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Abstract: This work presents an analytical series-form solution for the time-harmonic electromagnetic
(EM) field components produced by an overhead current line source. The solution arises from casting
the integral term of the complete representation for the generated axial electric field into a form where
the non-analytic part of the integrand is expanded into a power series of the vertical propagation
coefficient in the air space. This makes it possible to express the electric field as a sum of derivatives
of the Sommerfeld integral describing the primary field, whose explicit form is known. As a result,
the electric field is given as a sum of cylindrical Hankel functions, with coefficients depending on the
position of the field point relative to the line source and its ideal image. Analogous explicit expressions
for the magnetic field components are obtained by applying Faraday’s law. The results from numerical
simulations show that the derived analytical solution offers advantages in terms of time cost with
respect to conventional numerical schemes used for computing Sommerfeld-type integrals.

Keywords: line current source; half-space problem; EM wave propagation

1. Introduction

The computation of the electromagnetic (EM) fields from overhead electric lines located above
dissipative terrestrial areas is a classical problem which is still of interest today because of the public
concern about the biological effects of field exposure. In fact, it is well known that the strong EM fields
associated with the high-intensity currents and voltages of power lines can generate undesirable effects
on humans, animals and other forms of life [1–3]. The problem, in all of its variants, has spawned a
number of contributions to the scientific literature since a solution was first developed at the beginning
of the 20th century by Carson [1–25]. Yet, in spite of the variety of proposed approaches, to Author’s
knowledge there is scarcity of purely analytical techniques in literature, and most of the published
methods attempt to solve the problem through the derivation of analytical formulations amenable
to numerical treatment. Excellent illustrations of these approaches are the well-known method of
moments (MoM), which is used to solve surface integral formulations, and the method of auxiliary
sources [10], consisting of expressing the fields as weighted superpositions of the contributions from a
finite number of fictitious currents flowing on mathematical surfaces separated from the air-ground
interface. Even if these methods may exhibit good performances in terms of accuracy and efficiency,
as numerical procedures they suffer from the intrinsic disadvantage of involving memory requirements
and computational costs significantly greater than those implied by an analytical solution. Moreover,
they provide less insight in the physics of the problem and are also less suitable for sensitivity analysis.
On the other hand, one important contribution in the context of purely analytical techniques is the work
by Prof. J. R. Wait [5], which presents field expressions derived through usage of the complex image
theory. The only drawback of the obtained formulas resides in that they are valid in the quasi-static
regime only, that is when the effects of the displacement currents in the air space are negligible.
The aim of the present paper is to derive rigorous series-form expressions for the time-harmonic
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EM field components produced in the air-space by a uniform-current line source located above a
homogeneous dissipative ground. The field expressions are obtained starting from decomposing the
integral representation for the axial component of the generated electric field into three parts, that is
the direct field induced by the source current, the ideal reflected field induced by a negative image
current and a correction term due to the imperfect conductivity of the ground. Next, after recognizing
that the first two terms can be straightforwardly expressed in explicit form, the non-analytic part of the
integrand of the correction term is expanded into a power series of the vertical propagation coefficient
in the air space. This permits to express the electric field as a sum of derivatives of the Sommerfeld
Integral describing the direct field. As a result, the field is given as a sum of cylindrical Hankel
functions, with coefficients depending on the position of the field point relative to the original current
source and its ideal image. Finally, analogous explicit expressions for the magnetic field components are
obtained by applying Faraday’s law. The obtained solution is not subject to simplifying assumptions,
and hence is valid even when the high-frequency effects due to the displacement currents in both the
air and the soil are not negligible. As a consequence, the solution is also of practical use as an analytical
benchmark for simulation tools employed to solve EM boundary value problems. Numerical tests are
performed to show the validity of the developed method and its advantages in terms of computation
time with respect to standard numerical algorithms used to evaluate Sommerfeld-type integrals.

2. Formulation of the Problem

Consider an infinite line source of current located in proximity of a flat homogeneous ground,
as shown in Figure 1.
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Figure 1. Sketch of a line source of current above a homogeneous ground.

