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Abstract: This paper begins with a comprehensive review into the existing GaN device models.
Secondly, it identifies the need for a more accurate GaN switching model. A simple practical process
based on radio frequency techniques using Vector Network Analyser is introduced in this paper as
an original contribution. It was applied to extract the impedances of the GaN device to develop
an efficient behavioural model. The switching behaviour of the model was validated using both
simulation and real time double pulse test experiments at 500 V, 15 A conditions. The proposed model
is much easier for power designers to handle, without the need for knowledge about the physics or
geometry of the device. The proposed model for Transphorm GaN HEMT was found to be 95.2%
more accurate when compared to the existing LT-Spice manufacturer model. This work additionally
highlights the need to adopt established RF techniques into power electronics to reduce the learning
curve while dealing with these novel high-speed switching devices.

Keywords: gallium nitride; power electronics; power device; parasitics; device modelling; switching
model; Vector Network Analyser

1. Introduction

To enable commercialisation of GaN high-speed power switching circuits, there are problems
caused by parasitics that need to be overcome. Ultra-fast dv/dt and di/dt cause significant instability
issues stemming from the inductive, capacitive, package and PCB parasitic elements [1]. With devices
having near ideal characteristics, the effect due to parasitics can have a detrimental impact on their
switching performance that can no longer be neglected.

The cause and effect of parasitics on GaN switching performance have been explored in a few
different ways in the literature. The effects of parasitics have been studied focusing on resonances
and self-sustained oscillations [2–4]. These are more pronounced for GaN circuits due to its complex
structures and operation at high frequency and current levels [5]. Thus, it is imperative that power
application designers have an idea about how to evaluate the effects of these parasitics when switching
at very high speeds. Many techniques are suggested for dealing with this issue:

1. The first method is to make use of different GaN HEMT physics models to experimentally extract
the parasitic elements of the device studying their effects [6]. Although there have been detailed
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studies regarding this, development of physics and analytical models are very time consuming.
There is only one major study available on behavioural model of the GaN cascode which is
discussed later on in this paper.

2. The second method is to study the effect of parasitics through experimental switching waveforms.
However, this is a highly intuitional and observational method. The validity of the experiments
depends on the accuracy of the measurement systems in use, and they mostly fail to predict the
reasons behind these observations [7,8].

3. The third method is to use software (e.g., TCAD, Ansoft or Maxwell Q3D) simulations to extract
parasitics to model the device. This requires knowledge about the physics and geometry of the
devices, which are complex and not always available to the designer. It also does not fully explain
the underlying reasons behind the observations [9].

Accurate non-linear or large-signal behavioural models for HEMTs are crucial for proper circuit
and systems design and do not exist as of now. The models that exist now are complex, preventing
the understanding of the switching behaviour for the power designer. Considering all these facts,
this paper first reviews the device and package parasitics of three different commercial GaN HEMTs.
Secondly, it introduces RF process to accurately extract the impedances of the circuit. The switching
behavioural model is then developed from the extracted parasitic impedances using a Vector Network
Analyser (VNA). Numerical simulation in LT-Spice modelling was used to demonstrate the behavioural
model. A double pulse test was performed for comparing the simulation results with experimental
results to validate the dynamic performance of the developed model. This research paper proposes a
new behavioural model of GaN for application engineers without the need for any in depth knowledge
about the physics nor geometry of the device.

2. Existing GaN Models: A Review

Although several GaN HEMT devices are reported, very few reliable device switching models
have been developed for GaN HEMTs—the proposed models are as listed in Table 1.

1. Behavioural Models: In [10], based on the Efficient Power Conversion Corporation (EPC) device
model, a small-signal SPICE model of GaN HEMT is developed. In [11], a behavioural model is
constructed with a GaN HEMT in cascode with a Si MOSFET.

2. Semi-Physics based Models: The Statz model is customised to model both static and dynamic
characteristics of GaN HEMTs based on EPC devices [12]. In [13], calorimeter measurements are
used to develop a loss model for the GaN HEMT.

3. Physics based Models: The 2-DEG charge density is measured to design an analytical model of a
GaN HEMT device [14]. Other physics-based models which takes in to account in-depth physics
of the device are presented in [15,16].

4. Numerical Models: A Sentaurus TCAD model for a GaN HEMT device is developed in [17].

Table 1. Review of existing GaN models [18].

