i\;lg electronics m\py

Article
Smart Contract Engineering

Kai Hu !, Jian Zhu '@, Yi Ding ?*, Xiaomin Bai ! and Jiehua Huang !

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China;

hukai@buaa.edu.cn (K.H.); zhujian@buaa.edu.cn (J.Z.); baixiaomin@buaa.edu.cn (X.B.);
huangjiehual9@outlook.com (J.H.)

School of Information, Beijing Wuzi University, Beijing 101149, China

* Correspondence: dingyi@bwu.edu.cn; Tel.: +86-10-8953-4290

check for
Received: 28 October 2020; Accepted: 27 November 2020; Published: 2 December 2020 updates

Abstract: A smart contract is the algorithmic description of a contractual transaction protocol that
is automatically executed together with the information provided by its parties. It is written in a
simplified programming language that is specific to a particular domain. Not only correctness and
unambiguity are its essential formal properties, but also conformance to any legislation governing
the matter of the transaction. Finally, and importantly, the trustworthiness, safety and security of
the platform executing the transactions are its main attributes. An emerging challenge is to define a
proper engineering process to meet the demanding requirements while supporting mass production
and distribution. This paper proposes the concept of smart contract engineering (SCE) to facilitate
the generation of smart legal contracts, which is the combination of software engineering, formal
methods and computational law. SCE aims to reduce the potential errors and improve efficiency
during the contract development process, meanwhile promote the standardization of contract design
methodologies. In this paper, the roadmap of an iterative refinement-based, model-driven formal
design methodology is introduced, not only to validate smart contracts but also to support the whole
life cycle of their engineering.

Keywords: smart contracts; blockchain; formal methods; smart contract verification; smart
contract engineering

1. Introduction

The future of society is digital;, how to transfer the physical society’s relationships to money, law,
and even lifestyle and culture into digital relationships in the virtual world is a big challenge in IT
technologies. The notion of the smart contract (SC) is one of the basic concepts to solve the code
contract proposed by Nick Szabo in 1994, in the paper, “Formalizing and Securing Relationships on
Public Networks” [1]. Szabo gave an algorithmic specification of a car loan scenario: if the lender fails
to pay its loan, the smart contract would automatically withdraw his digital car keys. It is obvious
that car dealers will find this automatic contract attractive. Smart contracts utilize protocols and user
interfaces to facilitate all steps of the contracting process, which almost obviates the ambiguity of
contractual clauses in text or their implementation. Smart contracts aim to reduce transaction costs
imposed by principals, third parties, or the tools of transactions. Smart contracts are one of the pillars
of tomorrow’s digital society.

Szabo’s smart contracts theory and the Internet (world wide web) are invented almost at the same
time. However, Szabo had no clear idea to make it real. Hence, the application has been far behind the
theory. Two problems exist mainly. First, there is no way to control the physical property effectively.
Vending machines can control the ownership of goods by storing goods in boxes. However, it is
challenging to manage real-world assets such as industrial products, agricultural produce, etc. Second,

Electronics 2020, 9, 2042; doi:10.3390/electronics9122042 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3216-251X
http://dx.doi.org/10.3390/electronics9122042
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/12/2042?type=check_update&version=2

Electronics 2020, 9, 2042 2 of 26

there is no trustworthy execution environment for smart contracts, where the contractors can observe
and verify the performances of other contract parties. Blockchain [2] is an effective way to solve these
problems. It is not only a safely distributed ledger to store the contract code but also a distributed
execution environment to control the digital asset directly. The blockchain nodes will execute the
contract code in a distributed way, which is similar to the law and regulation executor of commercial
transactions. Combined with blockchain, smart contracts can help companies to fulfill corporate
social responsibility [3], easily supervised by the government and the public, reduce transaction costs,
and improve business performance.

However, there are still many problems with smart contracts.

The smart contract is the executable code, and it should adapt to the reliable mass software
production; The smart contract has higher requirements for its correctness. Hence, it requires a way
to generate a credible contract code; The smart contracts will likely replace the contract’s text in the
future. Therefore, it is necessary to keep conformance with the regulations in law texts.

In this paper, the concept of “smart contract engineering” is proposed, which aims to guide the code
generation of smart contracts so that we can obtain legal and correct smart contract software. It will be
the integration of the theory of software engineering (SE) [4], Formal Methods [5,6], intelligent methods,
and computational law [7]. It aims to reduce the potential errors during the contract development
process, improve the efficiency of the development of contracts, and promote the standardization of
contract development.

The main contributions of this paper are as follows:

e The concept and method of smart contract engineering are proposed in Section 4;

e The formal description and formal model of the smart contract are proposed in Section 5;

e Model-driven verification methods corresponding to smart contracts’ features are presented in
Section 6, including iterative road map: modeling, model transformation, model verification,
automatic code generation, and runtime verification;

e Conformance testing is applied to verify the conformance of smart contracts code, and contract
texts are described in Section 7;

This paper is structured as follows: Section 2 presents a general review of smart contracts; Section 3
discusses related techniques and works; Section 4 introduces smart contract engineering; Section 5
proposes the formal description of smart contracts and describes model, transaction, and attributes of
smart contracts; Section 6 shows the formal methods in SCE; Section 7 shows the conformance testing
methods applied to smart contracts; Section 8 presents a case study of formal verification to illustrate
the advantages of formal methods; Finally, Section 9 reports the conclusion.

2. Smart Contracts

Smart contracts utilize protocols and user interfaces to facilitate all steps of the contracting process.
To make it widely used with soundness and completeness, we define the following eight basic attributes
that smart contracts should satisfy: legality, probativeness, consistency, customizability, observability,
verifiability, self-enforceability, and access-controlling.

The main features are as follows:

Legality: The code complies with legal regulations. The controlled assets have ownership, and they
are valid.

Probativeness: Process data and scenarios must be securely stored, and they can be used for
legal evidence.

Consistency: Smart contracts should be consistent with the existing law text. Before publishing
the smart contract, it should be reviewed by professional law persons to assure that the contract will
not contradict the existing laws.

Customizability: Smart contracts are customizable. Multiple basic contracts can be combined into
complex or complicated contracts.

Electronics 2020, 9, 2042 3 of 26

Observability: Smart contracts require interfaces to observe the state of contracts, including the
contract itself, its performance, and everything about the contract.

Verifiability: The records about the smart contracts can be verified. The working logic and the
correctness of the execution of smart contracts are verifiable.

Self-enforceability: It needs enforcement to protect against breach and third parties which do not
rely on law enforcement. Cryptographic contracts would give control by the cryptographic keys to
operate the property for persons who rightfully own the property in terms of the contract.

Access-controlling: The information of contracts, such as knowledge, control, and performance,
must be only accessible for contract-related persons. Unless when a conflict occurs, these properties of
the contract will be exposed to the third parties.

To satisfy the above properties and solve the problems of smart contracts, we can learn from
business contract architecture [8-12] to design the role-based architecture of blockchain-based smart
contracts system (as shown in Figure 1). In this architecture, there are a variety of roles played in the
contract establishing, implementing, and trust mechanism.

DEM
Chebitrator) Cledistor

Event Notification

Smart Contracts Executors

contracts | events states

Events Events

Send contracté or its patch

§ @ 3§

" »/ Contract Event Repository <

Figure 1. The role-based architecture of blockchain-based smart contracts system.
(1) Roles Supporting Contract Establishment

The following roles are supporting the process of establishing a contract.

Negotiator mediates the negotiation process (alternatively, this can be carried out by the parties
themselves). During this phase, parties can exchange contract instances. Contract instances will be
submitted for checking validity. Then the negotiator will send the signed contract instances to the
blockchain and the same for the contract patches.

Validator uses formal methods to verify the logical correctness of the contract itself.

The blockchain is a safely distributed database to store contract instances. Such contract instances
can be later used as evidence of agreement in the contract monitoring and enforcement activities [2].

Contract events repository provides storage and access to standard contract templates in different
contractual scenarios. Parties can use predefined contract templates to trigger contract execution.

(2) Roles Supporting Contract Execution

The following roles support discretionary and non-discretionary contract enforcement during the
performance of a contract.

Electronics 2020, 9, 2042 4 of 26

Smart contracts executors are pieces of code run by blockchain nodes; it may take the following
specific roles for the events from outside of the blockchain.

e Monitor enables participants to monitor the activities of parties, measure their performance,
and record the relevant events. It evaluates the policies for these events against the agreements
that are stored in the blockchain and signal a contract noncompliance event to the Enforcer.
The monitor is subscribed to contract significant events and when these occur.

e Enforcer applies to enforce actions directly for the parties to ensure that some specific behavior
conforms to the contract.

e Notifier implements various notification mechanisms needed to send warning messages to contract
parties. For simplicity, the Notifier is not shown in Figure 1.

e Discretionary enforcement moderator (DEM) forms an opinion about the extent of deviation by
the non-performing parties. It forms its opinions on the basis of evidence about the deviation of
the non-performing parties, which is provided by the evidence stored on the blockchain, external
advisers, and possibly additional recommendations from agents representing the parties, in a
spirit similar to a (human) judge’s process to arrive at his ruling.

e During this process, the DEM component may take the following specific roles:

e Mediator initiates a settlement leading to the success of an amended transaction or decides the
failure of mediation leading to the invocation of arbitration;

e Arbitrator will not only take enforcement measures according to the results of settlements,
the advice from external advisors, and the recommendations from agents representing the parties
but also has the power to arbitrate, that is, to decide himself if the parties are unable to reach an
amicable settlement of their dispute. An arbitrator may initiate the enforcement of corrective
measures by sending events to the Contract Enforcers.