The line is situated above the ground at height h, and the material medium is characterized by
the dielectric permittivity ε1 and electrical conductivity σ1, while the magnetic permeability is taken
to be everywhere that of free-space µ0. Under the hypothesis that the observation point lies in the
near-field region of the line source, it is reasonable to assume that the line supports a nearly uniform
current [1], i.e., I(x, t) ∼= Iejωt. Due to the symmetry of the problem, the total electric field generated
in the air space has only one component in the axial direction, whose integral representation is well
known and given by [10]

Ex = − jωµ0 I
2π

[Sd (|z−h|) + Sr (z+h)] , (1)

where

Sd(ζ)=
∫ ∞

0

1
u0

e−u0ζ cos (λy) dλ=− jπ
2

H(2)
0

(
k0

√
y2+ζ2

)
(2)
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and

Sr(ζ)=
∫ ∞

0

1
u0

u0 − u1

u0 + u1
e−u0ζ cos (λy) dλ (3)

are, respectively, the Sommerfeld Integrals describing the direct and reflected fields, being H(2)
0 the

zeroth-order Hankel function of the second kind, and un=
√

λ2 − k2
n. The aim of this paper is to derive

exact series representations for Ex and the magnetic field components, the latter arising from applying
Faraday’s law. To this goal, it is first convenient to use the identity

u0 − u1

u0 + u1
= −1 +

2u0

u0 + u1
(4)

and split Sr into two terms, that is the ideal reflected field contribution (induced by a negative image
current) plus a term due to the imperfect conductivity of the ground. It reads

Sr (z+h) =− Sd (z+h) +Sc (z+h) , (5)

with

Sc (ζ) =2
∫ ∞

0

e−u0ζ

u0 + u1
cos (λy) dλ, (6)

and where account has been taken of (2). The integral Sc may be evaluated by proceeding as follows.

After setting α=
√

k2
1/k2

0 − 1 and

1
u0 + u1

=
u0

k2
0α2

+ jP(u0), (7)

we replace the quantity eu0βP(u0), where β is a non-negative real constant to be determined, with its
Taylor expansion about u0 = 0, in a similar fashion as in [5]. It yields

f (u0) = eu0βP(u0) =
∞

∑
i=0

f (i)(0)
i!

ui
0, (8)

and, as a consequence, (6) becomes

Sc (ζ) =
2

(k0α)2

∫ ∞

0
u0e−u0ζ cos (λy) dλ + 2j

∞

∑
i=0

ai(β)
∫ ∞

0
ui

0e−u0(ζ+β) cos (λy) dλ, (9)

being ai(β) = f (i)(0)/i!. Under the assumption that ζ > 0, the second integral on the right-hand
side of (9) converges regardless of the value chosen for the non-negative arbitrary constant β.
This happens because, as λ becomes sufficiently large, the exponential factor e−u0(ζ+β) approaches
e−λ(ζ+β), which rapidly decays with increasing λ. Since β may be assumed to be as small as desired,
we now take the limit of (9) as β→ 0+. It is not difficult to prove that, subject to this condition, the odd
coefficients a2i+1 (i = 0, 1, 2, . . .) become null. On the other hand, the limit of the even coefficients reads

lim
β→0+

a2i(β) =
c2i

(k0α)2i+1 , with ci=
(i + 1)!!
(i2 − 1) i!!

, (10)

and, as a consequence, (9) may be expressed as

Sc (ζ) =
2

(k0α)2
∂2Sd
∂ζ2 − 2j

∞

∑
i=0

c2i

(k0α)2i+1
∂2i+1Sd

∂ζ2i+1 , (11)
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where the ζ-derivatives of Sd, that is the derivatives of H(2)
0 , are to be made explicit. After letting let

r =
√

y2+ζ2, from the differential properties of the Bessel functions [26] it follows that

∂H(2)
0

∂ζ
=− k0 ζ

r
H(2)

1

∂2H(2)
0

∂ζ2 =−k0

[
1+ζ2

(
1
r

d
dr

)]
H(2)

1
r

∂3H(2)
0

∂ζ3 =−k0

[
3ζ

(
1
r

d
dr

)
+ζ3

(
1
r

d
dr

)2
]

H(2)
1
r

∂4H(2)
0

∂ζ4 =−k0

[
3
(

1
r

d
dr

)
+6ζ2

(
1
r

d
dr

)2
+ζ4

(
1
r

d
dr

)3
]

H(2)
1
r

...