Authors Year Type of Model Contribution Simulation Tool

Okamoto [19] 2011 Behavioural Power-loss estimation for AC-AC
converter. SPICE

Khandelwal [20,21] 2012 Physics
Parameter determination:

carrier-velocity saturation, channel
length modulation and self-heating

ADS

Yigletu [22] 2013 Physics Measurement of 2DEG charge density ADS
Waldron [23] 2013 Semi-Physics Static and dynamic characteristics SPICE

Hoffmann [24] 2014 Semi-physics Electrical and RC thermal model SPICE
Huang [25] 2014 Behavioural Capacitance models Unspecified

Mantooth [26] 2015 - Review -
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The above models are accurate in terms of explaining the device operation. However, they are
complex and not always suitable for study of dynamic/switching performance. The GaN parasitic
model developed by Huang investigates the dynamic performance of the device by exploring the
switching performance of the GaN cascode. However, it is not generic to the other available GaN
device structures.

The literature survey presented in Table 1 proves that switching events are challenging to measure
and characterise. Additionally, it is difficult to separately determine circuit-level parasitics. The existing
models clearly fail to achieve this. Furthermore, the methods used for modelling are very time intensive
and involve many methodologies from analytical analysis to customised measurement circuitry
development. This paper identifies two factors that need to be resolved for developing an accurate
and simple GaN behavioural model:

1. An approximate model based on the parasitics of GaN devices without the need for delving into
the detailed physics of the structure

2. Extracting the parasitics of the device using a simple, practical and accurate methodology

3. Developing a GaN HEMT Behavioural Model

The main objective in this modelling is to establish a predictive account of the switching voltage
and current flow through the GaN device as a function of the applied voltages using the double pulse
testing experiment.

For device models, the electrical variables and their dependencies needs to be captured with
precision. The device engineers consider accuracy and simulation time as crucial factors. A simple
device model generally provides fast simulation speed but compromises on the physics-based aspects
of device behaviour and simulation accuracy. Thus, for determining the operation of a device,
a physics-based analytical model is usually used for simulation, but it is very complex to understand.
In addition, it is tediously long and is not practical for circuit design. Thus, the choice of a model is
dependent on the practical application for which it is intended. Based on these factors, a basic device
modelling procedure can be generalised, as shown in the block diagram of Figure 1.
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Figure 1. Block diagram for power device modelling.

For power semiconductor device models, the intended use is typically as a power switch in
power electronics applications. Usually for power devices, Double-Pulse test (DPT) circuit is used
to validate the switching behaviour of the device model. Additionally, it is sometimes used for
device characterisation if the dynamic performance is of interest for the investigation. Based on the
experimental validation results, the proposed model may be either selected or rejected. If the device
model cannot be accepted, a new device model needs to be designed repeating the above process.
In this paper, the process designed for GaN HEMT modelling is as elaborated in Figure 2.
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3.1. Overview of Parasitics for a High-Voltage GaN HEMT Device

In power electronics applications, the parasitic impedances of the high-speed switching device play
a detrimental role in limiting its maximum achievable performance. Unlike commercial applications
based on traditional power devices, these high speed GaN switching devices have their spectral
content in the radio frequency region. This can lead to spurious and oscillatory circuit behaviour due
to resonances excited in the parasitic elements. To investigate, analyse and mitigate this unstable
behaviour, it is important that application engineers have an approximate estimation of these impedance
values. Although direct measurement of impedance using LCR can be done, it is limited due to
accuracy [27]. Based on the established practical efficacy of the proposed approach for RF devices,
VNA measurement is used in this work. It was validated through the demonstration of a modelling
study using commercially-available GaN HEMT devices. The measured impedances were validated
through switching experiments.

The parasitics of the enhancement mode GaN HEMTs/GITs structure are as shown in Figure 3.
As shown in Figure 4, the cascode device has an additional set of parasitic elements due to the low
voltage Si device.

The original GaN device structure was of normally ON-type and hence not preferred in power
applications due to safety and acceptability considerations. As a solution to this, the power device
engineers came up with the cascode structure to convert it into normally OFF-type. As shown in
Figure 4, a normally OFF-type low-voltage Si MOSFET (typically 30 V) is connected in cascode to a
normally ON-type high-voltage GaN HEMT (600 V+). Additionally, the source of the MOSFET is
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connected to the gate of the HEMT. This combinational design produces an effective normally OFF
device. In this structure, the gate of the Si MOSFET is used to regulate the ON/OFF state of the GaN
HEMT. This operational flexibility makes the GaN HEMT cascode more convenient and adaptable
with the generic Si drivers though it compromises the very high switching speed of GaN.
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from [29]).

