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Abstract: This paper shows how clocked AC-DC charge pump circuits can be optimally designed to
have the minimum circuit area for small form factor vibration energy harvesting. One can determine
an optimum number of stages with simple equations and then determine the capacitance of each
pump capacitor to have a target output current at a target output voltage. The equations were verified
under a wide range of design parameters by comparing the output current with the simulated one.
The output current of the circuit designed by the equations was in good agreement with the simulated
result, to within 5% for 98% of the 1600 designs with different parameters. We also propose a design
flow to help designers determine the initial design parameters of a clocked AC-DC charge pump
circuit (i.e., the number of stages, capacitance per stage, and the total size of rectifying devices) under
the condition that the saturation current of a unit of the rectifying device, clock frequency, amplitude
of the voltage generated by the energy transducer, target output voltage, and target output current
are given. SPICE simulation results validated theoretical results with an error of 3% in terms of the
output current when a clocked AC-DC charge pump was designed to output current of 1 µA at 2.5 V
from a vibration energy harvester with an AC voltage amplitude of 0.5 V.

Keywords: vibration energy harvesting; clocked AC-DC charge pump; optimum design; design flow

1. Introduction

Energy harvesting (EH) is a technique used to harvest electrical energy from other types of ambient
energy such as light, heat flow, electromagnetic waves, and kinetic energy [1,2]. When an energy
transducer (ET), such as a photovoltaic or thermoelectric generator, generates DC power, a sensor
integrated circuit (IC) needs a DC-DC power conversion. When an ET, such as a vibration power
generator, generates AC power, the sensor IC needs an AC–DC power conversion. A vibration ET (VET)
utilizes various types of material, including piezoelectric [3], electrostatic [4], and magnetostrictive [5]
materials. Among them, magnetostrictive VET has the highest reliability because of the use of
robust materials such as Fe–Ga alloy. A disadvantage of magnetostrictive VETs over electrostatic and
piezoelectric VETs is that the open circuit voltage can be low, in the order of 100 mV. Therefore, it requires
an AC-DC boost converter [6,7]. To date, various designs have been proposed for VETs [8–11]: AC-DC
charge pumps with discrete capacitors and diodes have been used on the printed board [8]; a two-chip
solution was proposed and was verified using a VET [9]; an active diode was presented to reduce a
voltage drop at the interface [10]; in [11], a switching regulator was designed with a rectifier. AC-DC
charge pumps have been used for wireless power transfer via microwaves [12,13]. The integration of
AC-DC charge pumps is possible simply because the frequency of the RF power is very high, at over
100 MHz, where the output current from the AC-DC charge pumps is proportional to the frequency and
the capacitance of each boosting capacitor. The high frequency enables all of the boosting capacitors
for the charge pumps to be integrated. Conversely, AC-DC charge pumps have not been integrated for
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VET due to the low AC power frequency, which is lower than 1 kHz. An extremely low frequency
requires large capacitors such as chip capacitors. Consequently, clocked AC-DC charge pumps were
proposed and developed for magnetostrictive EH [14,15]. In [14], the concept was proposed and a
relationship between output voltage and current was presented, in which it was assumed that the
AC power supply is ideal with zero impedance. In [15], a circuit system including a clocked AC-DC
charge pump and a magnetostrictive ET was developed and experimental results were shown where
the model was extended to include the output impedance of VET. Two different definitions for power
efficiency were used for comparison: (1) the ratio of DC output power of a clocked AC-DC charge
pump (POUT

CP) to the maximum available output power of VET (POUT_MAX
ET), i.e., overall power

efficiency ηSYS ≡ POUT
CP/POUT_MAX

ET; (2), the ratio of POUT
CP to the input power of the charge pump

(PIN
CP), i.e., charge pump power efficiency ηCP ≡ POUT

CP/PIN
CP. Many publications have used charge

pumps for energy harvesting [16–23] and others have discussed the design methodology for charge
pumps [24–30], yet none have discussed the optimal design of clocked AC-DC charge pumps.

