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Abstract: Although high dynamic range (HDR) is now a common format of digital images,
limited work has been done for HDR source forensics. This paper presents a method based on
a convolutional neural network (CNN) to detect the source of HDR images, which is built in the
discrete cosine transform (DCT) domain. Specifically, the input spatial image is converted into DCT
domain with discrete cosine transform. Then, an adaptive multi-scale convolutional (AMSC) layer
extracts features related to HDR source forensics from different scales. The features extracted by
AMSC are further processed by two convolutional layers with pooling and batch normalization
operations. Finally, classification is conducted by a fully connected layer with Softmax function.
Experimental results indicate that the proposed DCT-CNN outperforms the state-of-the-art schemes,
especially in accuracy, robustness, and adaptability.

Keywords: image forensics; high dynamic range; inverse tone mapping; discrete cosine transform;
convolutional neural networks

1. Introduction

With the limitation of bit-depth, the conventional 8-bit digital images cannot accurately reflect the
current state of the environment, resulting in a loss of visual information in regions with imprecise
exposures [1,2]. To reflect more realistic information, high dynamic range format stores accurate
information by using higher bit-depth and floating-point formats [3]. As a consequence, the dynamic
range of HDR images can reach 10*~10° orders of magnitude, which far exceeds the dynamic range of
low dynamic range(LDR) images [4,5].

With the development of display techniques, some display devices have been able to display
HDR contents [6-8]. Meanwhile, HDR images can be easily obtained with the advancement of mobile
devices and imaging techniques. Since native HDR sensors have not been widely used, HDR images
are mainly obtained from LDR images. There are two common types of HDR images according to the
source of HDR images: (1) HDR images synthesized from multiple LDR images of the same scene with
different exposures, which are mainly obtained directly through fusion algorithms when shooting
images. This type of HDR images are denoted by mHDR [9,10]. (2) HDR images generated by using
inverse tone mapping (iTM) to expand the dynamic range of a single LDR image, which are used
to replace the existing LDR images [11]. This type of HDR images are denoted by iHDR [12-14].
There is evidence that the mHDR image is indistinguishable from the iHDR image [15-17]. Hence,
source forensics of HDR images has become a new problem in the field of image forensics: identifying
mHDR images synthesized from multiple exposures and iHDR images generated by iTM from a single
LDR image.
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Image forensics methods extract features based on numerical values to identify the source of the
image or whether the image has been tampered. Identifying the source of an image is an important
issue in the field of image forensics. This article is dedicated to solving the problem of HDR image
source forensics. The motivation of this paper is to detect the source of HDR images. More specifically,
HDR images are mainly divided into mHDR and iHDR according to the source of HDR images.
The proposed method is designed to distinguish mHDR images from iHDR images. From the
perspective of multimedia security, solving the problem of identifying the source of HDR images can
assist in validating the authenticity of the content in images.

Currently, rare research focuses on forensic problems in the HDR domain. All existing HDR source
forensic methods are conducted in the spatial domain. According to the way of extracting features,
these methods can be divided into two strategies: (1) Manually specified methods extract hand-crafted
features and use support vector machine (SVM) to complete classification [18-21]. (2) Convolutional
neural network (CNN)-based methods use CNN to automatically extract features related to forensics
and determine the type of the input HDR images in an end-to-end way [22]. In this article, a CNN for
HDR source forensics is built in the frequency domain, taking advantage of the frequency domain in
HDR forensics feature representation. To our best knowledge, this is the first time HDR image source
forensics has been conducted in the frequency domain.

The main contribution of this paper is as follows. First, with the aim of using the decorrelation
characteristic of DCT to make CNN focus on the features associated with forensics rather than the
content of the image, we designed a multi-channel DCT (MC-DCT) module to convert the HDR image
in the spatial domain into a DCT coefficients matrix. Second, we construct a multi-scale convolutional
layer with different kernel sizes to extract features from different scales, which improves the ability
of CNN to extract forensics-related features. Last, the multi-scale features are weighted by a channel
attention mechanism, which allows CNN to focus on the channels with more relevant to forensics.
Extensive experiments have shown that the performance of the proposed method is significantly
improved compared with existing methods.

The remainder of this paper is organized as follows: Section 2 summarizes relevant research on
the HDR images source forensics. Section 3 illustrates the architecture of the proposed DCT-CNN in
detail. Section 4 describes the details of the datasets used in the experiments and analyses experimental
results on different datasets. Section 5 gives the conclusion.