According to Huang Cascode device model, the most critical internal inductances are as shown in
Figure 5a. Figure 5b shows the layout of the GaN HEMT cascode inside a conventional TO package.
The arrangement of the device shows that parasitic inductances are primarily caused due to the
interconnection between the device die, the leads and other interconnections. As the device currents
with rapid transitions are restricted to such a compact area, the coupling effects between different
conductors become significant and cause deviation from the expected behaviour. In this paper, we use
this Cascode model which has been highly regarded by the power electronics community. According to
this model, Lint3 is the current source inductance (CSI) for both Si MOSFET and GaN HEMT, as shown
in Figure 5a. Thus, it is the most critical parasitic inductance. Lint1 is estimated to be the second most
critical inductance. This is because it is the CSI of the high-voltage GaN HEMT which contributes to
the majority of switching loss when compared to Si. Ls is found to be the third most critical inductance.
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simplified bonding diagram (adapted from [30]).

It is observed that available simulation models neglect some of these parasitic inductances, which
are critical in understanding the dynamic behaviour of the device.

The development of the model in this work is based on the assumption that for GaN, the device
parasitics are based on this arrangement. To validate the proposed work, the developed model
is based on a two-port impedance measurement using VNA. The impedance across the G-D, G-S
and D-S are measured, the inductance and capacitance values are extracted. These values are also
compared with LT-Spice model values supplied by the manufacturers and with existing papers where
a similar procedure is used for SiC modules. The final switching model is thus developed from this
extracted data and is simulated in LT-Spice. The simulation results are then compared with available
manufacturer device models with experimental waveforms from DPT.

3.2. Behavioural Modelling of High-Voltage GaN HEMT

The proposed modelling design procedure is based on developing a dynamic behavioural model,
as shown in Figure 6. This analysis is based on the two-port representation and is estimated via
frequency-dependent impedance measurements taken between the source, gate and drain terminals.
As discussed above, within the device package, it is the device linkage and package which are
dominantly inductive, while the semiconductor die is principally capacitive. This simple model
estimates that for any two terminals chosen for analysis, the impedance sweep will output a second-order
RLC network. This simplification has been used by many research groups and is proved to produce
approximate inductance values with minimum error. Based on the existing models and device
parameter extraction, the small signal model of GaN HEMT in Figure 6 can be approximated as shown
in Figure 7 [31].
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The small-signal equivalent circuit model developed does not intend to obtain the specifics
of semiconductor die and wire-bond interconnections. Thus, in this work, the measured lumped
inductance values are compared to the extracted values of the model proposed by Huang to determine
the individual wire-bond inductances of the TO packages. Since SMD package is devoid of such large
interconnection inductances, it is assumed to be zero in this work. Measuring the combined impedance
for each possible pairing of terminals for the device will produce a set of three combined inductance
values. These combined inductance values are related to the individual parasitic inductance values in
the equivalent circuit of Figure 6 by linear Equations (1)–(3). The device capacitance is considered
intrinsic and shows the reduced zero-bias equivalent.

Ld + Rd + Ls + Rs = Lds + Rds (1)

Ld + Rd + Lg + Rg = Ldg + Rdg (2)

Lg + Rg + Ls + Rs = Lgs + Rgs (3)

Figure 7 is simplified for zero bias conditions depending on the device structure to simplify the
circuit model to a symmetry form in favour of parameter extraction.

3.2.1. Packaging Impedance Analysis

The analysis procedure used in this work is adopted from the technique employed in [32] for
extracting SiC module impedances. This technique is based on the use of a Vector Network Analyser
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(VNA) to measure impedances and compute inductances from it. This is done as an extension of the
procedures outlined for RF devices in [33].

In this study, the frequency sweep was done using an Agilent E5061B Network Analyzer.
This experiment was carried out between 100 Hz and 3 GHz. A critical step for this procedure is the
calibration of the VNA, as shown in Figure 8. Proper calibration must be performed every time the
set-up is detached from the device mount or when the test rig is disturbed or changed in any way.
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This work is based on the full two-port calibration procedure described in [34]. The “short”,
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3.2.2. DUT Device under Test

Using the prescribed techniques, it was possible to curve-fit each terminal pair in the module
to a series RLC equivalent model. As discussed in the previous sections, the effective capacitance is
contributed by the paralleled HEMT and anti-parallel diode intrinsic capacitance, and the effective
inductance is the series and parallel combination of the wire bonds and interconnects structures within
the module [35,36].