∂l H(2)
0

∂ζ l =− k0

bl/2c

∑
m=0

(−1)mdlmζ l−2m
(

1
r

d
dr

)l−m−1H(2)
1
r

, (12)

where the argument of the Hankel functions, that is k0r, has been omitted for notational simplicity,
and with

dlm = (−1)m
(

l
l−2m

)
(2m− 1)!! =

(−1)ml!
(l−2m)!(2m)!!

. (13)

It should be noted that the number of terms on the right-hand sides of (12) is (l/2+1) for even l,
and [(l−1)/2+1] for odd l. Hence, it is equal to unity plus the integer part of (l/2), denoted by bl/2c.
Next, use of the tabulated result [26]

(
1
r

d
dr

)ν H(2)
1
r

= (−k0)
ν

H(2)
ν+1

rν+1 (14)

into (12) leads to the expression

∂lφ0

∂ζ l =(−k0)
l
bl/2c

∑
m=0

dlm
φl−m
(k0ζ)m , (15)

and

φn=

(
ζ

r

)n
H(2)

n (k0r). (16)

Finally, substituting (2) and (15) into (11) provides

Sc (ζ)=jπΦ2i+1,1, (17)

with

Φln=
φn

α2k0ζ
−φn+1

α2 − j
∞

∑
i=0

c2i

α2i+1

bl/2c

∑
m=0

dlm
φ2i−m+n
(k0ζ)m , (18)
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and hence, the total axial electric field component Ex (1) may be rewritten as

Ex=−
ωµ0 I

4

[
φ0|ζ=|z−h|− (φ0+2Φ2i+1,1)ζ=z+h

]
. (19)

The non-null magnetic field components may be obtained from Ex by applying Faraday’s law,
as follows

Hy = − 1
jωµ0

∂Ex

∂z
=

I
2π

{
∂Sd(ζ)

∂ζ

∣∣∣∣
ζ=z−h

−
[

∂Sd(ζ)

∂ζ
−∂Sc(ζ)

∂ζ

]
ζ=z+h

}
, (20)

Hz =
1

jωµ0

∂Ex

∂y
= − I

2π

{
∂Sd(ζ)

∂y

∣∣∣∣
ζ=z−h

−
[

∂Sd(ζ)

∂y
−∂Sc(ζ)

∂y

]
ζ=z+h

}
. (21)

In fact, differentiating (17) with respect to ζ leads to write

∂Sc(ζ)

∂ζ
=− jπk0

(
2φ2

α2k0ζ
+ Φ2i+2,2

)
(22)

and, as a consequence, (20) is turned into

Hy=
jk0 I

4

[
φ1|ζ=z−h −

(
φ1+

4φ2

α2k0ζ
+ 2Φ2i+2,2

)
ζ=z+h

]
. (23)

On the other hand, since it holds

∂l+1φ0

∂y∂ζ l =− k0

bl/2c

∑
m=0

(−1)mdlmyζ l−2m
(

1
r

d
dr

)l−mH(2)
1
r

=(−k0)
l+1 y

ζ

bl/2c

∑
m=0

dlm
φl−m+1
(k0ζ)m (24)

and, therefore,

∂Sc (ζ)

∂y
=− jπk0y

ζ
Φ2i+1,2 (ζ) , (25)

the explicit expression for the Hz-field reads

Hz = −
jπk0yI

4πζ

[
φ1|ζ=z−h − (φ1+2Φ2i+1,2)ζ=z+h

]
. (26)

3. Results

As validation of the theoretical development, expressions (23) and (26) were used to calculate the
magnetic field components that an infinite line source carrying 1 A of current produced at a plane 1 m
above the interface between air and a clay soil. The source was situated 4 m above the material medium,
whose electrical conductivity and dielectric permittivity were taken to be equal to σ1 = 0.1 mS/m and
ε1 = 40 ε0, respectively [27]. At first, the fields were computed against the horizontal distance y from the
line axis, assuming that the operating frequency was equal to 1 MHz. Four y-profiles were generated,
each one corresponding to a different value for the truncation index L of the outer infinite sum in (18).
The results of the computations, shown in Figures 2 and 3, were compared with those arising from
numerically evaluating the integral representations for the magnetic field components, namely [28]
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Hy=
I