2. Related Works

Only a little literature exists on image forensics in HDR contents. This is because the HDR format
is relatively new in the fields of multimedia and signal processing, and the scarcity of HDR image
datasets also limits the development of forensics on HDR contents.

As the first work on forensic problems related to HDR contents. Bateman et al. proposed a
scheme to extract suitable features for distinguishing tone-mapped HDR images and LDR images
using SVM [18]. This work raised a new problem in the field of image forensics: identifying the LDR
images obtained from tone-mapped HDR images and the original LDR images. This forensics problem
still focused on LDR contents and the scheme proposed was conducted in LDR contents.

Furthermore, Wei et al. proposed a new forensics problem: identifying the mHDR image
synthesized from multiple LDR images with different exposures and the iHDR image obtained via
inverse tone mapping of a single LDR image [19]. This new problem was related to HDR contents and
was named after the problem of HDR source forensics. This work proposed a powerful HDR forensics
feature that distinguished mHDR images from iHDR images by using local high-order statistics (LHS)
based on fisher scores calculated under the Gaussian mixture model. However, manually specified
method cannot fully extract the features related to HDR source forensics. The drawback is that the
feature related to HDR source forensics need to be manually designed, which limits the ability of
forensics methods to extract features associated with forensics.
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With the development of deep learning, more CNN-based methods were applied to image
forensics. To overcome the drawback of manually specified methods, Huo et al. used convolutional
neural network (CNN) to achieve source forensics of HDR images [22]. In this method, an end-to-end
scheme named HDR-CNN was proposed and validated the feasibility of CNN for HDR source
forensics. The experimental results showed that by using convolutional neural networks to extract
features automatically, the accuracy of HDR source forensics is much better than that of conventional
manually specified methods. However, HDR-CNN which is built in the spatial domian tends to extract
features related to the content rather than information about forensics, which limits the performance
of this method.

In addition to conducting forensics in the spatial domain, some forensics methods were built in the
frequency domain to avoid the interference of images content. To use the decorrelation characteristic
of DCT, Zhang et al. proposed a CNN-based method of median filtering forensics in the discrete cosine
transform domain by converting the images in the spatial domain into data in the frequency domain
through DCT [23]. The drawbacks of this method are that some low-frequency and high-frequency
DCT coefficients were discarded and the DCT coefficients are given a fixed weight, which limited the
performance of this method. Singhal et al. proposed a CNN-based method for detecting manipulation
by converting image residuals into DCT domain [24]. The drawbacks of this method are that the
DCT is conducted on the Median Filter Residual (MFR) and with no multi-scale module to extract
features from different scales. Inspired by these works, we consider developing an effective HDR
source forensics method based on CNN in the DCT domain to avoid drawbacks of manually specified
methods and the interference of image content in the spatial domain. To avoid the drawbacks of other
DCT-based CNNs mentioned above, we introduce a multi-channel discrete cosine transform (MC-DCT)
module to keep all the DCT coefficients and the AMSC module to extract multi-scale features.

3. Deep Learning Architecture

Convolutional neural networks can update weights to extract more specific features in the training
process. Therefore, the method proposed in this paper is based on CNN to extract features in the DCT
domain. For brevity, DCT-CNN is used as the abbreviation for the proposed method.

3.1. Overview of the Proposed CNN Model

Figure 1 shows the basic process of the proposed CNN for identifying the source of HDR images.
In the spatial domain, CNNs tend to extract features related to image content, which will interfere
with the accuracy of HDR source forensics. The discrete cosine transform has the characteristics
of decorrelation, which can make the data structure lose the spatial pixel dependence and reduce
the influence of the image content on the accuracy of forensics. Therefore, the digital image in
spatial domain needs to be transformed into frequency domain with DCT. In the proposed scheme,
multi-channel discrete cosine transform is implemented on every channel of the HDR image to obtain
multi-channel DCT coefficients, which are used as input to the network instead of using the pixel
values of the image.

