics in four aspects: (1) the performance of
F-DQN algorithm (in Section 5.2.1), (2) energy consumption traces before and after optimization
(in Section 5.2.2), (3) the comparison of variation of energy consumption among different number of
data centers (in Section 5.2.3) and (4) the comparison of proportion of power budget among different
number of racks (in Section 5.2.4).

5.2.1. The Performance of F-DQN Algorithm

Figure 4 shows the reward value at each training episode. The convergence of the reward values
achieves stale convergence, which indicates the stable convergence of proposed algorithm. In the
beginning of the training episode, the reward value is around 570. This is because the weights in
main networks are initialized randomly. With the increasing of training episodes, before about the
2500th episode, the reward value increases to about 620. This is due to the fact that the parameters
in greedy rule do not decay to the minimal value, and the agent takes more exploration in the initial
several training. Therefore, the main networks are not well trained in the beginning. At around the
2500th episode, the reward value dropped rapidly from 620 to about 560. After around 5000 training
episodes, the smoothed reward value curve is convergent to the value about 555, which shows good
convergence characteristic of the proposed algorithm.

Figure 5 presents the changing trend of learning loss by F-DQN in the training process.
The convergence of the proposed algorithm is also illustrated. It can be seen that since the input data
in F-DQN changes gradually, the curve does not decline smoothly. At the beginning of the training
process, Figure 5 also reflects the same phenomenon as Figure 4. Initially, the agent always take
exploratory moves (i.e., random action), which leads to a high immediate loss value. When training
step reaches around 3000, the loss of F-DQN start to decrease gradually which means the algorithm
eventually converges. Therefore, it can be found that the F-DQN has a better training performance.
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Figure 4. The reward curve of F-DQN.
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Figure 5. Training loss of F-DQN.

5.2.2. Energy Consumption Traces before and after Optimization

Figure 6 presents the comparison of energy consumption curve at low-level node before and after
optimization. In the two figures, the Y-axis represents the normalized energy consumption at each
time slot and the X-axis represents the time slots from 0th hour to 100th hour. As shown in Figure 6a,
the maximum peak value can reach about 1.7 and the maximum energy gap is about 1.3 in 85th time
slot. Therefore, only about 1/3 of power headroom is available for adding extra services without the
optimization of power resource use. Figure 6b shows the energy consumption curve at the same node
after applying the proposed method. Compared with Figure 6a, the peak value in Figure 6b is lower,
which is only about 1 at 8th time slot. Besides, the maximum energy gap is no more than 1 because
of the constraints on the characteristics of fuel cells. Obviously, the power headroom in Figure 6b is
about 1/2, which is bigger than that in Figure 6a.
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(a) Energy consumption curve before optimization.
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(b) Energy consumption curve after optimization.

Figure 6. The comparison between before and after applying F-DQN.

5.2.3. The Comparison of Variation of Energy Consumption among Different Number of Data Centers

We compare the variation of energy consumption of our proposed algorithm (marked as ”F-DQN”
in green) with other three baseline approaches in terms of different number of high-level nodes.
The Y-axis is accumulated by the energy consumption gap between each adjacent time slots. In this
simulation, the number of time slots is set to 600. The energy consumption in each time slot is also
normalized. As shown in Figure 7, our approach yields less variation of energy consumption when the
number of high-level nodes exceeds 2, while the other three baselines generate much more variation of
energy consumption and the curves grow sharply as the number of high-level nodes grows. When the
number of high-level nodes is set to 2, the results of four methods are very close because there is
not enough space to exchange workloads. The K-means method approximately follows the linear
trend with the increase of number of high-level nodes, while our proposed method works better as the
number of high-level nodes increase. Therefore, our DQN-based method can effectively reduce the
energy gap between adjacent time slots, especially in higher dimension.
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Figure 7. The Comparison of Variation of Energy Consumption.

5.2.4. The Comparison of Proportion of Power Budget among Different Number of Racks

As to inspecting the energy efficiency use, we also compare the proportion of power budget
with the three baselines in terms of different number of low-level nodes at each high-level node.
The proportion of power budget is denoted as the ratio of unused power to total energy. We inspect
how the number of low-level nodes impact this metric. As shown in Figure 8, all the four approaches
consume more energy with the increase of the number of low-level nodes. However, in both 3 and
4 low-level nodes, our approach can achieve the highest proportion of power budget. Therefore,
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our DQN-based method can achieve better energy saving efficiency and mitigate power budget
fragmentation over three baselines. More precisely, our proposed approach can save energy by up to
7.5%, 5.2% and 4.3%, on average, more than the static, random and k-means, respectively.
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Figure 8. The Comparison of Proportion of Power Budget.