At present, the technology of smart contracts on the blockchain is still in the early stage. It is
immature, unsafe, and unskilled. The technology does not form a theoretical system and cannot meet
the needs of large-scale applications. For example, the DAO contract was attacked on 17 June 2016
due to the loopholes of DAO’s smart contracts. This accident resulted in the loss of 60 million dollars
from the account [13]. Moreover, in April 2018, the BEC blockchain platform was exposed to security
vulnerabilities and was attacked by hackers with the BatchOverFlow vulnerability in the ERC-20 smart
contract of Ethereum, causing an immense price crash. Although there are already some contract
management systems, such as Selectica [14], Novatus [15], and Apttus [16], these systems provide only
the role of management contracts, and they cannot enforce to execute the terms of the contract.

The current research of smart contracts is still in its infancy. The application is also very simple,
even fabled. The development and application of smart contract need to consider solving the following:

1. The problem of external information: If smart contracts retrieve some information from an
external source and the information source is outside blockchain, so, there is no guarantee that
each node will receive the same information. Once the consensus is broken, the entire blockchain
system will be paralyzed.

2. The problem of the business model: How to build a model for the different real business
phenomenon in the right way? How to build a large number of business modeling tools in
software engineering is the key to support user’s applications.

3. The problem of credible contract: Is there no bug in the program? If the contract is in favor of
the one contract party, obviously, how to fix it? How to verify the logic of the contract is correct,
and how to eliminate the loopholes in the contract? Hence, far, the formal method is a powerful
tool to transform concepts, judgment, reasoning in the contract into specific formal language for
eliminating ambiguity and non-commonality of natural language.

4. The problem of contract execution: When multiple contracts need to be triggered at a certain time,
who will manage and send the triggering events? If multiple contracts are executed at the same
time, it will bring complex access control, synchronization concurrency, and consistency issues.

Electronics 2020, 9, 2042 5 of 26

5. The problem of contract custom: How to develop a good template for the smart contract?
Customizing different contracts depending on the different scenes and combining multiple
contracts to form a composite contract. Further, we can model, analyze, validate, and generate
contract code automatically by the formal method for the smart contract.

6. The problem of legality: Does the smart contract has the same power of law as a “real” contract?
If the result of a smart contract breaks the law, or the court finds that the smart contract has
a conflict with contract law, how to solve it? The study of computational law will give a
breakthrough on the technical and legal aspects. Common Accord [17] generates a new idea
based on a smart contract in the legal documents and generating code automatically.

7. The problem of contract security: Contract cryptography, evidence, and information security will
always be important research directions. Increasing complex contract procedures consume much
computing power (such as forming an infinite loop) for a computing node, and how should we
avoid such a situation?

8. The problem of contract performance: Combining the consistency of the smart contract state with
the blockchain consistency process may increase the production time of the block. For example,
the construction time of the block in Ethereum includes the processing time of the transaction in
the block, and thus the speed of building the block is getting slower. How should we speed up
the implementation of the contract efficiency?

9. The problem of non-intelligent: The current common approach is basically to use the fixed
contract templates. Who will write, test, and dynamically modify smart contracts is a new model.
Moreover, combining with artificial intelligence technology is the research trend. The smart
contract is more like a third party who has the ability of analysis to perform the contract by the
method of artificial intelligence.

This paper proposes the concept of smart contract engineering (SCE) in order to solve
these problems.

3. Related Work

Early work on smart contracts has been done by Szabo [1], who proposed the initial concept
and principles of smart contracts and analyzed the possibilities and advantages of constructing smart
contracts by using computers, the Internet and other new technologies. In 2000, Mark S. Miller [18]
designed a system E based on Szabo’s contract basis, which is a secure distributed persistent language
for capability-based smart contracting.

Smart contracts, as a new technology in computational law, have very important features:
when certain conditions are met, contracts will execute appropriate actions automatically. However,
this feature has been applied in similar technology in other applications. For example, knowledge-based
systems had this feature in the 1980s. The first one is the rule-based systems. When certain conditions
are met, the corresponding rule will be triggered. If more than two rules are triggered at the same
time, there will be a corresponding resolution mechanism to coordinate the execution of these rules.
The second one is the blackboard architecture. Multiple agents are monitoring simultaneously. When a
specific condition is met, the corresponding agent will activate its own rule and execute the relevant
process. The different point from the rule-based system is that these agents can be grouped, and these
agents who are in the same group will be on the same platform and share the same information.
The third one is the database trigger. When a change in the data in the database satisfies the conditions
for the database trigger, the corresponding program will be activated to perform. The last one is the
service-oriented system. When the service caller meets a certain condition, the system will provide the
corresponding service to the service caller.

The development of smart contracts has been slow because there was no trust execution
environment to meet the need for observable, verifiable and self-enforced. Before the blockchain,
the contracting party is unable to observe and verify the performance of other contract parties directly.

Electronics 2020, 9, 2042 6 of 26

It often involves trusted third parties, who are involved in the performance phase of contracting,
which is the most expansive part. Hence, we need a contract machine which deals with contract
processing automatically according to the performance of contract parties, but the machine cannot be
affected by any one of them. The blockchain is a secure distributed database; anything in blockchain
cannot be changed by any one of them but can be checked by all of them [19]. Ethereum [3]
significantly promoted the development of smart contracts to meet the basic requirements of Nick
Szabo smart contracts.

Contract states in blockchain cannot be changed without correct transactions, and each change of
state on it needs to go through the blockchain’s consistency algorithm. Ethereum stores the contract
itself and its status in the blockchain; when the terms and conditions of the contract are satisfied,
the contract code stored in the blockchain will be executed. Since distributed nodes complete the
execution of smart contracts in Ethereum, so there is no single point failure, and the smart contracts’
execution will be immutable and verifiable. Therefore, there is much room for development to combine
smart contracts and blockchain. Many companies focus on the research on blockchain and smart
contracts, such as Codius, SmartContract, IBM and Eris, etc.

Smart contracts need to be embedded into software, hardware to be executed automatically, so the
language of smart contracts should be paid attention to. But a programming language is not like the
language in everyday life, which is rich in semantics. The more semantically rich language of the
contract, as the efficiency of the programming language, will be reduced. What’s more, complex and
high-level languages are accompanied by potential security threats, vulnerabilities, and various other
issues. Many partial solutions have been proposed to address specific security issues, but there is a
lack of systematic research on smart contracts. Singh et al. [20] analyzed the current formalization
approaches for smart contracts in great detail and identified open issues with possible solutions to
mitigate these issues. Huang et al. [21] proposed a software lifecycle perspective to solve the smart
contract security issues by dividing reviewed research into four development phases. Compared
to previous works, this paper proposed the concept of SCE more extensively and systematically
with a combination of software engineering, formal methods, and computational law to promote the
standardization of contract design methodologies.

Learning from protocol engineering [22], contract engineering will be used to facilitate smart
contracts’ generation. To reduce the potential errors during the contract development process, this paper
has used a formal verification method to verify the logical correctness of the contract itself. Formal
verification techniques have been developed with three main approaches: model checking, deductive
verification, and equivalence checking:

(1) Model-checking

This approach [23,24] exhaustively explores concerned property in a model. It is possible for finite
models, but also for some infinite models where infinite sets of states can be effectively represented
finitely by using abstraction or taking advantage of symmetry. Usually, this consists of exploring
all states and transitions in the model by using smart and domain-specific abstraction techniques to
consider whole groups of states in a single operation and reduce computing time. Implementation
techniques include state space enumeration, symbolic state space enumeration, abstract interpretation,
symbolic simulation, and abstraction refinement. The properties to be verified are often described in
temporal logics, such as linear temporal logic (LTL) or computational tree logic (CTL). The significant
advantage of model checking is that it is often fully automatic; its primary disadvantage is that it does
not work in general scale to large systems; symbolic models are typically limited to a few hundred
bits of state, while explicit state enumeration requires the state space being explored to be relatively
small. VerX [25] uses temporal logic and model checking to automatically prove the temporal safety
properties of Ethereum smart contracts. PROMELA [26] was used for describing smart contracts,
which were later verified with the SPIN model checking tool.

Electronics 2020, 9, 2042 7 of 26

(2) Deductive verification

It consists of generating from the system and its specifications (and possibly other annotations)
a collection of mathematical proof obligations, the truth of which imply conformance of the system
to its specification, and discharging these obligations using either interactive theorem provers (such
as HOL, ACL2, Isabelle, or Coq), automatic theorem provers, or satisfiability modulo theories (SMT)
solvers. This approach has the disadvantage that it typically requires the user to understand in detail
why the system works correctly and to convey this information to the verification system, either in the
form of a sequence of theorems to be proved or in the form of specifications of the system components
(e.g., functions or procedures) and perhaps sub-components (such as loops or data structures) [27].
Theorem proving is used by researchers to propose KEVM [28], an executable formal specification of
the EVM'’s bytecodes stack-based language built with the K framework. It was designed to provide
support for rigorous formal analysis of smart contracts. B. Spitters et al. [29] have modeled a vulnerable
contract, faithful to the real DAO, and showed that by modeling it by Coq in a natural way, one could
have caught this vulnerability.

(3) Equivalence checking

This is a form of semi-technical words, with the first two verify the correctness of the different
technologies; it is the consistency of design verification, namely, whether the design of the different
design stages the same functions and symbols commonly used in this art methods and incremental
approach [30].

Code generation can help to improve the automation level of software development, shorten the
software development cycle and reduce manual workload and the possibility of encoding error.