First, the input HDR image is first converted to DCT coefficients by multi-channel discrete
cosine transform block, and then a convolutional layer named Conv1 extracts features from the DCT
coefficient matrix. The extracted features are processed with Batch Normalization (BN) [25] and ReLU
as input of adaptive multi-scale convolution module. This part is represented by Frequency Domain
Feature Extraction in Figure 1. The adaptive multi-scale feature extraction process is represented by
Adaptive Multi-Scale Feature Extraction in Figure 1. The multi-scale features extracted by AMSC
module are processed with BN, ReLU, and max pooling. Then, a two-layer convolutional stream
with max pooling and activation function is used for high-level feature extraction, represented by
Hierarchical Feature Extraction in Figure 1. To introduce the adaptability of input with different sizes
to the network, average pooling is used to downsample the feature map to a fixed size. Finally, a
fully connected layer with Softmax activation function is used to implement the classification. Table 1
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indicates the outline of the proposed DCT-CNN. Multi-channel discrete cosine transform and adaptive
multi-scale feature extraction will be discussed in detail in Sections 3.2 and 3.3.

Convl Multi-Scale Conv Conv2 Conv3
Ch in=3 Ch_in = 64 Ch_in=128 Ch_in=256
Ch_out= 64 Ch out=128 Ch_out=256Ch_out= 512

Stride = 1 Stride = 1 Stride = 1

Stride= 1
. BN BN  Max BN Max BN Ave
| 4 ReLU ReLU pooling ReLU pooling ReLy  PoOliNg
\ : ) \ : )\ | )\ : )
Frequency Domiain Adaptive Multi-Scale ~ Hierarchical Feature Classification
Feature Extraction Feature Extraction Extraction

Figure 1. Overview of the proposed CNN in the DCT domain for HDR source forensics.

Table 1. The outline of the proposed network architecture.

Layer Input Filter Stride Padding Out
MC-DCT  32x32x3 - - - 32x32x%x3
Convl 32x32x3 3x3 1 1 32 x 32 x 64
3x3 1 1
5x5 1 2
AMSC 32x32x%x3 7% 7 1 3 32 x 32 x 128
9%x9 1 4
MaxPool 32 x32x128 2x2 2 0 16 x 16 x 128
Conv2 16x16x128 3x3 1 1 16 x 16 x 256
MaxPool 16 x 16 x 256 2 x 2 2 0 8 x 8 x 256
Conv3 8x8x256 3x3 1 1 8 x 8 x 512
AvgPool  8x8x512 8x8 1 0 1x1x512
FC 512 x 1 - - - 2x1

3.2. Multi-Channel Discrete Cosine Transform

The expansion of the dynamic range is mainly carried out on the luminance value of the image.
The common operation of the existing HDR source forensics methods is to fuse the red channel (R),
the green channel (G) and the blue channel (B) of the HDR image according to Equation (1) to obtain
the luminance value of the whole image. Then extract traces related to HDR source forensics based on
the distribution of luminance (L).

L =0.2126 x R4+0.7152 x G 4 0.0722 x B @

This approach reduces the dimensionality of input data at the cost of losing part of the information
related to HDR source forensics to a certain extent. To improve the accuracy of HDR source forensics,
all image information must be fully used. In the proposed method, for the sake of preserving the
information in each color channel and converting the input HDR image into the DCT domain, a
multi-channel discrete cosine transform as shown in Figure 2 is used. More specifically, the input
multi-channel HDR image is split into three channels, denoted by the Red channel, the Green channel
and the Blue channel. In addition, DCT is performed on each color channel separately to obtain three
individual DCT coefficient matrices. Finally, the three DCT coefficient matrices are concatenated into a
3-channel DCT coefficient matrix. It should be emphasized that the output DCT coefficient matrix has
the same size as the input HDR image. Therefore, we can see that the method proposed in this paper
is different from the other two DCT-based methods. In Referrence [23], the DCT coefficients matrix
is multiplied by a weight matrix with values increasing from the upper left corner to the lower right
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corner. At the same time, some low-frequency DCT coefficients and high-frequency DCT coefficients
in the DCT coefficient matrix are discarded. In Reference [24], the DCT transform is performed
on the median filter residual of an image, which discarded the image information before the DCT
operation. The method proposed in this paper uses MC-DCT to retain information in multiple color
channels without discarding image information of DCT coefficients. Therefore, the proposed method
theoretically has better performance than the other two DCT-based methods.

2D-DCT ’~I
Channel Channel
- Split Concatenate ‘d
— 2D-DCT —— . )
2D-DCT ——I
\ ‘ )\ ‘ )\ ‘ )
Time domain Discrete Cosine Transform  Frequency domain

Figure 2. Multi-channel discrete cosine transform.

3.3. Adaptive Multi-Scale Feature Extraction

To represent the forensic features more efficiently, we develop the adaptive multi-scale block,
where the convolution operations with 7 convolution kernels of different sizes are carried out on the input
in a parallel manner. Then, multiple scale features are weighted by a channel attention mechanism.