In this paper, an extended version of a conference paper [31], we discuss the optimum design
and design flow for clocked AC-DC charge pumps in more detail. We present how to determine the
optimum number of stages for clocked AC-DC charge pump circuits and the capacitance of each pump
capacitor required to reach a target output current and output voltage with the minimum circuit area for
small-form-factor vibration EH. The overall design flow is also discussed. In Section 2, we provide design
equations to determine the optimum number of stages to obtain the minimum circuit area. In Section 3,
the design equations are validated by comparing predictions with SPICE simulations. In Section 4,
an entire design flow is outlined, and in Section 5 we discuss the further study required. Without such
design optimization, each circuit designer must run many SPICE simulations to determine the circuit
parameters to meet a given condition for the input voltage amplitude, output voltage and output current
with minimum circuit area. With the proposed novel design optimization, one can determine the circuit
parameters required to minimize the circuit area without running many SPICE simulations.

2. Optimum Design of Clocked AC-DC Charge Pumps

Figure 1 shows a clocked AC-DC charge pump together with a VET. The full bridge rectifier
(FBR) is based on a cross-coupled CMOS bridge circuit [27]. A rectified voltage VREC is multiplied
by a digital clock signal in a ring oscillator (ROSC) to generate driving signals CLK and CLKB for
the charge pump (CP). Diode-connected CMOS transistors are used for the diode portion of CP [32].
The oscillator frequency f is controlled by a current source IOSC. In [14,15], the relationship between
the output voltage (VOUT) and current (IOUT) is given to be (1) when parasitic capacitance of pumping
capacitors is sufficiently small;

IOUT =
2 f C
πN

[NVDD sin(π/2− θS) − (π/2− θS)
(
(N + 1)VEFF

TH + VOUT
)
], (1)

where C, N, VDD, θS and VEFF
TH are the capacitance of each pump capacitor, the number of stages,

the amplitude of the open circuit voltage of VET, the conduction angle defined by the point where the
output current starts flowing, and the effective threshold voltage, respectively. The point at which
output current starts flowing can be calculated by

θS = sin−1(
VOUT + (N + 1)VEFF

TH

VDD(N + 1)
), (2)

The effective threshold voltage is calculated by

VEFF
TH = VT ln(4

1
N+1

f SVT

NIS
). (3)
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where VT, S and IS are the thermal voltage, the silicon area given by CN, and the saturation current of
each stage diode, respectively.
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Figure 1. Clocked AC-DC charge pump with vibration energy transducer (VET). 
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Figure 1. Clocked AC-DC charge pump with vibration energy transducer (VET).

Equations (1)–(3) were presented in [14,15]. As the circuit parameters are included in such
complicated equations, it is not easy to find an optimum design parameter set of C, N and diode size at
the initial design phase when VDD and a target IOUT at VOUT are given. Therefore, estimation equations
should be useful for designers who want to have an initial estimate for those design parameters.
In other words, one can determine NOPT by running many SPICE simulations to find the peak point of
IOUT. It must be beneficial for designers who want to identify the optimum number of stages, NOPT,
to minimize the circuit area using a single calculation.

As Equations (1)–(3) are extracted based on the formula for DC-DC charge pumps, as shown
in [24], we begin by determining the relationship between the minimum number of stages, NMIN,
required to hold IOUT (N = NMIN) = 0, and the optimum number of stages, NOPT, required to minimize
the circuit area, i.e., NOPT = 2 NMIN. Then, assuming that NOPT is proportional to NMIN for clocked
AC-DC charge pumps as well as DC-DC charge pumps, NOPT = k NMIN, where k is a proportional
coefficient determined empirically. As in [15], the following parameters were used to generate the
curve in Figure 2a with Equations (1)–(3): f = 10 MHz, VDD = 0.5 V, VOUT = 2.5 V, VT = 34 mV,
S = 10 pF, and IS = 10 nA. Under a given circuit area of S, IOUT was calculated with Equations (1)–(3).
Figure 2a shows that the design with k~2.6 should provide high IOUT with a sufficient design margin
when (4) is used for NMIN.