Early automatic code generation technology refers specifically to translate the parse tree (parse
tree) or an abstract syntax tree (abstract syntax tree) into an intermediate language (intermediate
language) technology in a high-level programming language compiler back end. However, now,
it refers to all kinds of programming language code generation technologies, such as graphical user
interface (GUI) to generate high-level programming language code, and transition between different
high-level programming language, and model-based high-level programming language automatic
code generation.

The model-based automatic code generation concept stems from model-driven architecture (MDA).
Model to code generation and model-to-model transformations are a subset of the MDA transformation.
MDA is a software development framework that is proposed by the object management group (OMG)
in 2001. The following describes the automatic generation of technology and analysis the tools of
model-based code generation.

(a) PIM-based and PSM-based code generation

According to the results of the evolution of MDA development, it can be divided into the
platform-independent model (PIM) code generation and platform-specific model (PSM) code generation.
PIM describes the system but does not involve the knowledge of the final implementation platform
and implementation technology; PSM describes the system and includes the knowledge of the
implementation platform and related technology. PIM code generation includes PIM to PSM, PSM to
code generation in two parts [31]. PSM to code generation transit predefined PSM into the code;
it can be divided into relational PSM code generation, EJB code generation and web code generation.
Their difference is that relational PSM code generation’s input is the ER model, EJB code generation’s
input is the EJB-UML model, and Web code generation’s input is the Web-UML model.

(b) Structural model and behavior model code generation

According to the Hierarchical modeling language representation system, it can be divided into
structural model code generation and behavior model code generation. The structure model describes

Electronics 2020, 9, 2042 8 of 26

the static structure of the system, and the behavior model describes the dynamic behavior of the system.
Static model generation is relatively fixed and only makes the appropriate translation. The behavioral
model describes the system’s dynamic logic includes internal control flow, state transition, the interaction
between objects, and so on. Dynamic logic makes these models own the properties of applications,
but also it increases the complexity of implementation.

(c) Rule-based and template-based code generation

According to the way of processing model during the code generation, it can be divided into a
rule-based engine code generation and template code generation. The rule engine is used to judge
whether it can match the real-time runtime conditions for the implementation of predefined operations.
A template is a file of the static text and placeholders; static text will be directed to a text code file;
the placeholder will be replaced with the information which will be put into the code file. Templates
are actually coding conversion rule carriers.

4. Smart Contract Engineering (SCE)

A smart contract is a piece of code that performs the contract text written in a specific computer
algorithm. The contract parties agree with, sign, and fulfill contracts according to contract code.

However, there are still many problems in smart contracts, as we mentioned in the introduction.
Traditional software engineering methods cannot meet the requirements of smart contracts mass
production. Hence, a new concept is proposed: smart contract engineering, to standardize the
generation process of smart contracts to produce the legal contract code effectively.

Definition 1. Smart contract engineering (SCE) is a systematized, modularized, and judgmental process for the
smart contract that is based on development, maintenance, and execution, and that integrates with software
engineering, intelligent methods as well as legal code technology.

SCE can significantly reduce development costs, and eliminate the repeated low-level development
work, and bring advantages of conformance and maintainability. People can rapidly get a new contract
by modifying the old model. In the early analysis and verification, system design can find potential
errors as soon as possible; the use of formal methods for analysis and verification of the model also has
a higher level of reliability. SCE maintains all steps of contract development to reduce the potential
errors during the contract development process, improve the efficiency of development contracts,
and promote the standardization of contract development.

In the framework of SCE (as depicted in Figure 2), the contract code generation includes
design, description, verification, automatic code generation, performance analysis, and conformance
testing, etc. [27]. In general, three major technologies are integrated. The first one is the traditional
theoretical method of software engineering, where the formal method is an effective method for
deterministic high-level verification of contracts. We transform contracts” definitions, judgments,
and reasoning into formal descriptions, which can eliminate the ambiguity and incompatibility of
natural language. Then we use formal tools to model, analyze, and verify smart contracts and
automatically generate the verified contract codes [32,33] in a cyclic process. The second is the use
of intelligent methods in the production process of smart contracts, making it easier for users to
understand, write, deploy, and implement supervision. For example, natural language recognition,
cognitive theory, and machine-learning methods make it possible to more accurately and automatically
convert complex contract rules into smart contract code. The third is that smart contracts require
regulation at the legal level. Computational law studies how computer technology can be used to
implement the expression and automatic execution of legal documents such as laws, regulations,
contracts, and constitutions in electronic media to ensure that the contract codes are consistent with
statutory rules in the real world.

Electronics 2020, 9, 2042 9 of 26

Contract parties
Agreements

Design

Law Regulation

Contract
Specification

Iteration
erification

Y

|

] Formal Contract
! Specification

Computable | .
Modeling
Law
Law Regulation | Contract Formal Transform

| Verilication

-

e e o e i i e i

Automatic
Contract Code
Generation

Testing Sequence
Generator

Contract Testor

Figure 2. Smart contract engineering.

Stability and
Reachable
Mathmatical Model

The key parts of contract engineering are as follows:

e Contract design will construct informal contract specifications according to contract parties’
agreements. It directly decides whether the contract meets users” demands.

e Contract formal Description is used to describe contracts without ambiguity. It is the most critical
part of SCE to link all other steps.

e Contract law regulation will normalize the format of contract parties” performance and make
the contract consistent with the existing law. In this way, the records on the blockchain can be
electronic evidence in judicial proceedings. Judicial proceedings can serve as a back-up solution
whenever the self-execution of a smart contract is not successful, e.g., due to a technical fault, or
when a new dispute arises between the parties to the contract after it was put into operation.

e Contract model transformation as an engineering practice of the formal method, model-driven
engineering (MDE) [34] aims to raise the level of abstraction in program specification and improve
automation in program development. The idea promoted by MDE is to use models at different
levels of abstraction to develop systems, thereby raising the level of abstraction in program
specification. MDE can support smart contract’s whole life, from modeling, verification to code
generation [35].

e Contract verification Techniques are used to verify the logical correctness of the contract itself.

e Stable and reachable mathematical model is used for modeling the relationship among the contract
entities and for contract code generation.

e Automatic contract code generation aims at automatically generating the executable code from
the formal specification.

e Conformance testing detects whether new contract code implementation meets all the requirements
in the formal specification.

In this paper, we will mainly focus on techniques related to formal methods to give several aspects
that can be applied in the verification of smart contracts.

5. Formal Description of Smart Contract

5.1. Smart Contract Model

The formal model of smart contracts is constructed by FSM called automata [22] as follows:

Definition 2. Smart contracts can be modeled by automata.

Electronics 2020, 9, 2042 10 of 26

Contract C is a triple:
C = (I/M*/ {M11M2/ /Mm}) (1)

Contract C includes contract parties” information I, I; means the information about the contracting
party P;, (i=1,---,m), there are m contract parties joining the contract; contract automata M* and
contract execution automata set {Mj, My, - - - , M;;}. Contract automata M* equals to the combination of
contract execution automata set {Mj, My, - - - , My,}. Contract automata M"* is a quintuple:

M =(Q Z 5", F) @)

Among them,Q = { (q;, Goree s q*m), L}. Q is the set of all states of contract execution automata,
L is the contract execution background, ¢ is contained in the state set of the contracting party P's g;,
q: € qi, (i=1,---,m); Y, is the set of all input events; 0" is the set of all the transition functions,
0" : Q%Y — Q;s"is the initial state, s* € Q; F* is the set of termination states, F* C Q.

Moreover, M, is the contract execution automata of the contracting party P;, which is a quintuple:

pPi= (111‘/ Z 0i, Si Fi) 3)

Among them, g; is the set of all execution states of P;, (i = 1,--- ,m);), is the set of all input events;
0; is the set about the transition functions of P;, 6; : q; X Y, — g;; s; is the initial state, s; € g;; F; is the
set of termination states, F; C g;. Contract automata M" and the combination of contract execution
automata set {My, M, - - - , M} share the same events set).

5.2. Transaction Description

The data that needs to be processed by the smart contract system is collectively referred to as the
“transaction”.

5.2.1. Transaction Model

The transaction includes both real transfer transactions and data that require consensus and
storage and need to be sent to the blockchain. On the blockchain model, it is generally to operate for a
list of transactions, and the transaction stored in a block is also a list. This paper uses the symbol T to
represent the transaction list, and the symbol T represents the transaction.

The address is the source and destination of a transaction in the system. The address indicates the
user’s attribution of value or data, and the lowercase “a” represents the address. A user can own multiple
addresses, for example, a1, ay, ..., a, € u;, which represents the user u; owns address aj, ay, ..., ay.
In order to protect the user’s privacy, this paper draws on the public blockchain model, which uses
a string of 20 bytes hash as the address, that is, a € By), where B refers to the character sequence,
By refers to 20 characters sequence.

In order to meet the needs of most transaction types, the transactions defined in this paper include
the following fields:

from: the sender of value or data is a 20-byte address; for normal data, this field is empty. This field
is represented by T, so Ty € By or Ty = @.

to: the recipient of the value or data is also a 20-byte address; this field is also empty for an
ordinary transaction or transaction that is created by a smart contract. This field is represented by T,
so, T € Bygor Ty = &.

type: the type of transaction, an 8-bit binary positive integer. This field is represented by T),
so Ty € Pg, where P represents a positive integer and [P, represents an n-bit binary positive integer,
that is 2".

nonce: the transaction number that the sender has sent to identify the order. This field is a 32-bit
binary positive integer, denoted by T}, so T, € Pa».