The adaptive multi-scale feature extraction module is shown in Figure 3. Multiple scale features
are extracted using a multi-scale convolutional layer, and these features are weighted by a channel
attention mechanism. Convolutional layers with different kernel sizes enable CNN to extract features
related to HDR source forensics from diverse scales. In this work, channel attention mechanism is
used to assign weights to the features extracted by the multi-scale convolutional layer. This adaptive
multi-scale feature extraction block can emphasize features that are positive for forensics and suppress
irrelevant features by applying channel-wise weights to every channel of multi-scale feature.

Specifically, four convolutional layers with different kernel sizes are carried out on the input to
obtain four sets of features that correspond to different scales. Each set of features has 32 channels.
Then, a multi-scale feature matrix with 128 channels is derived by concatenating four feature matrices
with 32 channels. To extract the most relevant features for HDR source forensics, a channel attention
mechanism is used to perform channel-wise weighting operations on the 128-channel multi-scale
feature matrix. In this work, the channel attention mechanism is implemented using the Efficient
Channel Attention module [26]. In ECA module, global average pooling (GAP) is conducted on
the features to obtain aggregated features with a size of 1 x 1 x ¢, where ¢ denotes the number of
channels. Then, a 1D convolution is used to extract relationship between channels, followed by a
Sigmoid activation to generate the weights of different channels. This channel attention mechanism
can be formulated as:

w = o(C1Dk(y)) @

where w refers to the weights of channels, ¢ is a Sigmoid function, C1D indicates 1D convolution, k is
the kernel size of convolution. The obtained weights and the input features of the AMSC module
are multiplied channel-wise to obtain the weighted multi-scale features. Hence, the subsequent
convolutional layers can focus on the channels that are conducive to improving the performance of
forensics. The multi-scale structure proposed in [23] involves three different convolution kernel sizes
and uses the maxout activation function for activation. During this process, some features related
to forensics will be lost. In Reference [24], no multi-scale feature extraction structure is proposed.
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Compared with the above DCT-based CNNSs, the network proposed in this paper uses an adaptive
multi-scale module to extract features without losing features and the features are weighted by a
channel attention mechanism to enhance the performance of forensics.

Ch in=64 1x1x128 Ix1x128  1x1x128
Input Ch_out=128
GAP Sigmoid
—
Channels = 128 Channels = 128
BN +
ReLu
\ : )\ : ) : \ ‘ )
Multi-Scale Multi-Scale Channel Weighted

Multi-Scale
Feature

Conv Feature Attention

Figure 3. Adaptive multi-scale feature extraction module.
4. Experimental Results

To evaluate the performance of the proposed DCT-CNN on HDR source forensics, we created
several datasets with different types of HDR images and different sizes of image blocks. The
performance is assessed by classification accuracy (Acc), receiver operating characteristic curve
(ROC) and the area under the curve (AUC), and compared with six state-of-art forensics methods
in [19-22,24,27]. The classification accuracy (Acc) is defined as:

TP+TN

A =
T TPTTIN+FP+EN "

100 3)

where TP denotes true positive, which is an outcome when the model correctly predicts the positive
class, TN denotes true negative, which is an outcome when the model correctly predicts the negative
class, FP denotes false positive, which is an outcome when the model incorrectly predicts the positive
class FN denotes false negative, which is an outcome when the model incorrectly predicts the negative
class. ROC is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. AUC is defined as the area under the ROC curve enclosed by the
coordinate axis.

4.1. Experimental Setup

4.1.1. Training and Testing Datasets

To obtain mHDR images, we choose the following mHDR databases:

e  HDRSID dataset includes 232 mHDR images [28].
e  Mantiuk created 8 mHDR images [29].

e  Stanford dataset includes 88 mHDR images [30].
e  sIBL Archive includes 58 mHDR images [31].

We chose the datasets mentioned above to produce the mHDR image blocks used in the
experiments. All HDR images in these datasets were produced using multi-exposure capturing
technique. The mHDR images are denoted by 'M’.

The generation of an iHDR image only requires a single LDR image. In this experiment, we chose
the MIT-Adobe FiveK dataset [32] as the source of the LDR images. The MIT-Adobe FiveK dataset
includes 5000 high-resolution images of different scenes, which can cover a broad range of scenes,
subjects, and lighting conditions. In this paper, we select four inverse tone mapping algorithms for
generating iHDR images:
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1. Akyiiz et al.’s method [33], denoted by “A’. In this method, the input luminance value is first
normalized and non-linearly scaled, and then linearly scaled to extend the low dynamic range to
the desired high dynamic range.