NMIN =
VOUT

VDD −VT ln( f SVT/IS)
− 1. (4)
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Figure 2. k vs. IOUT for the clocked AC-DC charge pump (a) and N/NOPT vs. IOUT for the clocked
AC-DC and DC-DC charge pumps with the same design parameters (b).
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Even though k varies by 1 in a different parameter set, IOUT only decreases by 10%. Therefore,
one can use the optimization Equation (5) together with Equation (4) to determine the number of stages
of clocked AC-DC charge pumps, which is the most important product of this paper.

NOPT = 2.6NMIN (5)

Figure 2b compares the sensitivity of IOUT on variation in N of the clocked AC-DC and DC-DC
charge pumps whose design parameters are common. Note that the clocked AC-DC charge pump is
less sensitive to variation in N than the DC-DC charge pump.

3. Validation of the Proposed Design

3.1. Validation of the Analytical IOUT-VOUT Equation

To validate the analytical IOUT-VOUT Equation (1) together with Equations (2)–(3), the measured data
from the previously fabricated clocked AC-DC charge pump [15] were used. The design parameters were
VDD = 0.5 V, N = 9, C = 10 pF, Is = 40 nA, VT = 34 mV and f = 4.8 MHz. Figure 3 compares the results
from model 1 with the measured data. The discrepancy was within 10%, in the range of VDD = 0.4–0.8 V
and VOUT = 1–3.5 V. Model 1 is therefore valid for design optimization based on Equation (1).
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Figure 3. Comparison of VOUT–IOUT between model Equations (1)–(3) and measured data for a
previously fabricated clocked AC-DC charge pump [15].

To further validate the model Equations (1)–(3) at different numbers of stages, SPICE simulations
were run under the conditions of f = 1 MHz, VDD = 0.5 V, VOUT = 2.0 V, VT = 34 mV, S = 1 nF,
and IS = 10 nA. Figure 4 compares IOUT values when N is varied and S is constant. The model results
are in good agreement with SPICE simulations. Figure 4 indicates that NOPT is 20, whereas (4) and (5)
suggest NOPT is 25. Even though NOPT differed by 20%, the discrepancy in IOUT is as small as 2.5%
thanks to the moderate curvature around the highest point in IOUT.

3.2. Validation of the Optimization Equation

To validate whether the optimization equation (5) together with Equations (4) is effective for
designing clocked AC-DC charge pumps, the parameters shown in Table 1 were investigated. C and N
were calculated by a numerical simulation to have the highest IOUT under 1600 different combinations
of design parameters based on Equations (1)–(3). C and N were also calculated based on Equations (4)
and (5) and S = CN. Then, the values for IOUT calculated by those methods were compared. The results
are shown in Figure 5a, which indicates that model Equations (4) and (5) for 800 of the combinations of
parameters were in good agreement, to within 2% of numerical simulations using Equations (1)–(3),
and that 98% of all the parameter combinations exhibited differences under 5%. When VT ln(fSVT/IS)
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becomes close to VDD, the error increases. As this situation occurs for NMIN > 100, such cases were
omitted from the potential design conditions. Figure 5b shows that the discrepancy in values between
models increases as the frequency increases to over 10 MHz. If a designer wishes to run clocked AC-DC
charge pumps at high frequencies, Equations (4) and (5) may not be suitable.Electronics 2020, 9, x FOR PEER REVIEW 5 of 9 
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Table 1. Range of parameters used.