An illustration of the curve-fit agreement achieved by this procedure for Transphorm HEMT is
shown in Figure 11. This plot represents the impedances of the GaN HEMT terminal pairs with the
gate biased turned OFF. In this plot, the device impedance structure contains additional higher-order
terms which are not captured by the simple series LC model and are beyond the scope of this work.
However, the primary resonant frequency can be easily determined from the curves, and it is used to
formulate an estimate of the equivalent lumped inductance for this terminal pair.
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In Figure 11, the impedance responses are plotted from 500 Hz to 3 GHz. For the devices, until
688 kHz, the impedance is very high, and then, with increase in frequency, the impedance decreases
significantly and again increases after 1 kHz. The response is similar to a series RLC circuit for DS
and GS terminals as expected. (The light blue colour graph shows the simulated response of the RLC
circuit. The dark blue graph with noise is the experimental measured response of the RLC circuit).

In Figure 11, there is a considerable difference (lengths a and b) between the simulation and VNA
measurement response. This can be attributed to the fact that the actual device parasitics are not only
composed of a series RLC structure. It is due to a parallel combination of other elements such as the
capacitor, as shown in the above figures.

In general, it is observed that, until 500 kHz, there is very high impedance and then the circuit
behaves inductive with self-resonant frequency at 29 MHz. The impedance response after around
370 MHz becomes dominated by the transmission line behaviour of the co-axial cable and PCB vias,
which is highlighted in Figure 11. This is due to the five-point model behaviour of the coaxial cable,
the details of which are outside the framework of this research work.

For Transphorm HEMT device, due to the two-device structure, the parasitic inductance is slightly
higher than Panasonic GIT. The values are much higher than GaN systems devices because both are
TO packaged devices. The PCB terminal inductance is also measured to account for the inductance
due to the track inductance and cable inductance. Based on the extracted impedance values in the ON
and OFF states, the behavioural model is framed based on extracting the inductance values. Then,
finding the capacitance from the resonant frequency of the curve, this is further simulated in LT-Spice
and tuned for the values of inductance to verify the accuracy.

The obtained values are plugged into Equations (1)–(3) to extract the aggregate inductance values
for all pairings of terminals. The inductances due to PCB are subtracted from the measured values and
the final results are presented in Table 2. The individual circuit inductance values are listed in Table 3.

Table 2. Measured lumped inductance of the terminals of the devices.

Combined Inductance (nH) LGD LDS LSG

Transphorm GaN HEMT (VNA) 7.45 4.99 5.04
Panasonic GaN GIT (VNA) 4.465 2.565 3.10

GaNSystems GaN HEMT (VNA) 3.02 1.880 2.76

Table 3. Derived inductance values of gate, drain and source terminals.

Inductance (nH) LG LD LS

Transphorm GaN HEMT (VNA)
Transphorm SPICE model

3.75
2.8

3.7
2.06

1.29
1.04

Panasonic GaN GIT (VNA)
Panasonic SPICE model

2.815
2.97

1.67
1.55

0.895
1.0

GaNSystems GaN HEMT (VNA)
GaNSystems SPICE model

1.04
NA

1
NA

0.67
NA

Based on the extracted impedance values in the ON and OFF states, the behavioural model is
framed based on extracting the inductance and capacitance values from the curve. This is further
simulated in LT-Spice and tuned for the values of inductances to verify the accuracy. Figure 11 shows
that the impedance response obtained for the experimental and simulated responses are in agreement.
This simplified behavioural model is then used in simulation to predict the effect of various parasitics
on the switching performance.

At low frequencies, reactance is very small and might be masked by capacitive reactance, which
makes the extraction challenging. At higher frequencies, there are errors caused due to text fixture and
calibration issues. For GaN, extraction is extremely complicated as inductances in the package are very
small (≤5 nH). This very small inductance is thus extremely susceptible to systematic errors introduced
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by poor calibration. Since the calibration standards used are not true open/shorts, scattering(s)
parameters can be applied to de-embed for validating the impedance measurements. However, here,
the extracted values are directly compared to the manufacturer model inductance values and found to
be very close and reasonable, as shown in Table 3.