2. Huo et al.’s method [34], denoted by ‘H’. Huo presented a physiological inverse tone mapping
algorithm inspired by the property of the Human Visual System (HVS), which could implement
the expansion of the dynamic range only in the specific area of the input LDR image. This method
can efficiently generate iHDR images with high visual quality.

3. Kovaleski et al.’s method [35], denoted by ‘K. In this work, an inverse tone mapping algorithm
based on cross-bilateral filtering was proposed. This method can generate high quality HDR
images and videos suitable for a wide range of exposures by using the expand map in specific
areas of the image to linearly expand the input LDR content to the desired high dynamic range.

4. Kuo et al’s method [36], denoted by ‘U’. This work proposed an inverse tone mapping
method based on histogram. The method includes a content-adaptive inverse tone mapping
operator, which has different responses to different scenarios. This algorithm could adaptively
select environmental parameters through classification of scenarios to enhance the image in
over-exposed areas as well as in remaining well-exposed areas.

We used all 5000 high-quality LDR images from MIT-Adobe FiveK dataset to generate 5000 iHDR
images using the above four inverse tone mapping algorithms. As a result, a mHDR dataset including
386 mHDR images and an iHDR dataset including 20,000 iHDR images were obtained. These mHDR
and iHDR images constitute the basic experimental datasets. Figure 4 shows the difference between
mHDR image and iHDR images generated by different iTM methods.

B —— L
(c)iHDR-H

r(d) iHDR-K o

Figure 4. Visual comparison of mHDR image with different iHDR images. (a) mHDR; (b) Akytiz-iHDR;
(c) Huo-iHDR; (d) Kovaleski-iHDR; (e) Kuo-iHDR.

Finally, by cropping two type HDR images into blocks of different sizes, specific datasets for
evaluating the performance of forensic methods were generated. Specifically, the block size is set to 32,
64, and 128 to verify the performance of forensics under different image sizes. The experiments were
conducted on 12 datasets. Each dataset includes 30,000 mHDR image blocks and 30,000 iHDR image
blocks. Details of the datasets are shown in Table 2. For each dataset, 25,000 mHDR image blocks
and 25,000 iHDR image blocks were randomly selected to form a training set, with the remaining
5000 mHDR images and 5000 iHDR images forming a testing set. After this operation, 12 training
datasets and 12 test datasets for subsequent experiments are obtained. These datasets are subsets of
the datasets shown in Table 2.
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Table 2. Details of the datasets used in experiments.

Size Dataset Type  Num Type Num

M-A mHDR 30k iHDR-A 30k
M-H mHDR 30k iHDR-H 30k

2x32 MK mHDR 30k iHDRK 30k
M-U mHDR 30k iHDRU 30k

M-A  mHDR 30k iHDR-A 30k

eines MH  mHDR 30k iHDR-H 30k
M-K  mHDR 30k iHDRK 30k

M-U mHDR 30k iHDRU 30k

M-A  mHDR 30k iHDR-A 30k

sx1ps MH mHDR 30k HDRH 30k

M-K mHDR 30k iHDR-K 30k
M-U mHDR 30k iHDR-U 30k

4.1.2. Implementation of the CNN

The DCT-CNN for HDR source forensics is implemented with the Pytorch deep learning
framework [37]. Experiments were carried out on a high-performance computer with Intel® Core™
i7-9800X (3.80 GHz) (Intel, Santa Clara, CA, USA), 64 GB RAM and NVIDIA® GEFORCE RTX 2080 Ti
GPU (NVIDIA, Santa Clara, CA, USA). The parameters of the network are set as follows. The initial
learning rate with a learning rate decay strategy is set to 0.001. The batch size is set to 64 images, the
loss function is cross-entropy loss, and the optimizer is Adam [38]. Classification accuracy (Acc) is
used to evaluate the performance of forensics methods. We chose LHS [19], SPAM [20], HOG [21],

HDR-CNN [22], RF-CNN [24] and MISL-net [27] as comparative methods.