2π

∫ ∞

0

[
e−u0|z−h| − u0 − u1

u0 + u1
e−u0(z+h)

]
cos(λy)dλ, (27)

Hz=
I

2π

∫ ∞

0

λ

u0

[
e−u0|z−h| +

u0 − u1

u0 + u1
e−u0(z+h)

]
sin(λy)dλ. (28)

Numerical integration was carried out by applying a Gauss–Kronrod G7-K15 scheme, originating
from the combination of a seven-point Gauss rule with a 15-point Kronrod rule. From the analysis of
the plotted curves it emerged that increasing the truncation index L improved the accuracy of the result
of the computation. In fact, if L grew the curves provided by (23) and (26) approached the outcomes
from numerical quadrature, and close agreement was achieved when L = 9 in both the situations. Thus,
the proposed series-form solution converged to the exact solution. This was confirmed by the curves
plotted in Figure 4, which show the relative error of the outcomes from (23) as compared to numerical
integration data. As is seen, the error monotonically decreased as L increased. On the other hand, for a
fixed value of L the error was not substantially affected by a variation of the distance y as long as the
latter was smaller than 50 m. Thereafter, the relative error grew and exhibited an oscillating behavior,
pretty similar for all the considered values of the truncation index of the outer sum in (18). However,
even with the rapid increase as the distance y increased, for L = 9 the error did not exceed 10−3 in the
considered interval.
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Figure 2. Amplitude of Hy against the horizontal distance from the line source.

The accuracy of the result of the computation also depended on the values of the electromagnetic
parameters of the lossy ground and, for instance, better accuracy was observed for larger values of the
electrical conductivity σ1. This aspect is illustrated by Figures 5 and 6, which show, respectively, profiles
of |Hy| versus the ratio σ1/(ωε1), and the relative error resulting from using (23) instead of G7-K15
scheme. Here, it is assumed that the source carried 1 A and operated at 100 kHz, and that ε1 = 20 ε0,
h = 5 m, y = 10 m, and z = 1 m. As is seen, the sequence of profiles of |Hy| generated by the partial sums
in (23) converged to the curve provided by the G7-K15 scheme, and perfect agreement between the
analytical and numerical data was again obtained for L = 9. Furthermore, convergence was faster in the
good-conductor limit (σ1� ωε1), where it sufficed to use a sum constituted by seven terms to produce
sufficiently accurate results. This does not necessarily imply that the relative error generated by each
partial sum in (23) always decreased as the conductivity grew. In fact, as pointed out by Figure 6,
the error fluctuated around a decreasing mean value rather than being monotonically decreasing.
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Figure 3. Amplitude of Hz against the horizontal distance from the line source.
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Figure 4. Relative error of (23) as compared to G7-K15 scheme, plotted versus y.

The proposed method made it possible to achieve time savings compared to G7-K15 numerical
scheme, while maintaining the same accuracy as the latter. In fact, on a single-core 2.2 GHz processor,
the average CPU time taken by (23) to generate the profile of |Hy| associated with L = 9 in Figure 5
was equal to 157 ms, while about 9 s were taken by numerical integration of (27) to produce the same
outcome. This means that, limited to the considered example, the proposed approach was about 57
times faster than Gaussian integration, and, as a consequence, the numerical complexity of the former
was significantly smaller than that exhibited by the latter. For the sake of completeness, the time costs
of (23) corresponding to the remaining values of L depicted in Figure 5 are indicated in Table 1.
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Table 1. CPU time comparisons for the calculation of Hy.

Approach Average CPU Time [s] Speed-Up

G7-K15 8.97 -

(23) with L = 4 3.13× 10−4 2.87× 104

(23) with L = 5 1.26× 10−3 7.12× 103

(23) with L = 7 3.84× 10−2 2.34× 102

(23) with L = 9 1.57× 10−1 57.1
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Figure 5. Amplitude of Hy against the normalized conductivity of the ground σ1/(ωε1).
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Figure 6. Relative error of (23) as compared to G7-K15 scheme, plotted against σ1/(ωε1).

