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Abstract: A model-independent control strategy called high-order differential feedback control
(HODFC) is applied to a quadrotor unmanned aerial vehicle (QUAV) based on a semi-autopilot indoor
optical positioning system. The affine system form of the quadrotor model is provided to facilitate
the design of the HODFC. A fifth-order high order differentiator (HOD) is introduced to estimate
with high precision the derivatives of the reference input and the QUAV system’s states. A filtering
signal of the control output is incorporated in the control law to overcome the system model’s
unknown part in the HODFC scheme. The stability of both the HODFC and the HOD are proved.
The physical and straightforward parameters are provided to make the HODFC scheme for the
QUAV easy to operate. The real-time trajectory tracking experiments with varied reference trajectories
and disturbances are carried out to illustrate the superior performance of the HODFC versus the
proportional-integral-derivative (PID) method, in terms of the mean of absolute error, the integral of
absolute error and the integral of the time-weighted absolute error. The results also demonstrate that
the HODFC has superiority in static and dynamic trajectory tracking, especially when the system
is disturbed.

Keywords: quadrotor UAV; high order differential feedback control (HODFC), model-independent
control; trajectory tracking; disturbance suppression; semi-autopilot experiment

1. Introduction

Quadrotor flying platforms are a class of unmanned aerial vehicles (UAVs) that have been
widely applied in exploration [1,2], transportation [3], cooperative pursuit [4], and so on. It is
challenging to design a reliable controller for quadrotors because of their under-actuated, nonlinearity,
strong coupling, static instability and abundant dynamic behavior in the attitude system [5]. At present,
the control strategies applied to the quadrotor are mainly divided into model-dependent control
and model-independent control [6]. Model-dependent control mostly requires knowing the exact
mathematical model of the system. The sliding mode control (SMC) is a typical method based on
the system model. Mu et al. [7] investigated a novel integral SMC strategy for waypoint tracking
control of a quadrotor. Tian et al. [8] proposed a multivariable super-twisting-like algorithm for
arbitrary order integrators. A robust nonlinear control method was provided by Liu et al. [9] with
the quaternion representation. The problem is that in actual engineering, the accurate mathematical
models of the systems cannot be obtained because of the unmodeled dynamics, uncertainties and
unknown disturbances, such as wind disturbance, actuator failure and configurations of bobweight.
These factors make the model-dependent control algorithm more complicated and challenging to apply
and popularize in practical engineering.
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The classic PID controller is a typical model-independent control. Salih et al. [10] designed a PID
controller to realize the steady flight of a quadrotor in 3D space. Salvador et al. [11] optimized the PID
parameters by a nonlinear scheme to reduce the steady-state error. With the development of the related
theory of intelligence, many new controllers were designed, such as the expert system PID controller [12],
the fuzzy PID controller [13] and the neural network PID controller [14]; these overcome the deficiency
of the classic PID controller and achieve a better control effect. Another popular model-independent
control strategy is active disturbance rejection control (ADRC), which was proposed by Han [15] and
modified by Gao using a linear form [16]. The ADRC has significantly contributed and enriched
control theory in terms of anti-disturbance and application when there is an unknown model. It has
been successfully applied to some industrial control processes [17,18]. The ADRC usually uses the
extended state observer (ESO) to estimate model function, and then a stable closed-loop system
based on the ESO is designed [19]. Zhao and Guo [20] established conditions that guarantee the
ADRC achieves closed-loop system practical stability, disturbance attenuation, and practical reference
tracking. Yang et al. [21] designed an inner-loop controller with the ADRC method and analyzed
the quadrotor’s stability under gust wind conditions. Li and Chen [22] designed a reduced-order
ADRC; simulation and Qball2 platform experiments were carried out to verify the effectiveness and
superiority of this method. Chen et al. [19] summarized the latest research progress of ADRC in theory
and application in recent years and made a prospect for subsequent research.