4.2. Forensics on Images without Anti-Forensics Attack

The classification accuracy averaged over the test datasets with a resolution of 32 x 32 are
summarized in Table 3 for all the tested methods. The best results are marked in bold. Since small-size
images include less information related to forensics, experiments conducted on small-size images can
reflect the feature extraction capability of forensic methods. Table 3 indicates that the performance
of HDR source forensics using manually specified feature extraction methods is weaker than using
CNN-based methods to extract features automatically. For instance, the highest classification accuracy
of LHS is 88.59% on the M-A dataset, while the accuracy of the two CNN-based forensic methods
reached 94.62% and 98.94%. For CNN-based forensic methods, the performance of DCT-CNN in
the frequency domain is better than HDR-CNN in the spatial domain. This result validates that the
decorrelation of DCT helps CNN extract the most important features related to HDR source forensics.
In this experiment, the proposed DCT-CNN manifests the best performance on different HDR datasets.
For the proposed DCT-CNN, classification accuracy increased by 10.35% compared with the manually
specified feature extraction methods. In addition, compared with HDR-CNN which is a CNN-based
forensics method built the spatial domain, the forensics accuracy increased by 4.32%. The experimental
results validate that the proposed DCT-CNN for HDR source forensics which is built in the DCT
domain can achieve desired forensic performance on 32 x 32 images. It can be observed from Table 3
that compared with other methods, the proposed DCT-CNN gained the highest AUC on different
datasets. Figure 5 shows the ROC of different methods, the curve of the DCT-CNN proposed in this
paper is closer to the point (0, 1), which indicates that DCT-CNN has better forensics performance over
other methods.
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Table 3. Forensics accuracy and AUC of different methods on datasets with resolution of 32 x 32.

9of 14

Image M-A M-H M-K M-U
Methods
Size Acc AUC Acc AUC Acc AUC Acc AUC
Proposed 98.94% 0.9969 99.08% 0.9983 99.86% 0.9907 99.53% 0.9974
HDR-CNN  94.62% 09781 90.49% 09583 9357% 09654 92.13% 0.9640
MISLnet 94.04% 09779 92.55% 0.9791 91.30% 0.9664 92.03% 0.9683
32 x 32 RF-CNN 94.75% 09702 90.60% 0.9632 90.67% 0.9682 89.93% 0.9637
SPAM 85.32% 0.9273 83.44% 09285 81.37% 09165 83.06% 0.9249
LHS 88.59% 0.9544 87.50% 0.9429 85.47% 0.9485 85.33% 0.9417
HOG 73.23% 0.8265 75.64% 0.8382 73.17% 0.8249 70.08% 0.8124
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Figure 5. ROC of different methods. (a) ROC of the proposed DCT-CNN; (b) ROC of HDR-CNN;
() ROC of MISLnet; (d) ROC of RF-CNN; (e) ROC of LHS; (f) ROC of SPAM,; (g) ROC of HOG.

The classification accuracy and AUC averaged over the test datasets with a resolution of 64 x 64
are summarized in Table 4 for all the tested methods. It can be concluded that in both the CNN-based
forensics methods and manually specified feature extraction methods, the accuracy was improved
to a certain extent compared with results on 32 x 32 images. Taking LHS as an instance, the forensic
accuracy is 93.15% on the M-A dataset with an image size of 64 x 64, while accuracy of LHS on the
M-A dataset with an image size of 32 x 32 is 88.59%. The forensics accuracy of HDR-CNN on 64 x 64
images is also improved by 2.92-4.74% compared to result on 32 x 32 images. It should be noted that
our proposed method has achieved high forensic accuracy on 32 x 32 images. Hence, performance of
proposed DCT-CNN only increased by 0.09-0.49% on 64 x 64 images. In this experiment, the proposed
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DCT-CNN still achieves the highest classification accuracy on four different datasets with a resolution
of 64 x 64. The DCT-CNN still achieved the highest AUC on different datasets, which verifies its
forensic performance from another perspective.

Table 4. Forensics accuracy and AUC of different methods on datasets with resolution of 64 x 64.

Image M-A M-H M-K M-U
Methods

Size Acc AUC Acc AUC Acc AUC Acc AUC
Proposed  99.43% 0.9997 99.17% 0.9990 99.54% 0.9946 99.76%  0.9989
HDR-CNN  97.65% 09991 95.41% 09783 96.87% 0.9868 96.83% 0.9822

MISLnet 97.91% 09944 96.22% 0.9910 96.61% 0.9906 97.02% 0.9943

64 x 64 RF-CNN 94.86% 09783 91.82% 0.9730 91.66% 0.9795 93.54% 0.9768
SPAM 87.41% 09462 85.24% 0.9342 82.17% 0.9183 85.97% 0.9308