Design Parameters Maximum Minimum

f 100 MHz 100 kHz
VDD 0.7 V 0.5 V
VOUT 3.5 V 1.5 V

IS 100 nA 5 nA
S 1 nF 1 pF

4. Design Flow of Clocked AC-DC Charge Pumps

Figure 6 proposes a design flow for clocked AC-DC charge pumps. At step 1, the condition is
defined where IOUT

Target is the target output current at VOUT. At step 2, NOPT is calculated by using
Equations (4) and (5). At step 3, COPT value is calculated by S divided by NOPT. At step 4, IOUT0 is
defined by IOUT with COPT and NOPT via Equations (1)–(3). At step 5, the scaling factor λ is identified.
At step 6, the final values ISFIN, CFIN, and SFIN are scaled with λ. As a result, all the design parameters
are determined. Those values are used for the initial SPICE simulation to verify whether the initial
estimate is acceptable. Otherwise, the parameters may need to be updated.
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To provide an example, we demonstrate the above design flow under the conditions of f = 1 MHz,
VDD = 0.5 V, VOUT = 2.0 V, VT = 34 mV, S = 1 nF, and IS = 10 nA to obtain IOUT of 1 µA. NOPT was
determined by Equations (4) and (5) to be 16. Then, COPT was calculated by S/NOPT to be 62.5 pF. IOUT0
was calculated by Equations (1)–(3) to be 7.0 µA, and therefore the scaling factor λ was 1/7 µA = 0.14 µA.
As a result, ISFIN, CFIN, and SFIN were 1.4 nA, 8.8 pF and 140 pF, respectively. Figure 7 shows the
waveform of the output current with SPICE. The IOUT was measured to be 0.97 µA, which is 3% smaller
than the target IOUT. This result validates the proposed design method and flow.Electronics 2020, 9, x FOR PEER REVIEW 7 of 9 
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5. Discussion

Electromagnetic VET has similar characteristics to magnetostrictive VET with respect to its
relatively lower output open circuit voltage and low output impedance. Therefore, the design method
proposed in this paper for clocked AC-DC charge pumps can also be applied to electromagnetic VET.
The other types of VET—electrostatic, piezoelectric and triboelectric VET—require alternative types of
power conversion than clocked AC-DC charge pump circuits.
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SPICE simulation results showed that the clocked AC-DC charge pump circuit demonstrated
in Section 4 has an input power, PIN

CP, of 8.8 µW, resulting in a charge pump power efficiency,
ηCP ≡ POUT

CP/PIN
CP of 23%. When a magnetostrictive VET with VDD = 0.5 V and an output resistance

of 500 Ω is used, the maximum available power POUT_MAX
ET is calculated as 31 µW. Therefore, overall

power efficiency ηSYS ≡ POUT
CP/POUT_MAX

ET is estimated to be 8%.
In this paper, the impact of the parasitic capacitance of pumping capacitors (CP) on (1) was

disregarded for simplicity. Design Equations (4) and (5) will need to be extended for cases where CP
cannot be ignored. When clocked AC-DC charge pump circuits are designed considering the output
impedance of VET, another design flow, such as that described in [25], will be required in addition
to the design flow proposed in Figure 6. Further study is required to outline an optimum design to
maximize power efficiency.

6. Conclusions

In this paper, we proposed Equations (4) and (5) to determine the number of stages which
enables designers to obtain clocked AC-DC charge pumps with the minimum circuit area based on
the previously formulated output voltage and current equation. In addition, a design procedure was
also presented to determine the capacitance of each pump capacitor and the size of each rectifying
device when the amplitude of the voltage generated by the vibration energy transducer, target output
voltage, and target output current are given. The design method and flow are demonstrated and
validated by SPICE simulation with 1600 different sets of design parameters. When a clocked AC-DC
charge pump was designed based on the optimum equations to have an output current of 1 µA at
2.5 V from a vibration energy harvester with an AC voltage amplitude of 0.5 V, the discrepancy in the
output current was just 3% from that based on a standard design method. Clocked AC-DC charge
pump circuits with the minimum circuit area can be designed based on the equations and design flow
proposed in this paper.
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