Electronics 2020, 9, 2042 11 of 26

value: the value of the transfer transaction is a 64-bit binary positive integer, indicated by T, so,
T, € P64-

result: the result of the execution of the transaction, success or failure, etc. An 8-bit binary positive
integer, denoted by T;, so T\ € Ps.

timestamp: the timestamp of the transaction, indicated by Ts.

data: the transaction data, if a smart contract creates the transaction, it is the smart contract byte
stream code. This field has no length limit and is represented by T}.

Therefore, a transaction T can be represented:

T=(Ty, Ty, Ty, Tu, To, Tr, Ta) @)
and
Tpepg ANTpePsp ANTyePgy AT, ePyg
and .
T, c Bsyo .Zf Tf *J
By Zf Tf =9
and

T, € { Bzo'if Ty + O

Byif Tr =9
When performing transactions on every node, we need to modify and update a global state and
then hash the transaction to generate a Merkle tree. Whether it is a transfer transaction or normal data,
a transaction needs to have a transaction’s ACID characteristics, namely, atomic, consistency, isolation,
and durability. Therefore, when executing a transaction, we need to ensure its business characteristics.
The execution of a transaction is the most complicated part of a smart contract: it defines the state
transition function y. It is assumed that any transactions executed first pass the initial tests of intrinsic

validity. These include:

(1) The transaction is well-formed RLP, with no additional trailing bytes;

(2) The transaction signature is valid;

(3) The sender account balance contains at least the cost v0, required in up-front payment;
(4) The other transaction parameters are valid.

o =y(o,T) ®)

Formally, we consider the state transition function y. o represents the state of the system; o’ is the
post-transactional state; T represents the transaction.

5.2.2. TStatus

The status of the transaction is called TStatus, and represented by T, which is a tuple:
T=(S,L, R) (6)

S is the finished set, which includes a set of accounts that will be abandoned when the transaction
is completed. L is the log memory, which includes the log records of the VM execution and the smart
contract’s status. R is the contract balance, and it always keeps the balance of the contract’s account.
Expenditure and income always keep equal.

The empty sub-state is defined T to have no finished set, no logs and a zero balance:

T° = (2, 2,0) @)

Electronics 2020, 9, 2042 12 of 26

5.3. Attribute Description

The attribute of model checking has two main parts; its description is as follows:

5.3.1. Functional Attributes Description

Functional descriptions detail the operating attributes. Operating attributes define the entire
behaviors of a service, such as defining how to invoke a service and where to invoke services.
Functional descriptions describe the syntax of the message and how to configure the network protocol
for sending messages.

For example, checking whether the model can run. If it cannot run, then there is a lexical or
grammatical error, there is a need to modify the model to run.

5.3.2. Non-Functional Attributes Description

The non-functional description is mainly about service quality attributes, such as service cost,
performance, response time, accuracy, security, authentication, authorization, attribute (transaction)
integrity, reliability, scalability and availability.

Validation of the model, the most important content is to check whether the contract meets
specified contractual clauses in nature. Under normal circumstances, the properties of the contract
include the following;:

Verifying the accessibility between the contract states [36]. Some properties can be represented
as follows in some elements in Equation (2). Af represents the time length of a period of a contract.
Function min () represents the minimum value of a number, and function max () represents the
maximum value of a number. f; represents a certain moment.

No deadlock. The most typical deadlock is that all entities on the contract are in wait.
Qqr+1) = 0°(Q1) ®)
t > min(At)

e No livelock. Livelock refers to the contract is in death in an infinite loop, and nothing can do to
free the contract from the loop.

=5 ,

{ Q(t+1) (Qt) (9)

t < max(At)

e Boundedness. Verifying the capacity of certain ingredients or test parameters of the contract
is bounded.
{ Q = {(qlr {’112/ '*'-/qm/ L)/ (10)
9; € 9m

e Recoverability of self-synchronization. When an error occurs, the contract can return to the normal
state in the limited steps to execute.

Q= 5(Qqerny) (11)
e Stateless ambiguity. A process at a time only allows a stable state.
H(unique)Qt 4 (12)
t=1tp

e Termination or progress. That refers to the service that the contract provides must be completed
within a limited time.

{ VM, AF =5(Qy), (13)

tg < max(At)

Electronics 2020, 9, 2042 13 of 26

There are still some other attributes in a smart contract, as follows:

e Mutually exclusive. The exclusive contract refers that some actions cannot be executed
simultaneously by multiple users.

e No redundant description. Contract specification has no useless and redundant description.

e Fairness. Every contract entity should have equal opportunity to access to execution, no matter
what the other contract entities do what they want to do.

6. Smart Contract Verification

The verification for smart contracts is an essential process that includes modeling, model
transformation, model verification, and automatic code generation. Formal methods run throughout
the entire life cycle of SCE; it is a unique technology based on mathematics; it is suitable to describe,
develop, and verify software and hardware.

We now propose a framework of smart contracts verification in Figure 3. The first step is contract
modeling, which use the formal specification to build a smart contract. In particular, we use the
mathematical description to overcome the shortcomings of natural language description, such as
ambiguity; the second step is model transformation, and it can transform a contract model to another
contract model to verify the richer properties of the contract. During this process, we need to verify
the consistency between the two models. The third step is formal verification, it is basically the model
verification, and it can check whether there are logical errors in the contract models. Moreover, it can
do reachability analysis, invariance analysis, equivalence analysis, symbol execution, and simulation.
The next step is automatic code generation. A tool can be made to automatically convert the verified
contract to the executable contract code; then, we can use runtime verification to monitor the running
programs after obtaining the contract code. The final step of formal methods is conformance testing,
which can ensure that the generated contract code is consistent with the initial contract specification.

[Contract Modeling W‘

(Modeling Language))‘

Iterative
+ Verification

Eontract Model transformation

Testing Sequence Generator

E—

Y

Contract Verification]7

Automatic

\
[Contract Testor j
\ generating
e e e e ———————.——
[Conformance Testing

Contract Code

Moni tor

v

: :7_> Event Receiver
I

I

| [Monitored Program] :) ¢

I

| -

{ Attributute Validator

Figure 3. The process of smart contracts verification.

6.1. Formal Description Techniques

The formal description technique (FDT) is the most important step in Smart contract engineering
because it not only provides a way to describe the contracts without ambiguity but also supports all
steps of contract engineering implementation and automation.

Electronics 2020, 9, 2042 14 of 26

Based on different theoretical bases like process algebra, state-transition system, set theory, and
others, we analyzed the existing formal description technologies of smart contracts.

Process algebra [37] is a family of mathematical approaches used to describe distributed or
parallel systems with interacting concurrent processes. Li et al. [38] translate the public functions of
solidity to process notations defined in communicating sequential processes (CSPs), and the actions
of a smart contract and its users are presented by CSP events as well as changes in a smart contract
state implemented via shared variables. A state-transition system is an effective and common way to
describe the behaviors of smart contracts, and there are many options in modeling smart contracts
as state-transition systems. For instance, Markov decision processes, colored Petri Net, finite state
machine, and timed automata are available to describe the time, probabilistic, state transition, and
multi-agent interactive properties of the smart contracts.

Set-based modeling language Event-B can model the behaviors of solidity contracts and specify
the properties using first-order logic [39]. Moreover, we took Event-B as an example to demonstrate
the verification process in Section 8. There are also other formal description methods. For example,
Bhargavan K [40] used F*, which is a functional programming language, to model the solidity contract
and its virtual machine called EVM. Here we summarized the key features which a good formal
description technique should meet, hoping to guide the new formal description technologies.

e The complete syntax and semantic definitions;

e Easy-expressiveness for the contract’s architecture, functionality and contract itself;

e Easy-verification for the contract’s important properties;

e Support for the combination of the basic contract;

e Support for complex contract management;

e Support for the methods of refining contract step by step;

e Abstraction mechanisms for implementation independence;

e Support for all steps of contract generation, including verification, implementation and
conformance testing;

e Support for automated or semi-automated ways for contract design, verification, implementation
and maintenance.

6.2. Model Transformation

In some cases, describing and verifying a contract model in one formal description language
is not enough because the capability of the contract description language and verification tools is
limited. For smart contracts, it is necessary to use the model transformation technology to convert the
model into another formal description language so that we can apply the other verification tools to
verify the contract better [41]. At the same time, the properties of the contract must be consistent at
different models.

Therefore, the main research is the transformation rules, the transformation methodologies,
and the transformation tools, which transform from one model to another model on the target
platform. As shown in Figure 4, the ATL transformation [10] is used to implement the mapping
between the two models. ATL is a specialized language for model transformations proposed and
implemented by the ATLAS INRIA and LINA research team. ATL is a hybrid language descriptive
and imperative. The excellent way is just to write a descriptive statement that can be converted to
express the relationship between source and targeted model elements clearly. Compared with the
traditional manual conversion, it can implement automatic conversion easily and have high reusability.
For example, when the corresponding user’s PROMELA model is generated, the model checker tools,
such as SPIN, can be used to verify various software properties.

Electronics 2020, 9, 2042 15 of 26

A metamodel ATL “a‘r‘jlf:‘m“‘io“ B metamodel
(D e M

x= =

Providing

rules Conforms to

n

Conforms to

A model input output B model
for ATL 1 ATL Engine 1 For ATL
(A (A’ D

T

Pre-processing Post-processing

Standard A model Standard B model
A) (A")

Figure 4. The method of model transformation.