LHS 93.15% 0.9630 87.93% 0.9828 85.61% 0.9604 84.17% 0.9547

HOG 79.23% 0.8682 76.64% 0.8651 75.17% 0.8527 72.58% 0.8544

The classification accuracy averaged and AUC over the test datasets with a resolution of 128 x 128
are listed in Table 5. Clearly, 128 x 128 is a relatively large image size. A larger size means that image
includes more information related to forensics. It can be observed from Table 5 that the manually
specified feature extraction methods and the CNN-based forensics methods have achieved higher
classification accuracy on datasets with a resolution of 128 x 128 compared with results on 32 x 32
images and 64 x 64 images. In this experiment, the proposed DCT-CNN still achieves the highest
classification accuracy and the highest AUC.

Table 5. Forensics accuracy and AUC of different methods on datasets with resolution of 128 x 128.

Image M-A M-H M-K M-U
Methods

Size Acc AUC Acc AUC Acc AUC Acc AUC
Proposed  99.69% 0.9999 99.24% 0.9997 99.72% 0.9978 99.83%  0.9998

HDR-CNN 98.04% 09936 96.14% 09854 97.25% 0.9881 97.43% 0.9851

MISLnet 99.12% 0.9957 98.79% 0.9939 98.82% 0.9975 98.71%  0.9959

128 x 128 RF-CNN 97.11% 0.9845 95.55% 0.9792 95.32% 0.9874 95.36% 0.9821
SPAM 90.52% 0.9546 83.19% 0.9417 83.24% 0.9192 86.01% 0.9428

LHS 9391% 09826 88.29% 09873 86.41% 09749 86.37% 0.9715

HOG 81.44% 0.9417 82.73% 0.9485 79.47% 0.9264 81.72% 0.9215

By analyzing the experimental results, we can draw a conclusion that larger image includes more
information related to the HDR source forensics. It should be emphasized that among all the methods,
RF-CNN and the proposed DCT-CNN were carried out in the DCT domain. The proposed DCT-CNN
uses multi-channel DCT to avoid the loss of information and uses an adaptive multi-scale module to
extract multi-scale features, which makes the forensic performance of DCT-CNN superior to RF-CNN.

Through Tables 3-5, a conclusion can be drawn that the proposed method is not sensitive to the
size of images. High classification accuracy and AUC can also be achieved on the images with low
resolution, which validates the strong robustness of DCT-CNN in respect of image size. In addition,
we can observe that the performance of forensics methods built in the spatial domain on different
types of datasets is not very stable. For instance, HDR-CNN has an accuracy between 90.49-94.62% on
different types of datasets with a resolution of 32 x 32. The fluctuation in accuracy of HDR-CNN is
4.13%. The fluctuation in the forensic performance of SPAM, LHS and HOG on datasets with different
types is 3.26-5.56%. The fluctuation in the accuracy of our proposed DCT-CNN on datasets with
different types are within 1%, which indicates that the proposed DCT-CNN has strong robustness and
adaptability in respect of HDR image types.
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4.3. Forensics on Images under Anti-Forensics Attack

Image anti-forensics are techniques that aim to make forensics algorithms fail by modifying the
images in a visually imperceptible way. Anti-forensics attack are methods used to make forensics
method invalid or to decrease the performance of forensics method, which are used to verify
the robustness of forensics methods in this experiment. Median filtering has the characteristic
of changing the distribution of image pixel values while preserving the content of the image.
Due to this characteristic of median filtering, median filtering is often used as anti-forensics attack,
which invalidates or reduces the performance of forensic methods. Therefore, it is necessary to study
the robustness of the forensics methods under the median filtering attack. The median filter replaces a
pixel by the median of all pixels in a neighborhood w:

y[m, n] = median {x[i,]], (i,j) € w} 4)

where w represents a neighborhood, centered around location [m, ] in the image. Furthermore, in
order to verify the robustness against anti-forensics attack of the forensics methods, we chose the
median filtering as the anti-forensics attack method.

In this experiment, the size of the images in datasets is fixed to 32 x 32. Median filtering operation
with two different kernels of 3 x 3 (MF3) and 5 x 5 (MF5) were conducted on all HDR images.
The experiments were conducted on these post-processed datasets to verify the robustness of the HDR
source forensics methods. The experimental results are shown in Tables 6 and 7.

Table 6. Forensics accuracy and AUC of different methods on datasets under median flitering (3 x 3).