In addition to the above control methods, another model-independent control called the high order
differential feedback control (HODFC), based on the high order differentiator (HOD), was proposed
by Qi et al. [23,24]. The HODFC method only utilizes the output and reference input of the system.
The HOD was designed to estimate the different order differentials of the input and output signals of
the system. These extracted derivatives of output are observed states of the system, so they are essential
information. The HODFC uses the different orders of derivative errors of the given input and output to
design a pole-assignment controller without using the model function of the nonlinear system with
disturbance. The unknown model is indirectly obtained through a controller filter; even for some
strong coupling, nonlinear systems, the compensation accuracy of the unknown part can be guaranteed
by adjusting the filter parameter. The HODFC scheme has proved to be an effective solution in control,
synchronization and estimation studies [25–29]. Xue et al. [25] utilized the HODFC method to control
the DC-bus voltage in the active power filter and obtained strong adaptability and robustness in the
simulation environment. Du et al. [26] used a hybrid HOD active control method to synchronize chaotic
systems. The HODFC method is a superior control strategy for practical engineering applications,
such as for a flexible-joint manipulator, a Stewart platform and an automatic voltage regulator (AVR)
system, as can be found in [30–33].

The HODFC is a suitable control scheme for high-order nonlinear systems with unknown models
and disturbances. However, the HODFC has never been applied in the control of a quadrotor for
tracking trajectories to perform an experimental test.

In this paper, a 6-DOF quadrotor model is introduced. According to semi-autopilot characteristics,
the model is reasonably converted to facilitate the design of the controller. An indoor optical positioning
system platform is established to support the experiments. The HODFC acts as a position controller
to control the spatial position and yaw attitude angle of the quadrotor. This paper analyzes the
performance and interference suppression of the designed HODFC method in detail by a series of
trajectory experiments and provides comparative experiments. Because the mathematical model of the
experimental quadrotor cannot be accurately determined, some model-dependent controls (such as
the SMC) cannot be well applied to the comparative experiments, so the classic PID method is chosen.
The HODFC provides a new model-independent control strategy. The research in this paper shows
that HODFC has great potential application value for controlling complex systems with uncertain
systems in actual engineering.

The main differences between the HODFC method and the ADRC method are as follows:
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(1) The HOD accuracy in estimating the derivatives and model function is higher than the ESO
accuracy because of the higher-order filtering property and derivative form, which will be
explained in the main text.

(2) The ADRC uses the ESO to estimate the unknown model. The HODFC designs a control filter for
estimating the unknown model. Because the system satisfies u = y(n) − f , once y(n) is estimated
using the HOD, the control quantity contains the unknown model information f . Because the
control input u is unresolved, it cannot be used, so we design a control filter to obtain û to replace u.
Thus, the unknown model can be estimated indirectly. This method is different from the ADRC;
still, it can overcome the problem of unknown function and disturbance.

This paper is organized as follows: The dynamic model of the quadrotor is introduced in Section 2.
Section 3 details the control development. Results of real-time trajectory tracking experiments and
evaluation of numerical performance are illustrated in Section 4. Finally, some concluding remarks are
included in Section 5.

2. Quadrotor Model

There are two coordinate systems, the local north, east, down (NED) frame {E} =
{
xe, ye, ze

}
for

translation and the body frame {B} =
{
xb, yb, zb

}
for rotation. The quadrotor structure and the two

coordinate systems are shown in Figure 1, where x, y, z represent the translational displacement in
each direction, φ, θ, ψ (the Euler angles corresponding to roll, pitch and yaw), respectively [34,35].
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obtain û  to replace u . Thus, the unknown model can be estimated indirectly. This method is 
different from the ADRC; still, it can overcome the problem of unknown function and 
disturbance. 

This paper is organized as follows: The dynamic model of the quadrotor is introduced in Section 
2. Section 3 details the control development. Results of real-time trajectory tracking experiments and 
evaluation of numerical performance are illustrated in Section 4. Finally, some concluding remarks 
are included in Section 5.  

2. Quadrotor Model 

There are two coordinate systems, the local north, east, down (NED) frame { } { }, ,e e eE x y z=  for 

translation and the body frame { } { }, ,b b bB x y z=  for rotation. The quadrotor structure and the two 
coordinate systems are shown in Figure 1, where , ,x y z  represent the translational displacement in 
each direction, , ,φ θ ψ  (the Euler angles corresponding to roll, pitch and yaw), respectively [34,35]. 