4. Switching Tests: Double Pulse Test

To validate the model, the performance of the simulation using the proposed model was compared
with the performance of the commercial device using an experimental rig (DPT in this case). The test
rig is shown in Figure 12 and was supplied by Sanken Inc as part of our collaborative work with them.
This circuit can be customised to use TO and other SMD packages and is thus preferred for convenience
and flexibility. The supply voltages for gate drive are customised according to the specification and
structure of the GaN device under test.
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The test set up is as follows:

1. 500 V dc-bus, 15 A from inductive load
2. Customised measurement set-up
3. Agilent oscilloscope with double pulse signal from Agilent waveform generator
4. Electrical power from bench top power supplies

The device current measurement is done using a current probe. The voltage measurements were
checked using a precision probe. The circuit was tested using GaN Systems, Transphorm, Panasonic
and Sanken devices. Due to restricted access to the full datasheet and discrete Sanken devices, it is not
investigated further in this work. The switching characteristics for the devices tested are detailed in
the following sections:

4.1. GaN Systems GS66508B HEMT (650 V, 30 A, SMD Package)

Figure 13 shows the switching characteristics at 200 ns per division. After the initial start,
the switching voltage Vds rises sharply with a high dVds/dt around 10,000 V/s. Afterwards, there is
only a small overshoot with no considerable ringing. The current fall measured appears noisy due to
interaction of the measurement circuitry with other components on the board. There is a rise in the
Vds before turn OFF and is mirrored in the Vgs dropping. At turn ON, the current reaches its on state.
All throughout, the gate voltage remains fairly clean with only very small ringing.
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4.2. Panasonic GIT PGA26C09DV (600 V, 30 A, TO Package)

In Figure 14, at turn OFF, the dVds/dt is around 35,000 V/s with no overshoot. The current waveform
is free of very high frequency ringing and shows a sluggish fall. As the voltage rises and the free wheel
diode turns ON, the current falls rapidly. The gate waveform also falls rapidly with no much ringing.
At turn ON, the current rises very rapidly with a very small overshoot and the voltage then falls in
steps. The voltage and current capture is distorted due to measurement inconsistencies. The voltage
falls with an initial fast dVds/dt followed by a step fall.Electronics 2020, 9, x FOR PEER REVIEW 13 of 20 
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4.3. Transphorm Cascode GaN HEMT TPH3212PS (600 V, 30 A TO Package)

Transphorm is a cascode device, hence can be driven the same as a Si FET. However, since this
driver is made with the stringent gate voltage control, for using Transphorm, the gate voltage was
increased to +8 V. This caused some unexpected variation of gate voltage. In Figure 15, at turn
OFF, the dVds/dt is around 42,000 V/s, with a second-order response with overshoot and oscillations.
The current fall is rapid initially followed by a slow fall. The gate voltage has a very clear dip at turn
OFF before the voltage rise. This final stage is accompanied by a slow rise in the gate voltage. The gate
voltage continues to build up with a steep rise until the device is fully ON.
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5. Simulation of the Double Pulse Tests Using the Proposed Model and Manufacturer Model

For this research, the proposed behavioural model was demonstrated and validated by redesigning
the LT-Spice model provided by the manufacturer. The parameters of the existing model were
customised to bring the model into alignment with the extracted measurements. Figure 16a,b is a
replication of the simplified zero bias model of Figure 7. The manufacturer and proposed models are
both simulated in LT-Spice for comparison, as shown in Figure 16.Electronics 2020, 9, x FOR PEER REVIEW 14 of 20 
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Figure 16. (a) Proposed behavioural model for GaN HEMT; and (b) DPT simulation of the
proposed model.

6. Comparison of LT-Spice Simulation with DPT Output

First, we integrated the parasitic model with the existing manufacturer models of the device.
Then, an overlay of the simulation output from the manufacturer model, developed behavioural model
and experimental waveforms were compared for switching trajectories at 15 A and 500 V. The resulting
switching voltage, gate voltage and current comparisons are presented in the subsequent sections.

In Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, reasonable agreement is
noted between the simulated and experimental waveforms. The most significant switching characteristics
of the waveforms are reproduced in accordance with the experimental waveforms. Specifically,
the voltage switching transition rates appear to be in good conformity. These results suggest that the
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critical parasitic impedances are reasonably well-matched. The simulation current, on the other hand,
is not always well matched to experimental waveforms. As shown in the figures, the measurement of
current was not accurate due to noise interference. This makes the simulated current waveforms of the
proposed model and manufacturer model slightly different from the experimental values. Based on
the waveform simulation time, repeatability comparison and by measuring the distance between
the voltage waveforms for devices, accuracy of the proposed model is determined. It is based on
the similarity of the proposed model switching waveforms to the expected experimental waveforms.
The difference in the distance is calculated and accuracy determined.Electronics 2020, 9, x FOR PEER REVIEW 15 of 20 
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6.1. GaN Systems GaN HEMT

For the GaN systems device, the switching voltages of the proposed model are in good agreement
with the experimental results, as seen in Figure 17. This is specifically true for the transient and
oscillations during turn OFF instants. In addition, towards turn OFF, it follows the experimental
voltage waveform very closely.