The meta-models of the A model and the B model and the ATL transformation are needed for the
transformation. Meta-model describes the abstract syntax of language while the ATL transformation,
usually as the ATL file, defines the mapping rules between the source model and the target model.
The preprocessing and postprocessing parts are the complements of the transformation. The method
includes the following steps (transform standard A model to standard B model): (1) Make the ATL
transformation rules between A meta-model and B meta-model; (2) get A model for ATL which
conforms to the A meta-model from standard A model; (3) output the target B model for ATL which
conforms to the B meta-model through the ATL engine; (4) finally, obtaining the standard B model
from B model for ATL before.

Model transformation is the core of model-driven architecture (MDA) and one of the key techniques
for model evolution and reconstruction. Model transformation must follow certain constrained rules
to maintain some properties of the model, such as the property of external behavior, interface, etc.
This transformation constraint is generally called property preservation constraint, which is mainly used
to ensure that the model transformation does not destroy some properties of the model. The contract
can be described in a formal language, and its formal semantics and properties can also be given.
Moreover, theorem proving can also prove whether a transformation maintains the semantics or
properties of the contract [42,43].

Especially just as shown in definition 2, smart contracts can be described as automata. It always
changes the system from one state to another state for various transactions by some events. Moreover,
we can define the mode change of smart contracts as follows:

Definition 3. Mode transition = < M, m0, Event, Transition >, where,

e Mais the set of smart contract operation mode (SCOM)

e m0 € M is the initial mode

e Event is the set of events which trigger the smart contract mode change
e Transition = M X Event x Mis the set of mode changes.

6.3. Formal Verification

During the smart contract development process, formal verification is used for proving the
correctness or incorrectness of the smart contracts” formal models concerning a certain formal
specification or property. There are many techniques, tools, and frameworks that are employed for the
verification of the smart contract models described in Sections 6.1 and 6.2. According to the principle
of verification, we can divide them into model checking and deductive verification.

Model-checking technology is an automatic verification technology for verifying a system model
against its specification based on an exhaustive enumeration of states. Importantly, the verified smart

Electronics 2020, 9, 2042 16 of 26

contract should be modeled with appropriate abstraction techniques to avoid the state explosion
problem. Usually, we use model checking tools to verify smart contract models. For example, the SPIN
model checker is applied to verify the smart contract, which is modeled by Promela, which supports
modeling of a synchronous distributed system as non-deterministic automata. Properties of the smart
contract are expressed as Linear temporal logic (LTL) formulas [44]. Bai et al. [26] used this technology
to verify smart contracts’ common properties like deadlock—and livelock—freedom.

Deductive verification technology consists of generating a collection of mathematical proof
obligations from the smart contracts’ specifications and discharging these obligations using either
proof assistant like Coq or automatic theorem prover like SMT solver. In our case study, we modeled
the solidity contracts using Event-B and defined the properties like “the user’s balance should be
non-negative” as invariants in the model. Then the proof obligations generated are discharged using
Event-B provers.

6.4. Automatic Code Generation

Smart contracts should be applied for mass production in the future digital society. It is essential to
be able to generate and combine contract code automatically and efficiently. Automatic code generation
will utilize the formal model above to generate the contract code to run in the real machine.

Automatic code generation is based on the model from (model-driven architecture (MDA) [45],
which is a software development framework. MDA can analyze and verify the contract as soon as
possible and generate code from the verified model. In terms of the model to automatically generate the
code, including three aspects to study: code generating rules from model to executable code, methods,
and tools.

In addition, the specific research content includes using a template-based technology to generate
code automatically and making the template as the carrier of the rule to transform code automatically.
The template is easy to modify and customize; therefore, for different platforms, developing appropriate
rules and implement suitable transformation templates to generate the target code on the appropriate
platform is important.

In Figure 5, First, we should build up the models using formal description language and modeling
methods. Models are the foundations for the subsequent formal validation and code generation;
second, according to the describing language features, we should design the conversion rules between
model and the target platform code; again, according to the conversion rules and the Meta-model
design to design code templates; and finally by analyzing the models, we should extract and package
the model information, model information and templates will be used to generate the target platform
code by the conversion engine.

Project Converter &

Modeling Code Generation Tools - "
compilation tools

Meta-Model Conversion

Analysis rules Executable
code
Modeling

'
Method
Model Model Model Executable

e Analysis Analysis files

7
Projects

Figure 5. The steps of automatic code generation.

Electronics 2020, 9, 2042 17 of 26

6.5. Runtime Verification

Runtime verification is a lightweight verification technique that detects the operation of the system
and determines whether the system conforms to given attributes or specifications. Different from the
formal verification techniques mentioned in Section 6.4, runtime verification is applied to the generated
code running in the virtual machine or other environments. In particular, the running code can be
a sequence of instructions executed by the virtual machine, while it can also refer to a sequence of
events emitted by a smart contract. As shown in Figure 3, the module that detects the program under
testing is called a monitor. The monitor receives the traces of the program and determines whether the
program’s behavior satisfies these given attributes.

Because Rice’s theorem [46] states that there is no perfect static analysis for a recursively
enumerable language and the smart contract language is Turing-complete, that is, recursively
enumerable language. Therefore, In the process of formal verification of smart contracts, false positives
may occur. The advantage of using runtime verification is that we can judge whether the execution is
correct according to the actual input, so if the monitor in Figure 3 finds an error, it must be wrong!
Moreover, runtime verification can provide a reactive defense against vulnerabilities or violation of
correctness at runtime. For example, Solythesis [47] is a source-to-source runtime validation tool that
allows users to specify critical safety invariants of smart contracts. Taking a potentially insecure smart
contract and the specified invariants as inputs, Solythesis verifies the solidity contract with runtime
checks to enforce the invariants. The verified contract is guaranteed to nullify all transactions that
cause the contract to violate the specified invariants. Moreover, it demonstrated that runtime validation
for smart contracts could have negligible overhead.

7. Conformance Testing

One of the SCE objects is to ensure consistency between contract code and contract text. Here we
give the general conformance testing methods to solve it.

Conformance testing is a kind of black test which is used to test the conformance between
implementation and specification. A formal test description language can create an abstract model of a
real system under test and describe the action during the execution of various tests [48]. This section
will present the general method of conformance testing for smart contracts.

7.1. Test Sets

Test sets are the basis of testing conformance, which consists of the most basic testing events
sequence and defines the behavior between the testing system and contract entity. Hence, there is a
need to use a formal language to define the behavior of the testing system and implementation under
test (IUT).

7.2. Test Sequence Generation Algorithms

There is a variety of testing sequence generation algorithms currently, which are all based on
a formal description model, such as based on FSM, Petri net and so on. The common conformance
sequence generation method that is based on the finite state machine model includes Transition Tour
and the special interaction sequence method.

The special interaction sequence method is the most common method, including characterizing
set, referred to as W method [49]; distinguishing sequences, referred to as D method [50]; unique
input/output sequences referred to as UIO method [51].

The thought of the D method is that we enter the same sequence of events to each state of the
protocol state machine and determine the current state according to distinguishing output event
sequences. We can uniquely determine the state because the output event sequences of different states
are different. The advantage is that the produced test sequence has an excellent ability of error checking
and can check out the input and conversion errors roundly; the disadvantage is that the generated

Electronics 2020, 9, 2042 18 of 26

test sequence length is longer than others, and there are no DS (distinguishing sequence) sequences,
which are necessary for the method in many actual protocol FSMs.

The W method is an extension of the D method, and it uses the set of feature sets, W-set, instead
of the DS series. W-set is a set including k input events. For each state of the protocol state machine,
W-set is the same. However, output models that are made up of output events from different states are
different. Thus, people could determine the state according to different output models. The advantage
is that it can be used more generally; the disadvantage is the process of generating the sequence is
too complex.

UIO method is based on the thought of UIO sequence. Each state of protocol state machine
corresponds to one or more UIO sequences. UIO sequence consists of a series of I/O operations;
other states in the protocol state machine cannot work on the same 1/O behavior. Thus this UIO
sequence can uniquely identify this state. Generally speaking, the UIO sequence is relatively easy
to get. The error detection ability of the UIO method is relatively strong, and the length of the
generated test sequence is relatively short. UIO method is the most commonly used test sequence
generation algorithm.

A UIO-based algorithm is given for conformance testing of the smart contract. Currently, for the
UIO method, there are several specific implementation algorithms. There is a common UIO algorithm
in this paper. The thought of the algorithm is: for each state conversion (si, sj; i/0), we can construct a
corresponding test subsequence, e (si, sj, st; i/o) = {i/o, UIO (sj)}, si is the initial state of test subsequence,
sj is the state after performing i/o conversion, st is the terminal state following Seka-characteristic
sequence UIO (sj), that is the terminal state of test subsequence. The FSM in the protocol is directed
graph G = (V, E), V is the set of nodes, and E is the set of conversion. Constructing graph G’ = (V, E’), E’
is the set of test subsequence; then constructing directed symmetrical graph G* based on the graph G
and graph G’, and finally we can obtain test sequence of the protocol by Euler Tour. Specific steps are
as follows:

e Calculating the shortest UIO sequence of each state in FSM;

e For each conversion i/o in the graph, finding out test subsequence e (si, sj, st; i/o) = {i/o, UIO (sj)};

e Constructing G’ = (V, E’), E’ is the set of test subsequence e(si, sj, st;i/o);

e Changing graph G’ into directed graph G* = (V, E*), E* = E U F’, that is adding several arcs taken
from E between node i and node j in the graph G’ to change G’ into symmetric graph G*;

e Constructing Euler Tour ET from an initial node as a starting node in the graph G*, that is the last
generated test sequence TS.