 

2Ω1Ω

4Ω
3Ω

East

North

Earth

Quadrotor

ex

ey
ez

eo

bx

by

bz

bo

φ
θ

ψ

 
Figure 1. Schematic view of the quadrotor unmanned aerial vehicles (QUAV). 
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Figure 1. Schematic view of the quadrotor unmanned aerial vehicles (QUAV).

According to Newton’s second law and the Euler moment of momentum equation, referring
to [5,22,36,37], the complete dynamic model of a quadrotor is represented as follows

..
x = 1

m

[
−(cosφ sinθ cosψ+ sinφ sinψ)F + k1

.
x
]
+ dx,

..
y = 1

m

[
−(cosφ sinθ sinψ− sinφ cosψ)F + k2

.
y
]
+ dy,

..
z = 1

m

[
−(cosφ cosθ)F + mg + k3

.
z
]
+ dz,

..
φ = 1

Ix

[(
Iy − Iz

) .
θ

.
ψ+ τx − k4

.
φ
]
+ dφ,

..
θ = 1

Iy

[
(Iz − Ix)

.
φ

.
ψ+ τy − k5

.
θ
]
+ dθ,

..
ψ = 1

Iz

[(
Ix − Iy

) .
φ

.
θ+ τz − k6

.
ψ
]
+ dψ,

(1)

where m is the mass of the quadrotor, g is the acceleration of gravity, Ix, Iy, Iz are the moments of inertia
of the quadrotor, ki(i = 1, · · · , 6) are the air resistance coefficients, d is the unmodeled dynamics
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or external interference, where dφ, dθ at least include the neglected gyro effect, respectively, and the
terms dx, dy, dz, dψ contain gust disturbance. The terms F, τx, τy, τz denote the total thrust and three
torques produced by the four rotors, respectively, and are expressed as

F = cT(ω
2
1 +ω2

2 +ω2
3 +ω2

4),

τx =
√

2
2 lcT(ω

2
1 −ω

2
2 −ω

2
3 +ω2

4),

τy =
√

2
2 lcT(ω

2
1 +ω2

2 −ω
2
3 −ω

2
4),

τz = cM(ω2
1 −ω

2
2 +ω2

3 −ω
2
4),

(2)

where l is the length between the center of the aircraft and the rotor, cT, cM are constants, called the
lift coefficient and inverse torque coefficient, respectively, which can be determined experimentally,
and ωk(k = 1, 2, 3, 4) are the angular velocities of the propellers.

3. HODFC Scheme for QUAV

3.1. Quadrotor Control Structure with Semi-Autopilot

For a quadrotor, it is generally necessary to design a controller to directly control the rotation
speed of the propeller ωk(k = 1, 2, 3, 4), and to generate a thrust and three moments to realize the
position and attitude control. However, it is difficult for most researchers to build an autopilot from
the underlying motor control. At present, many teams and companies have developed open-source
semi-autopilots, such as Pixhawk and DJI. Therefore, research based on the existing semi-autopilot
shall be conducted. One aspect of this work is to verify the new control theory; another aspect is
the requirement to avoid the difficulty of directly modifying the underlying source code of the flight
controller. The control structure of the quadrotor with a semi-autopilot is shown in Figure 2. The control
command uT, uψ, ux, uy can directly control the following variables of the quadrotor: vertical speed
vz, yaw angular velocity vψ, horizontal velocity vx and vy, respectively. These variables further control
the position and yaw angle of the quadrotor. Each channel from the control command uT, uψ, ux, uy to
the variables vz, vψ, vx, vy, respectively, is stable because the semi-autopilot’s controller has dampers
designed for these channels, making the quadrotor easy to control. However, each channel from the

variable vx, vy, vz, vψ to the position x=
[

x y z
]T

and yaw angle ψ, respectively, of the quadrotor
is open-loop, so an additional position controller must be designed to complete the following tasks:

for a given expected trajectory xd =
[

xd yd zd
]T

and expected yaw angle ψd, make the system
satisfy lim

t→∞
xd = x and lim

t→∞
ψd = ψ.
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Figure 2. Closed-loop block diagram of position control based on semi-autopilot.
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3.2. HOD Design

The HOD and HODFC are designed based on time-varying single input single output (SISO) affine
nonlinear systems with unknown models [23,24,38]. For the development of the HODFC controller
of the quadrotor, its dynamic model must be expressed in an affine form. According to Equation (1),
the quadrotor system can be divided into height, yaw and horizontal position channels, whose kinetics
are expressed as:

..
z = f (z, t) + uT, (3)
..
ψ = f (ψ, t) + uψ, (4) ..

p = f (x, y) ·Θ,
..
Θ = f (φ, θ, t) + uω.