The gate voltage in Figure 18 is relatively clean which is possibly because measurement of gate
voltage was not accurate. The manufacturer and proposed model showed more ideal characteristics.
The switching current measurement suffered from noise can be seen in Figure 19. However, the overall
proximity of the proposed model to the experimental waveforms shows that the behavioural model is
nearly accurate.

6.2. Panasonic GaN GIT

For the Panasonic device, the switching voltages of the experimental model were in steps during
turn ON due to the influence of the switching current deviation and noise. As shown in Figure 20,
the proposed model was in good agreement with the experimental results, especially during turn OFF
and turn ON instants. In addition, towards turn OFF, it follows the experimental voltage waveform
very closely.

The gate voltage shown in Figure 21 is noisier for this device due to customisation of the gate
circuitry. Using external elements in the PCB has caused it to oscillate due to the parasitic inductances
of the connections and the external board.

The switching current shown in Figure 22 is in close agreement and there was no significant
deviation from the experimental results. Furthermore, the behaviour of the proposed model is similar
to the experimental waveforms; however, during turn ON and turn OFF instants it is deviating
from ideal.

6.3. Transphorm Cascode GaN HEMT

As shown in Figure 23, the gate voltage was very noisy for this device due to customisation of the
gate circuitry using external elements added to the PCB which has caused it to significantly oscillate
due to the parasitic inductances of the connections and the external board introduced to increase the
positive input voltage to +8 V as the gate circuitry was designed in the range of 4.5–5 V.

7. Discussion

1. The measurement using VNA is relatively straightforward and does not require an accurate
understanding of the packaging or structure of the device.
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2. It is noted that the measured package parasitics are as expected higher than the supplied
manufacturer model values specified in the LT-Spice models.

3. The demonstrated model is simple, approximate and satisfactorily mimics the actual switching
behaviour of the device. It can be seen from the results that the dynamic response of the modelled
GaN devices are very similar to the experimental ones.

4. The fluctuation and abnormality in current is caused by the noise associated with the measurement
circuitry due to interference with the surrounding circuitry. This ringing is considered to be a
measurement error due to the rapid changes in voltage and current during switching. This could
not be replicated in the simulation properly and so there is a mismatch in the measured and
simulated device switching currents. The Transphorm gate voltage variation is noisy due to the
customised gate drive circuitry inductance.

5. From this work, it is concluded that a simple behavioural model for different GaN devices can be
built using extracted parasitics from the VNA measurements. The proposed behavioural model
shows very close characteristics to the actual working of the GaN device when employed in a
power circuit. The observed variation of the proposed model from the actual device is due to
the practical inability to precisely measure impedances and simulate parasitics. Nevertheless,
this model is a best approximation for a simple GaN behavioural model.

6. This proposed behavioural model is dependent on the measurement circuitry, PCB inductance,
calibration errors of the VNA and human errors. To further improve accuracy and capture the
response of the GaN power device more accurately, we explored the use of ML techniques to
build realistic GaN models. These models can mimic the switching performance of the GaN
power devices with great accuracy and fidelity.

8. Conclusions, Limitations and Future Work

Behavioural modelling, parasitic quantification and operation at higher switching frequencies
were identified as the major barriers to commercial adoption of GaN at application level. To solve this
issue, a simple behavioural model of GaN HEMT is developed by extracting impedances using a Vector
Network Analyser. This is a practical approach to GaN power device modelling using techniques
borrowed from RF space.

A comparison of the switching performance of the developed model, the manufacturer model
and experimental findings show that the proposed model is simple, practical and fast. However,
because of the time involved in parasitic extraction, the complexity of the analytical procedures and
the dependency on human and measurement errors, the proposed behavioural model is not suitable
to validate all applications. Hence, this cannot serve as a universal model for GaN. Thus, the need
for a unified GaN behavioural model which is an accurate replica of the actual device dynamics was
identified. An ML-based universal GaN model was developed as future work to solve the limitations
of this proposed model [37]. Nevertheless, the proposed GaN model based on RF techniques can serve
as the best candidate for a practical simulation design and can be used in conjunction with the existing
LT-Spice models.
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