7.3. The Process of Conformance Testing

Contract conformance testing generally includes the following steps: determining test purpose,
generating test sets, test implement, test execution and assessing results.

(1) Determining test purpose

Common conformance testing purpose includes the following: ability test; behavioral test of
correct behavior; behavioral test of syntax error; behavioral test of inappropriate behavior; test of
necessary behavior in the protocol; test that sending interacts with receiving; test that is associated
with implementation options.

(2) Generating test sets

A set of test cases of a particular protocol is called the test set. The event that is used to describe
test tasks of a given contract or action sequence is called test cases; thus, the test sequence is the
basis to generate a test case. Generating the test set includes three aspects: generating test sequences,
generating test data, combining test sequences with test data to generate and describing the test set.

Electronics 2020, 9, 2042 19 of 26

(3) Testimplementation
Based on the related test tools, describing test sets with formal description language.
(4) Test execution

In the test tool, execution of the test case for the tested protocol implementation, observation and
recording of external behavioral responses of the tested protocol implementation.

(5) Test assessment

Assessing and analyzing conformance testing results, determining whether it can pass the
conformance testing. If the tested protocol does not pass the test, people need to find out the reasons
for feedback.

7.4. Conformance Testing Method

The conformance testing method determines the generation of test sets and the structure of the
described method and test execution system. ISO9646 defines four standard abstract test methods: local
test method, distributed test method, coordination test method and remote test method. In addition,
for the four test methods, there are some variants, such as the ferries test method, the multi-test method
and so on.

The local test method is the most common method to use, as shown in Figure 6 [52]. In this
method, UT is the upper tester, LT is the lower tester, PCO is the point of control and observation,
TCP (test coordinate procedure) is used to coordinate the operation of the UT and LT, IUT is the tested
system (implementation under test). The test system carries out input incentives to IUT by PCO
and observes output responses of IUT. Then the system makes the test determine according to the
protocol description. UT and LT observe the behavior of IUT at the top and bottom interface of IUT by
exchanging test events. In this method, LT, UT and IUT are in the same machine, and tests do not need
support from the underlying communication systems; thus, the test is relatively easy to implement.

T

(n) ASP
PCO
TCP uT

PCO

(n-1) ASP
I]

Figure 6. Local test.

8. A Case Study

We apply the smart contract verification part of SCE to verify a specific smart contract. The process
of smart contract verification consists of five parts: contract modeling, contract model transformation,
contract verification, automatic contract code generation, and conformance testing. In this case study,
we first establish an abstract Event-B model [53] of the solidity contract called safe remote purchase,
then we refine the abstract model to a more precise model to verify its properties. The key to the
modeling process is translation rules from solidity to Event-B, and we can realize the translator tool to
automatically generate codes. Below, we give a detailed introduction of formal verification of solidity
contracts in Event-B.

Electronics 2020, 9, 2042 20 of 26

Safe Remote Purchase

We take a concrete smart contract called “safe remote purchase” as an example, whose source code
is on the solidity official website [54]. Its source codes are shown in Figure 7, which was simplified by
removing some useless information in our verification process. Its operating mechanism is applicable
to online shopping by the smart contract. To ensure the transaction go smoothly, it divides the entire
process into three states, corresponding to three events:

e abort (): When the merchant thinks that the pricing needs to be modified, it is called to withdraw
funds and redeploy the contract;

e confirmPurchase (): This is left to the buyer to confirm the order, at that time, contract status is set
to locked (locked status), which can only be unlocked after the buyer receives the goods;

e confirmReceived (): This occurs after the buyer confirms the receipt, then he unlocks the account
and completes the transaction transfer.

contract Purchase({
2 uint public value;
address payable public seller;
4 address payable public buyer;
5 enum State {Created, Locked, Inactive}
State public state;

contractor() public payable{
seller=msg.sender;
value=msg.value/2;
require ((2*value)==msg.value, "Value has to be even.");

}

function abort() public{
require (state==State.Created, "Invalid state.");
require (msg.sender==seller, "Only seller can call this.");
state=State.Inactive;
seller.transfer (address (this) .balance) ;

}

function confirmPurchase() public payable{
require (state==State.Created, "Invalid state.");
require (msg.value==(2*value), "Value has to be even.");
buyer=msg.sender;
state=State.Locked;

}

function confirmReceived() public {
require (msg.sender==buyer, "Only buyer can call this.");
require (state==State.Locked, "Invalid state.");
buyer.transfer (value);
seller.transfer (address(this) .balance) ;

Figure 7. Source code of a solidity contract.

Event-B consists of two components: contexts and machines. A context is made of constants
linked to some properties that define axioms and sets that define data types. A machine has variables
associated with invariants and events. An event consists of a guard and an action. The guard denotes
the enabling condition of the event, and the action denotes the way the event modifies the state.
Key features of Event-B are the use of set theory as a modeling notation and the use of mathematical
proof to verify consistency between refinement levels, which permit to verify the validity of the
properties of the smart contract, is guaranteed by mathematical proof obligations.

We should first establish a semantical map between solidity contracts and Event-B language.
Figure 8 outlines the framework to analyze and formally verify solidity contracts using the Event-B
method [39]. Once we have the solidity contract translated to the Event-B model, its correctness is
established by proof obligations for the invariants, where each event, including the initialization event,
should preserve these invariants. Event-B guards are used to define preconditions that should hold
before the event can be executed. The guard and the action of an event define a relation between
variables before the event holds and after. Properties related to the correct operations of the solidity

Electronics 2020, 9, 2042 21 of 26

contract are modeled as Event-B invariants. Rodin platform [55] is used to check these invariants and
validate the correct functionality of events using simulation, as shown in Figure 8. Once the contract’s
properties are verified, we can obtain a certificate for our smart contracts and deploy them. If one
of the proof obligations cannot be verified, it will help us locate the problem which originates in the
failure to prove the required invariants.

Solidity Contract

Type declaration | | Attributes Constructor | | Functions

Translation

Event-B Model

Mac'hine: Abstract Model Context :
Varza.bles = Constants
Invariants Refinement Sets
Initialization :
i A
Events Refined Model Xioms
Invariant checking
. . ; Verified
Simulation <&——— Rodin Platform ——p o
Obligations

Certificate

Figure 8. Translation and verification of solidity contracts in Event-B.

Based on the translation rules given in [39], we have modeled a data entity in Table 1, where we
define a set called “ADDRESS” to be used for the source of unique identifiers for different addresses.
Moreover, the “state” set is defined to show three different states of the smart contract, which contains
“created”, “locked” and “inactive”. “sellerl” represents the seller determined by the constructor
function in the solidity contract, which owns the balance “sellerlaccount”. “value” represents the price
of the merchandise, “this” represents the account of the solidity contract, and “buyerl” the initial value
of the variable buyer in the Event-B machine, which owns the balance “buyerlaccount”. Moreover,
from @axm1 to @axm11, we have defined the relations between these constants and sets by means of
axioms. For example, @axm?7 states that the balance of the buyer should be sufficient for the payment.

Table 1. Event-B’s context model.

context purchase_ctx1

sets State ADDRESS

constants Created Locked Inactive sellerl value this buyer1 sellerlaccount buyerlaccount
axioms

@axm1 partition(State,{Created},{Locked},{Inactive})
@axm?2 sellerle ADDRESS

@axm3 valueeN1

@axm4 thiss ADDRESS

9. @axm5 buyerle ADDRESS

10. @axmbé6 sellerlaccounteN

11. @axm?7 sellerlaccount > value

12. @axm8 buyerlaccounteN1

13. @axm9 this # sellerl

14. @axm10 buyerl # sellerl

15. @axm1l1 buyerl # this

PN XD

In the event abort, as shown in Table 2, we define a parameter “msg_sender”, which represents
any user contract who invokes this function. Here we define three guards, where @qrd1 requires the

Electronics 2020, 9, 2042 22 of 26

state of the contract to be created. @grd2 guarantees the property of msg_sender, and @grd3 requires
that only the seller can invoke this function. Then we define two actions: @act1 means that the seller
can abort the transaction and get its money back, and @act2 means the state of the contract will be
inactive after having invoked this function.

Table 2. Event “abort” of the Event-B model.

event abort

any msg_sender

where

@grd1 state = Created

@grd2 msg_sendercaddress_tem){this}

@grd3 msg_sender = sellerl

then

@act1 balanceof:=balanceof < + {msg_sender—balanceof(msg_sender) + balanceof(this),this—0}
@act2 state:=Inactive

end

O RPN PN

—
©

In the event confirmPurchase, as shown in Table 3, we have defined again “msg_sender” and
“msg_value” as the parameters, where the “msg_value” represents the amount to transfer. Then we
have defined six guards to restrain the parameters and the variables. For example, @grd1 requires the
state of the contract to be created, and @grd2 requires that the value to transfer should be twice the
constant value. Here we have defined three actions: @act1 states that the user contract should be a
buyer, @act2 states that the buyer should pay deposits and the contract account will get the deposits,
and @act3 states that the state of the contract will be locked after having confirmed the purchase.

Table 3. Event “confirmPurchase” of the Event-B model.

event confirmPurchase

any msg_sender msg_value

where

@grd1 state = Created

@grd2 msg_value = 2*value

@grd3 msg_sendercaddress_tem\{this,seller1}

@grd4 msg_value < balanceof(msg_sender)

@grd5 this # buyer

@grd6 buyer # sellerl

then

@act1 buyer:=msg_sender

@act2 balanceof:=balanceof < + {this—balanceof(this) +
msg_value,buyer—balanceof(msg_sender)—msg_value}
@act3 state:=Locked

end

P NV LN

— = 0
— o

—_
N

[EE—
Ll

Finally, we have modeled the event “confirmReceive,” as shown in Table 4, of which the guard
and the parameter are similar to before. Here we have defined two actions: @act1 states that the buyer
can recover half of the deposit and the seller can get all the balance of the smart contract, and @act2
states that the state of the contract will be inactive.