(5)

where p =
[

x y
]T

, Θ =
[
φ θ

]T
and uω =

[
ux uy

]T
. The term f (·) represents the total

disturbance, including the coupling term, external disturbances, the known model and unknown
uncertainties corresponding to each channel. From another aspect, f (·) is the dynamic characteristics
of the system, which may be time-varying or nonlinear. In the design process of HODFC, there is
no need to know any information about f (·), but indirectly f (·) has compensation through a filter
module. For example, for the height channel of Equation (3), combining the third formula in Equation
(1), f (·) = (k3

.
z− (cosφ cosθ)F)/m + g + dz − uT, −uT is also regarded as part of the total disturbance

to ensure the correctness of Equation (3). The simplified processing of the model described here is to
introduce the design process of the controller, while there is no information related to the model in the
final control law.

The HOD is designed to observe the states of the system. The HOD can take any order no > n,
where n = 2 is the order of the controlled quadrotor system. The measured output signal often contains
some noise, so we need a filtering process before extracting its derivative. Essentially, the order of
HOD also represents the number of integrators used in the design process. The greater the number of
integrators, the smoother the derivatives extracted. For instance, if we need to extract the second-order
derivative, at least a third-order HOD is needed. If the input signal is the first-order differentiable,
when it feeds to one integrator, the output becomes the second-order differentiable. Even if the
measured signal contains some noise, it becomes sufficiently smooth after feeding to many integrators.
In HODFC design, only the second-order derivatives are needed, but the 5th HOD was selected for
smoother derivatives, that is, no= 5.

We take the height channel, Equation (3), as an example to introduce the design process of the
HOD. The dynamic equation of the HOD can be expressed as

∑
1

:



.
x1 = x2 + l1(z− x1),
.
x2 = x3 + l2(z− x1),
.
x3 = x4 + l3(z− x1),
.
x4 = x5 + l4(z− x1),
.
x5 = l5(z− x1),

(6)

where z is the feeding signal, and xi, i = 1, · · · , 5 are the states of the constructed system
∑

1. The HOD
function obtains the tracking signal and then obtains ẑ2, ẑ3 as the estimates of the derivatives

.
z

and
..
z, respectively. Figure 3 is the block diagram of the HOD. It can be seen that state x2 is not the

derivative of ẑ1 (i.e., x1), and x3 also is not the derivative of x2. The next step is to make the following
observation equation 

ẑ1 = x1,
ẑ2 =

.
x1 = x2 + l1(z− x1),

ẑ3 =
.
x2 = x3 + l2(z− x1),

(7)
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where ẑ1, ẑ2, ẑ3 denote the observations of z,
.
z,

..
z, respectively. From Figure 3, when x1 tracks the

input signal z, the best observation of
.
z is the derivative of

.
x1, which locates at the point labeling ẑ2 =

.̂
z.

In the same way, taking point
.̂.
z is located. Thus the HOD satisfies

.
ẑ1 = ẑ2, that is a derivative form to

ensure accuracy.
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The parameters li(i = 1, · · · , 5) in the HOD are designed to make
∑

1 stable according to the root
locus of the system [38].