Finally, one would ask whether the proposed solution may still be used when both h and z
approach zero, since it has been obtained starting from expression (9), whose integrals on the right-hand
side, strictly speaking, converged only for ζ = z+ h > 0. This point is clarified by Figure 7, which shows
the amplitude–frequency spectrum of the Hy-field that a unit-current line source generated at a
point placed 30 m apart from it, assuming that both the source and the observation point lay on
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a homogeneous ground with σ1 = 20 mS/m and ε1 = 10 ε0. As is evident from the analysis of the
plotted curves, the trends arising from the sequence of partial sums in (23) still converged to the curve
resulting from numerical integration of (27), even if the number of terms of (23) required to approach
the numerical data grew as frequency decreased.
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Figure 7. Amplitude-frequency spectrum of Hy, resulting from using both (23) and the G7-K15 scheme.

Hence, the rate of convergence of (23) depended on frequency, and convergence was faster at
higher frequencies. This aspect is further investigated in Figure 8, which depicts the relative error
of the outcomes of (23) plotted in Figure 7, as compared to the data arising from the G7-K15 rule.
The curves of Figure 8 point out that, for a fixed L, the accuracy of the result of the computation
significantly worsened when entering the low-frequency range. At the same time, they confirmed
that the accuracy could always be enhanced by increasing L. This implies that, all over the considered
frequency range, it holds [29]

lim
L→∞

|H(L+1)
y − Hy|

|H(L)
y − Hy|p

=q, (29)

where the symbol {H(L)
y } denotes the sequence of partial sums that originates from (23), as a result of

truncating the infinite sum in (18), and where p and q are the order of convergence (OC) of the sequence
and the asymptotic error constant (AEC), respectively. It is easily understood that the parameters p
and q depend on the operating frequency, and that the knowledge of their values permits to acquire
further information on the rate of convergence. As an example, Table 2 illustrates Lth order estimates
of the OC and the AEC for the sequence {H(L)

y } corresponding to 1 kHz in Figure 7. The estimates
were calculated using the well-known expressions [29]

pL=
log
[
|H(L+1)

y − H(L)
y |/|H

(L)
y − H(L−1)

y |
]

log
[
|H(L)

y − H(L−1)
y |/|H(L−1)

y − H(L−2)
y |

] , (30)

qL=
|H(L+1)

y − H(L)
y |

|H(L)
y − H(L−1)

y |pL
(31)
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whose limits as L→∞ approach p and q [29]. As pointed out by Table 2, pL→1 with increasing L,
and this means that the sequence {H(L)

y } converges linearly. Moreover, convergence is accelerated by

the small values of the qL’s, which further reduce the remainder |Hy−H(L)
y | at any additional iteration

of the sequence.
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Figure 8. Relative error of (23) as compared to G7-K15 scheme, plotted against frequency.

Table 2. Estimated OC and AEC for the sequence {H(L)
y }.

L pL qL

4 0.857 0.674

5 0.871 0.591

7 0.944 0.563

10 0.989 0.495

13 0.996 0.442

4. Conclusions

This paper has presented a rigorous analytical approach for evaluating the time-harmonic EM field
components generated in the air space by an infinite current line source located above a homogeneous
lossy ground. The approach consists of expanding the non-analytic part of the integrand of the
correction term in the integral expression for the axial electric field into a power series of the z-directed
propagation coefficient in air. This leads to express the axial electric field as a sum of derivatives of
the Sommerfeld Integral describing the direct field, which may be analytically evaluated. As a result,
the electric field is given as a sum of cylindrical Hankel functions, with coefficients depending on the
position of the field point relative to the line source and its ideal image. Then, explicit expressions for
the magnetic field components are also derived by applying Faraday’s law. The obtained solution is
not subject to simplifying assumptions, and hence is valid even when the high-frequency effects due to
the displacement currents in both the air and the soil are no longer negligible. Numerical simulations
have been carried out to show that the proposed approach exhibits good accuracy, while taking
significantly less computation time than conventional numerical quadrature schemes used to evaluate
Sommerfeld-type integrals.
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