Electronics 2020, 9, 2042 23 of 26

Table 4. Event “confirmReceive” of the Event-B model.

event confirmReceive

any msg_sender

where

@grd1 msg_sendercaddress_tem\{this,seller1}
@grd2 msg_sender = buyer

@grd3 state = Locked

@grd4 buyer # sellerl

@grd5 buyer # this

then

@act1 balanceof:=balanceof < + {buyer—balanceof(buyer) + value,sellerl—balanceof(sellerl) +
balanceof(this) — value,this—0}

@act?2 state:=Inactive

end

0 X NSO W

=
I

[ary—
N —

When the smart contract is deployed, there are some basic properties that should be satisfied to
maintain the operation of the contract. These properties are modeled as Event-B invariants and must
hold for the contract to be correct. Each generates a number of proof obligations in Rodin. These proof
obligations are proven one by one, some are automatically proved using the tool, and some need to be
proven interactively. In the following, we state four important properties for illustration purposes.

The first property states that the balance of each account should be strictly positive or zero.

Prop. 1 balance of € address_tem—N

The next property states that the balance of the contract account should be thrice the value when
the state of the contract is locked.

Prop. 2 state = Locked = balance of (this) = 3* value

A similar property states that the balance of the contract account should be the value when the
state of the contract is created.

Prop. 3 state = Created = balance of (this) = value

The last property states that the balance of the contract account should be zero when the state of
the contract is inactive.

Prop. 4 state = Inactive = balance of (this) = 0

These properties are all defined as invariants in the Rodin platform, and the tool generates proof
obligations, which should be successfully proved using Event-B proof control. Figure 9 shows all proof
obligations of this Event-B model, which are all verified indicated with a green checkmark.

v @ purchase_ctx1
4 Carrier Sets
Constants
4 Axioms
@ Proof Obligations
v @ purchase_1
© Variables
Invariants
Events
v @ Proof Obligations

@ confirmPurchase/grd4/WD
@ NewAccount/inv2/INV & confirmPurchase/inv2/INV
€ NewAccount/inv4/INV € confirmPurchase/inv3/INV
© NewAccount/inv8/INV & confirmPurchase/inv4/INV
@ NewAccount/inv10/INV & confirmPurchase/invS/INV
€ NewAccount/invS/INV € confirmPurchase/inv6/INV
@ NewAccount/inv6/INV & confirmPurchase/inv7/INV

@ inv5/WD .
¢ inVGmD @ NewAccount/inv7/INV & confirmPurchase/act2/WD
€ inv7/WD @ abort/inv3/INV @ confirmReceive/inv3/INV
@ abort/inv4/INV i ive/i
@ INITIALISATION/inv2/INV . o. conf"mReceEVE/!nv‘Vle
. X @ abort/inv5/INV € confirmReceive/inv5/INV
@ INITIALISATION/inv3/INV . “ & o
X @ abort/inv6/INV @ confirmReceive/inv6/INV
@ INITIALISATION/inv4/INV) " L
€ INITIALISATION/inv8/INV @ abort/inv7/INV & confirmReceive/inv7/INV
@ abort/act1/WD @ confirmReceive/act1/WD

@ INITIALISATION/inv10/INV
@ INITIALISATION/invS/INV
@ INITIALISATION/inv6/INV
@& INITIALISATION/inv7/INV

Figure 9. Verified proof obligations of the Event-B model.

In conclusion, we have used Event-B languages to formally describe the solidity contract, which is
the first step of the smart contracts verification process in Figure 3. Then we propose several basic

Electronics 2020, 9, 2042 24 of 26

properties that should be satisfied by the solidity contracts and model them using the Event-B
invariants. Rodin generates proof obligations, which are all proved; the smart contracts are therefore
verified strictly. If more complex properties need to be verified, we can iteratively use contract model
transformation in Section 6.2. For Event-B, it is to continuously refine the model, which is too abstract
to include concrete properties of the solidity contract. Moreover, we found that Event-B is more
suitable to detect logical vulnerability, but it is not convenient to find code-level vulnerabilities such
as integer overflow. It is not possible to use one method to verify all the properties and detect all
the vulnerabilities, we need to iteratively verify the model by applying different formal methods and
construct different formal models before generating the contract code, and running verification can
monitor the running program and react to the running errors.

9. Conclusions

This paper summarizes the features of smart contracts completely and proposes the concept and
framework of smart contract engineering (SCE) to meet the requirements of large-scale smart contract
software production and verification in the future. The roadmap of formal methods for smart contracts
is described in detail, including its main steps: from modeling to model transformation, to verification,
to automatic code generation, and to conformance testing. The corresponding methods are given
to meet smart contract features. We took the verification process of a solidity contract in Event-B
for example; the result shows that formal methods can be applied to verify critical properties in the
value transfer process, which can mitigate the huge economic losses caused by the smart contract
vulnerabilities. We have reasons to believe that the SCE method will be widely used for the design and
development of large-scale smart contracts.

In future work, we will improve the combination of smart contracts and computational law by
designing a legal-oriented smart contract language, which can strengthen the legal supervision of
smart contracts. Moreover, we also plan to develop a tool that automatically detects the conformance
between the contract code and models, including the natural language context. It will speed up the
extension and development of smart contract engineering.

Author Contributions: Conceptualization, K.H.; methodology K.H. and J.Z.; software, Y.D. and].Z.; validation,
X.B. and].H.; formal analysis, K.H. and J.Z.; investigation, Y.D. and X.B.; writing—original draft preparation, K.H.
and J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China under Grant
61672074, 61672075, Project of National Key Research and Development of China under Grant 2018YFB1402702,
Funding of Ministry of Education and China Mobile MCM20180104, State Key Laboratory of Software Development
Environment (No. SKLSDE-2020ZX-21).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Szabo, N. Formalizing and securing relationships on public networks. First Monday 1997, 2, 9. [CrossRef]
Blockchain. Available online: https://en.wikipedia.org/wiki/Block_chain_ (accessed on 27 March 2020).

3. Blockchain and CSR. Available online: https://medium.com/@jeremilepetit/blockchain-and-csr-emergence-
of-a-social-smart-contract-smart-contract-dfce4d5f064f (accessed on 15 November 2020).

4. IEEE Standards Coordinating Committee. Standard Glossary of Software Engineering Terminology (IEEE Std
610.12-1990); IEEE Computer Society: Washington, DC, USA, 1990.

5. Sanghavi, A. What is Formal Verification. Available online: https://archive.eetasia.com/www.eetasia.
com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf?’SOURCES=DOWNLOAD (accessed on 25
November 2020).

6. Huth, M.; Ryan, M. Logic in Computer Science: Modeling and Reasoning about Systems; Cambridge University
Press: Cambridge, UK, 2004.

7. Lessig, L. Code is law. Available online: https://harvardmagazine.com/2000/01/code-is-law-html (accessed
on 25 November 2020).

http://dx.doi.org/10.5210/fm.v2i9.548
https://en.wikipedia.org/wiki/Block_chain_
https://medium.com/@jeremilepetit/blockchain-and-csr-emergence-of-a-social-smart-contract-smart-contract-dfce4d5f064f
https://medium.com/@jeremilepetit/blockchain-and-csr-emergence-of-a-social-smart-contract-smart-contract-dfce4d5f064f
https://archive.eetasia.com/www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf?SOURCES=DOWNLOAD
https://archive.eetasia.com/www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf?SOURCES=DOWNLOAD
https://harvardmagazine.com/2000/01/code-is-law-html

Electronics 2020, 9, 2042 25 of 26

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.
22.
23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

Milosevic, Z. Enterprise Aspects of Open Distributed Systems. Ph.D. Thesis, Computer Science Department,
The University of Queensland, St. Lucia, Australia, October 1995.

Milosevic, Z.; Arnold, D.; O’Connor, L. Inter-enterprisecontract architecture for open distributed systems:
Securityrequirements. In Proceedings of the WET ICE’96 Workshop on Enterprise Security, Stanford, CA,
USA, 19-21 June 1995.

Milosevic, Z.; Josang, A.; Dimitrakos, T.; Patton, M. Discretionary Enforcement of Electronic Contracts.
In Proceedings of the 6th International EDOC’, Lausanne, Switzerland, 17-20 September 2002.

Jouault, F; Kurtev, I. Transforming Models with ATL. In Proceedings of the Model Transformations in
Practice Workshop at MoDELS, Montego Bay, Jamaica, 3 October 2005; pp. 128-138.

Milosevic, Z.; Bond, A. Electronic Commerce on the Internet: What is Still Missing? In Proceedings of the 5th
Conference of the Internet Society, Honolulu, HI, USA, 27-30 June 1995.

Buterin, V. Critical Update Re: Dao Vulnerability. Available online: https://blog.ethereum.org/2016/06/
17critical-update-re-dao-vulnerability (accessed on 27 March 2020).

Selectice. Available online: www.selectice.com (accessed on 27 March 2020).

Novatus. Available online: https://getconga.com/solutions/contracts/novatus/ (accessed on 27 March 2020).
Apttus. Available online: http://apttus.com/ (accessed on 27 March 2020).

Common Accord. Available online: http://www.commonaccord.org (accessed on 27 March 2020).