There are too many parameters, li(i = 1, · · · , 5), in the HOD, so we simplify it to have only
one parameter. Taking the Laplace transform for both sides of Equation (6), the closed-loop transfer
function from z to x1 is obtained as follows:

T(s) =
l1s4 + l2s3 + l3s2 + l4s + l5

s5 + l1s4 + l2s3 + l3s2 + l4s + l5
. (8)

The open-loop transfer function is

G(s) =
l1s4 + l2s3 + l3s2 + l4s + l5

s5 . (9)

Viewed from the structure of Figure 3 and considering the result of the open-loop transfer function,
the HOD is a Type V servo system. If the input z is a non-triangle signal, it can realize tracking without
static error, and even if it is a sinusoidal signal, the high accuracy of estimation can be guaranteed.
Equation (9) is the open-loop transfer function having four open-loop zeros. As long as the open-loop
zeros of the closed-loop system are located in the left-half plane of the complex plane, poles of the
closed-loop poles will also locate on the left-half plane when the gain is adjusted in a certain range.
The gain can be found by locating the closed-loop poles on the negative real axis’s breakaway point.
To keep

∑
1 stable and without loss of generality, let all zeros be the same negative real number −a;

in this way, the number of HOD parameters is reduced to 1. Then Equation (9) can be rewritten as

G(s) =
L(s + a)4

s5 . (10)

Once L is selected properly, li can be calculated; the root-locus method is used to obtain it.
From Equation (8), the breakaway point of the root-locus can be calculated as s = −noa = −5a, and it is
chosen to be a pair of closed-loop poles on the negative real axis. According to the amplitude condition

L

n0−1∏
j=1

∣∣∣s− z j
∣∣∣

n0∏
i=1

∣∣∣s− pi
∣∣∣ = 1, (11)
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where z j = −a is the open-loop zero and pi = 0 is the open-loop zero and is the open-loop pole.
Substituting s = −noa = −5a into Equation (11), we obtain

L =

no∏
i=1

∣∣∣s− pi
∣∣∣

no−1∏
j=1

∣∣∣s− z j
∣∣∣ =

nno
o a

(no − 1)(no−1)
. (12)

Then from Equations (9), (10) and (12), we have

li = LCi−1
n0−1ai−1, i = 1, · · · , 5, no = 5. (13)

The symbol C denotes the combination with Ck
n = n!/k!(n− k)!. Usually, a is chosen in the range

of a ∈ [2, 30], depending on the accuracy requirement. Taking a = 3 as an example, the root locus of
the fifth-order HOD is shown in Figure 4. From Equation (10), system

∑
1(HOD) has five root loci.

The breakaway point s = −15 is chosen as a pair of closed-loop poles, then L ≈ 36.6. All the closed-loop
poles are marked with “×” in Figure 4; they are all located on the left-half plane. In fact, no matter how
the gain L changes, the three root loci marked as red, blue and green are always in the left-half plane.
Since all the poles of the closed-loop HOD are located in the left-half plane, the HOD is stable.
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Figure 4. Root loci of the fifth-order HOD (a = 3).

The parameter a > 0 guarantees that HOD is an asymptotically stable system and satisfies
convergence [23,24]. The parameter is independent of the system, which means that it can be tuned
easily. To avoid the peaking pulse in the initial dynamic process, a restraint device [23,24] is added in
Equation (7). The amended HOD observation equation is written as

ẑ1 = x1,
ẑ2 =

.
x1σ1(t) = (x2 + l1(z− x1))σ1(t),

ẑ3 =
.
x2σ2(t) = (x3 + l2(z− x1))σ2(t),

(14)

where

σi(t) =
(1− exp(−βt2i))

(1 + exp(−βt2i))
, i = 1, 2, (15)

where σi(t) is called a restraint function and β is set to be 100. Note that the restraint equation only
takes effect in the initial time where σi(t) ≈ 0, and after this moment σi(t) ≈ 1. The block diagram
representation of the amended HOD is demonstrated in Figure 3, where the ẑ,

.̂
z,

.̂.
z are the HOD
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output and are also the observation values of z,
.
z,

..
z. ẑ1, ẑ2, ẑ3 are the modified observation values for

estimating z,
.
z,

..
z. In the same way, we can design HOD to extract derivatives for a given reference

input position zr.

Remark 1. The HOD can extract the derivatives of a signal. The advantage of the HOD is as follows:

(1) It has a filtering process because the number of integrators is more than the order of the extracted derivatives.
(2) It has the derivative form, thereby having higher estimation accuracy.
(3) It is simple, with only one parameter to adjust.
(4) It is stable.