Image M-A M-H M-K M-U
Methods
Size (MF3) Acc AUC Acc AUC Acc AUC Acc AUC

Proposed  95.64% 09936 95.82% 0.9959 92.45% 0.9706 96.35% 0.9917

HDR-CNN  92.27% 09794 87.39% 09726 85.44% 09548 87.41% 0.9694

MISLnet 91.35% 09616 89.41% 09543 90.15% 0.9528 88.72%  0.9691

32 x 32 RF-CNN  93.82% 0.9586 87.72% 09538 89.57% 09417 87.87% 0.9603
SPAM 76.79% 0.8268 80.31% 0.8243 76.39% 0.8139 76.14% 0.8326

LHS 80.74% 0.8894 79.06% 0.8816 82.11% 0.8724 73.48%  0.8895

HOG 69.26% 0.7904 64.89% 0.7858 64.97% 0.7786 71.24% 0.7923

Compared with Table 3, it can be observed from Table 6 that the performance of all forensics
methods decreased under the median filtering attack. Especially, the accuracy of forensics methods
built in the spatial domain significantly decreased. For instance, LHS gains best performance among
manually specified feature extraction methods. However, the accuracy of LHS on the M-A dataset has
decreased by 7.85% compared to the accuracy without an attack. As a CNN-based forensics method,
HDR-CNN has also decrease by 8.13% on the M-K dataset. For our proposed DCT-CNN, the accuracy
under the median filtering attack is still the highest among all methods on four different datasets,
which validates that DCT-CNN is robust against anti-forensics attacks.

Table 7. Forensics accuracy and AUC of different methods on datasets under median flitering (5 x 5).

Image M-A M-H M-K M-U
Methods
Size (MF5) Acc AUC Acc AUC Acc AUC Acc AUC

Proposed  9421% 0.9859 95.32% 0.9902 90.16% 0.9694 95.38% 0.9896

HDR-CNN  90.19% 0.9649 84.62% 0.9621 83.33% 0.9607 81.04% 0.9689

MISLnet 87.73% 09503 84.99% 09586 84.34% 0.9457 83.80% 0.9621

32 x 32 RF-CNN  93.15% 0.9014 87.52% 0.9059 8826% 0.8974 87.22% 0.9146
SPAM 70.13% 0.7784 73.49% 0.7751 69.72% 0.7546 65.19% 0.7824

LHS 78.04% 0.8737 7817% 0.8719 77.35% 0.8637 72.94% 0.8792

HOG 62.58% 0.7761 62.31% 0.7628 64.55% 0.7549 67.29% 0.7804
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Comparing Tables 6 and 7, it can be concluded that the median filtering with a kernel size of
5 x 5 has a greater impact on the performance of forensics methods than that with a kernel size of
3 x 3. In the case of more intense anti-forensics attacks, our proposed method still achieved the highest
accuracy and the highest AUC on all the datasets. Compared with the results under median filtering
with kernel size of 3 x 3, the accuracy of the forensics methods built in the spatial domain fluctuates
between 2-11%, while the fluctuation of DCT-CNN is between 0.5-2.29%, which proves the proposed
DCT-CNN is very robust to anti-forensics attacks.

5. Conclusions

In this paper, we propose a CNN-based model in the DCT domain to detect the source of HDR
images. To the best of our knowledge, this is the first attempt to achieve HDR source forensics
in the frequency domain. Decorrelation of the image content is conducted by transforming the
input image in the spatial domain into the DCT domain with a MC-DCT transformation. Hence, the
subsequent network can focus on the features related to forensics. Furthermore, an adaptive multi-scale
convolution module is applied to extract forensics-related information from different scales with the
aim to improve forensics performance of the network. The experimental results show that, compared
with the manually specified feature extraction methods and the current CNN-based method, our
DCT-CNN has achieved the best classification accuracy and AUC on datasets with different resolutions
and datasets with different types of HDR images. Sufficient experiments also validate the strong
robustness of the proposed DCT-CNN in respect of image sizes and HDR image types. Moreover, it
yields good robustness against median filtering. We hope that this work will inspire follow-up work in
the field of HDR source forensics.
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Abbreviations

The following abbreviations are used in this paper:

AMSC Adaptive Multi-Scale Convolution

Acc Accuracy

AUC Area Under the Curve

BN Batch Normalization

CNN Convolutional Neural Networks

DCT Discrete Cosine Transform

HDR High Dynamic Range

iTM inverse Tone Mapping

LDR Low Dynamic Range

MC-DCT  Multi-Channel Discrete Cosine Transform
ROC Receiver Operating characteristic Curve
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