6. Related Work

6.1. Fuel Cells for Data Centers

Fuel cells emerged as a promising energy source for data centers due to their advantages of
high energy efficiency, high reliability, and low carbon dioxide emission [11]. Therefore, fuel cells
are useful as a second redundant energy source for relatively longer peak intervals. If a malfunction
or maintenance occurs, the redundant unit supplies the energy needed for assuring uninterrupted
operation [28]. Therefore, the fuel cells has been applied in many areas. Riekstin et al. [29] introduced
the key research issues in the design of data center power distribution system powered by fuel
cells. Zhou et al. [30] first tried to quantitatively analyze the benefits of fuel cell power generation,
and explained how to realize intelligent coordination between power grid in data center networks and
fuel cell power generation. Li et al. [9] first proposed an ESD classification framework for data centers
powered by fuel cells. A variety of power capping strategies with different degrees of knowledge of
fuel cells and workload behavior are introduced to evaluate the effect on workload performance and
ESD size. Sevencan et al. [31] studied the economic feasibility of a combination of cooling, heating and
power system based on fuel cells in an existing data center. The feasibility of this hybrid power system
can be predicted in the future when the energy price changes.

6.2. Deep Reinforcement Learning for Data Centers

For the application of deep reinforcement learning methods in data centers, many studies were
carried out in different areas. Chen et al. [17] developed a two level system based on DRL methods to
simulate the peripheral and central nervous systems of animals for solving the scalability problem
of data centers. Yang et al. [18] proposed a new green cloud data center architecture, aiming at the
high energy consumption of data centers. A scheduling control engine and in intelligent refrigeration
engine based on DRL are introduced. The experiment result showed the architecture can effectively
reduce energy consumption and increase resource use rate of data centers. Ran et al. [19] proposed
a DRL-based optimization framework, which considers both IT and cooling systems to improve the
energy efficiency of data centers. Comparing with conventional approaches, the proposed algorithm
can achieve a better compromise between energy saving and quality of service. Yi et al. [20,32]
established an assignment algorithm by using DRL to deal with the increasing, persistent and
computationally intensive tasks in recent computing requirement. The power and thermal dynamics
of data centers are captured by training the deep Q-network, leading the reduction of the online
convergence speed, low energy efficiency and potential server overheating in the process of DRL
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exploration. Gao et al. [33] used DRL to predict the production of each renewable energy source
and the energy demand of each predefined region. To minimize the number of SLO violations,
total energy cost and total carbon emissions, an optimization problem was proposed to match different
renewable energy resources with different regions. Li et al. [34] proposed a novel DRL architecture to
optimize data center cooling control. The proposed method provided an end-to-end cooling control
algorithm combined with deep deterministic strategy gradient algorithm, which is helpful to improve
the cooling efficiency.

7. Conclusions

This paper focuses on the power budget fragmentation problem in data center architecture
powered by fuel cells. Observing the limitations of existing approaches that aim at minimizing energy
cost while neglecting the resource use at high-level nodes, this paper jointly considers objectives
of both the energy supply by fuel cell and resource use. Due to online environment of data center
architecture, the main target is formulated as an optimization problem with minimization the variation
of energy consumption at low-level nodes. A fine-grained workload distribution approach is designed
via the deep reinforcement learning method and s real state pool is introduced in traditional DRL to
deal with high computational dimension. The evaluation based on real-world traces demonstrates
better performance of the proposed approach over state-of-the-art methods. The simulation results
show that our proposed method can maintain a better training performance and save about 16% power
headroom. Our results on the real trace show that we can reduce the energy gap and save more energy
at around 5%.

At the end of this paper, we list a few issues if the proposed method is applied to practical
data centers. At first, the limitation output of fuel cells will have a huge effect on the performance
of the proposed method. Using heterogeneous energy resources to meet different kinds of energy
demand may be an effective way to solve the problem. The second issue is the parameter settings.
Our experiments show that the tuning process is almost inevitable. How to design a stable DRL-based
method to deal with data diversity is our future work.
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