Miller, M.S.; Morningstar, C.; Frantz, B. Capability-Based Financial Instruments. In Financial Cryptography,
Proceedings of the 4th International Conference; Anguilla, British West Indies, 20-24 February 2000; Yair, F,, Ed.;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 349-378.

Swanson, T. Consensus-as-a-Service: A Brief Report on the Emergence of Permissioned, Distributed
Ledger Systems. Available online: http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-
distributed-ledgers.pdf (accessed on 26 November 2020).

Singh, A.; Parizi, R.M.; Zhang, Q.; Choo, K.-K.R.; Dehghantanha, A. Blockchain smart contracts formalization:
Approaches and challenges to address vulnerabilities. Comput. Secur. 2020, 88, 101654. [CrossRef]

Huang, Y.; Bian, Y,; Li, R.;; Zhao, J.L.; Shi, P. Smart Contract Security: A Software Lifecycle Perspective.
IEEE Access 2019, 7, 150184-150202. [CrossRef]

Wu, L. Network Protocol Engineering; Electronic Industry Press: Beijing, China, 2011.

Baier, C.; Katoen, J.-P. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.

Holzmann, G. The Spin Model Checker—Primer and Reference Manual; Addison-Wesley: Boston, MA, USA, 2004.
Permenev, A.; Dimitrov, D.; Tsankov, P.; Drachsler-Cohen, D.; Vechev, M. VerX: Safety Verification of Smart
Contracts. In Proceedings of the 2020 IEEE Symposium on Security and Privacy, San Francisco, CA, USA,
18-21 May 2020.

Bai, X.; Cheng, Z.; Duan, Z.; Hu, K. Formal Modeling and Verification of Smart Contracts. In Proceedings
of the 2018 7th International Conference on Software and Computer Applications, Kuatan, Malaysia, 8-10
February 2018; pp. 322-326.

Hu, K.; Lei, L.; Tsai, W.-K. Multi-Tenant Verification-as-a-Service (VaaS) in a Cloud. Simul. Modell. Pract.
Theory 2016, 60, 122-143. [CrossRef]

Hildenbrandt, E.; Rodrigues, N.; Daian, P.; Park, D.; Rosu, G.; Saxena, M.; Zhu, X.; Guth, D.; Moore, B.;
Zhang, Y.; et al. KEVM: A complete formal semantics of the Ethereum Virtual Machine. In Proceedings of
the IEEE 31st Computer Security Foundations Symposium, Oxford, UK, 9-12 July 2018; pp. 204-217.
Nielsen,]J.B.; Spitters, B. Smart Contract Interactions in Coq. arXiv 2019, arXiv:1911.04732. Available online:
https://arxiv.org/abs/1911.04732 (accessed on 27 March 2020).

Huang, S.Y.; Cheng, K.T. Formal Equivalence Checking and Design Debugging; Springer: Berlin/Heidelberg,
Germany, 1998.

Kai, H; Teng, Z.; Zhibin, Y. Multi-threaded code generation from Signal program to OpenMP. Front. Comput.
Sci. 2013, 7, 617-626.

Hu, K.; Zhang, T.; Yang, Z.; Tsai, W.-T. Simulation of real-time systems with clock calculus. Simul. Modell.
Pract. Theory 2015, 51, 69-86. [CrossRef]

Formal Methods. Available online: http://en.wikipedia.orgi/Formal_methods (accessed on 27 March 2020).
Slatten, V.; Herrmann, P.; Kraemer, F.A. Model-Driven Engineering of Reliable Fault-Tolerant Systems—A
State-of-the-Art Survey. Adv. Comput. 2013, 91, 119-205.

https://blog.ethereum.org/2016/06/17critical-update-re-dao-vulnerability
https://blog.ethereum.org/2016/06/17critical-update-re-dao-vulnerability
www.selectice.com
https://getconga.com/solutions/contracts/novatus/
http://apttus.com/
http://www.commonaccord.org
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://dx.doi.org/10.1016/j.cose.2019.101654
http://dx.doi.org/10.1109/ACCESS.2019.2946988
http://dx.doi.org/10.1016/j.simpat.2015.09.003
https://arxiv.org/abs/1911.04732
http://dx.doi.org/10.1016/j.simpat.2014.10.010
http://en.wikipedia.orgi/Formal_methods

Electronics 2020, 9, 2042 26 of 26

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

Piatkowski, T.F. An Engineering Discipline for Distributed Protocol Systems. In Proceedings of the IFIP
Workshop on Protocol Testing-Towards Proof, London, UK, 27-29 May 1981.

Mcmillan, K. Symmetry and model checking. Form. Methods Syst. Des. 1996, 9, 105-131.

Baeten,].J. A brief history of process algebra. Theor. Comput. Sci. 2005, 335, 131-146. [CrossRef]

Li, X;; Su, C; Xiong, Y.; Huang, W.; Wang, W. Formal Verification of BNB Smart Contract. In Proceedings of
the 2019 5th International Conference on Big Data Computing and Communications, Qingdao, China, 9-11
August 2019; pp. 74-78.

Zhu, J.; Hu, K; Filali, M.; Bodeveix,].-P.; Talpin, J.-P. Formal verification of Solidity contracts in Event-B.
arXiv 2020, arXiv:2005.01261. Available online: https://arxiv.org/abs/2005.01261 (accessed on 10 May 2020).
Bhargavan, K.; Swamy, N.; Zanella-Béguelin, S.; Delignat-Lavaud, A.; Fournet, C.; Gollamudji, A.; Gonthier, G.;
Kobeissi, N.; Kulatova, N.; Rastogi, A.; et al. Formal Verification of Smart Contracts. In Proceedings of the
2016 ACM Workshop on Programming Languages and Analysis for Security, Vienna, Austria, 24 October
2016; pp- 91-96.

Tuominen, H. Embedding a Dialect of SDL in PROMELA. In Proceedings of the International SPIN Workshop
on Model Checking of Software, Trento, Italy, 5 July 1999; pp. 245-260.

Yang, Z.; Hu, K.; Ma, D.; Bodeveix, J.-P. From AADL to Timed Abstract State Machines: A Certified Model
Transformation. J. Syst. Softw. 2014, 93, 42-68. [CrossRef]

Hu, K.; Zhang, T.; Yang, Z.; Tsai, W.-T. Exploring AADL Verification Tool through Model Transformation.
J. Syst. Archit. 2015, 61, 141-156. [CrossRef]

Holzman, G.J. Design and Validation of Computer Protocol; Prentice Hall: Upper Saddle River, NJ, USA, 1991;
pp- 212-240.

Kleppe, A.G.; Warmer,].B.; Bast, W. MDA Explained: The Model Driven Architecture: Practice and Promise;
Addison-Wesley Professional: Boston, MA, USA, 2003.

Rice, H.G. Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 1953,
74, 358. [CrossRef]

Li, A,; Choi, J.A.; Long, F. Securing smart contract with runtime validation. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, London, UK, 15-20 June;
pp- 438—453.

Grabowski, J.; Hogrefe, D.; Réthy, G.; Schieferdecker, I.; Wiles, A.; Willcock, C. An introduction to the testing
and test control notation (TTCN-3). Comput. Netw. 2003, 42, 375-403. [CrossRef]

Chow, T. Testing Software Design Modeled by Finite-State Machines. IEEE Trans. Softw. Eng. 1978, SE-4,
178-187. [CrossRef]

Gonenc, G. A Method for the Design of Fault Detection Experiments. IEEE Trans. Comput. 1970, C-19,
551-558. [CrossRef]

Sabnani, K.; Dahbura, A.T. A protocol testing procedure. Comput. Netw. ISDN Syst. 1988, 15, 285-297.
[CrossRef]

Linn, RJ., Jr. Conformance testing for OSI protocols. Comput. Netw. ISDN Syst. 1990, 18, 203-219. [CrossRef]
Abrial,].-R. Event Based Sequential Program Development: Application to Constructing a Pointer Program.
Public-Key Cryptogr. 2003, 2805, 51-74.

Safe Remote Purchase. Available online: https://Solidity.readthedocs.io/en/v0.4.24/Solidity-by-example. html
(accessed on 27 March 2020).

Abrial, J.-R.; Butler, M.; Hallerstede, S.; Hoang, T.S.; Mehta, F.; Voisin, L. Rodin: An open toolset for modelling
and reasoning in Event-B. Int.]. Softw. Tools Technol. Transf. 2010, 12, 447-466. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tcs.2004.07.036
https://arxiv.org/abs/2005.01261
http://dx.doi.org/10.1016/j.jss.2014.02.058
http://dx.doi.org/10.1016/j.sysarc.2015.02.003
http://dx.doi.org/10.1090/S0002-9947-1953-0053041-6
http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/T-C.1970.222975
http://dx.doi.org/10.1016/0169-7552(88)90064-5
http://dx.doi.org/10.1016/0169-7552(90)90134-E
https://Solidity.readthedocs.io/en/v0.4.24/Solidity-by-example.html
http://dx.doi.org/10.1007/s10009-010-0145-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Smart Contracts
	Related Work
	Smart Contract Engineering (SCE)
	Formal Description of Smart Contract
	Smart Contract Model
	Transaction Description
	Transaction Model
	TStatus

	Attribute Description
	Functional Attributes Description
	Non-Functional Attributes Description

	Smart Contract Verification
	Formal Description Techniques
	Model Transformation
	Formal Verification
	Automatic Code Generation
	Runtime Verification

	Conformance Testing
	Test Sets
	Test Sequence Generation Algorithms
	The Process of Conformance Testing
	Conformance Testing Method

	A Case Study
	Conclusions
	References