3.3. HODFC Design

As demonstrated in Figure 5, the HODFC scheme consists of three main parts, i.e., the HOD,
the control gain K, and the controller filter.
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Denote the errors as e1 = zr − z, e2 =
.
zr −

.
z and e3 =

..
zr −

..
z, and denote the error vector e = [e1, e2]

T,
and the extended error vector e = [e1, e2, e3]

T. Combining Equation (3), the system error equation can
be expressed as { .

e1 = e2,
.
e2 = e3 = −k2e1 − k1e2 + (k2e1 + k1e2 + e3 +

..
z− ( f (z, t) + uT)),

(16)

where k2, k1 are the parameters in gain K. Equation (16) can be converted to Equation (17)

.
e= Ame + B(Ke +

..
z− ( f (z, t) + uT)), (17)

where

Am =

[
0 1
−k2 −k1

]
, B =

[
0
1

]
, K = [k2, k1, 1].

If we want to keep the closed-loop system stable, Am should satisfy the Hurwitz matrix,
and make K, the polynomial s2 + k1s + k2 be a Hurwitz polynomial. The pole arrangement structure
is the most distinctive part of the HODFC. For instance, if the desired poles of the closed-loop
system is si = −λi(λi > 0), i = 1, 2, then the characteristic equation is s2 + (λ1 + λ2)s + λ1λ2= 0,
so k1 = λ1 + λ2, k2 = λ1λ2. In the actual design process, the values of k1, k2 are calculated by selecting
the appropriate poles. At the same time, the K value can be reduced by an equivalent multiple to avoid
excessive gain. For the stability of the closed-loop system, Equation (18) is necessary

Ke +
..
z− ( f (z, t) + uT) = 0, (18)
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then, we have
uT= Ke +

..
z− f (z, t), (19)

while f (z, t) are the terms relating to the system model and total perturbation, which cannot be
determined exactly, and

..
z− f (z, t) is unknown. However, from Equation (3), we have

..
z− f (z, t) = uT, (20)

thus uT contains both information f (z, t) and
..
z, but uT is underdetermined, so uT is replaced with ûT,

the estimate of uT. Although uT is underdetermined, the last instant uT was calculated. Because filter
has a lag property, we design a filter as

ûT=
λ

s + λ
uT, (21)

thus, the problem of underdetermined control is solved.
Equation (21) is the controller filter, where λ is the filtering factor. The controller filter is globally

uniformly stable and the value of ûT approaches uT when λ→ +∞ , that is, lim
λ→∞

ûT = uT. Then,

from Equations (19)–(21), we get the control law of HODFC

uT = Ke + ûT, (22)

and substituting Equations (3) and (22) into Equation (17), we have

.
e= Ame + B(uT − ûT). (23)

from Equation (23), the unknown function and disturbance are indirectly counteracted by the filtering
term ûT for lim

λ→∞
uT − ûT = 0.

The term Am is a Hurwitz matrix and Equation (21), the closed-loop control system is asymptotically
stable and satisfies

lim
t→∞

lim
λ→∞

e = 0. (24)

In practice, for the HODFC implementation, the error states e used are obtained as estimates ê
from the HOD. Then the final HODFC law based on HOD can be obtained, and there is no information
related to the system model

uT = Kê + ûT. (25)

Remark 2. The HODFC of Equation (25) has the following advantages:

(1) It does not rely on the system model and disturbance.
(2) It makes the closed-loop system stable and behave in the desired assigned poles.
(3) The control filter is designed to compensate for the unknown nonlinear model and disturbances.

From Figure 2, the control input uT, uψ, ux, uy are needed to design successively using Equation (25).
Hence, in total, four HODFC controllers are needed to control the quadrotor system, and each HODFC
contains two HODs. Although the controlled system is nonlinear and unknown, we use ûT to replace
uT through Equation (21), and the convergence is affirmed by lim

λ→∞
ûT = uT. Therefore, the nonlinear

and unknown problem is compensated or solved, and the total closed-loop system operates linearly
with the desired poles. In practice, the filtering factor λ is not necessarily large but is within the scope
λ ∈ [5, 50] accordingly.
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4. Experimental Results

To verify the effectiveness of the HODFC, a physical experiment was carried out by using the
indoor optical positioning system platform shown in Figure 6. The experimental setup consists of a
miniature quadrotor, eight optical cameras, wireless routers and switches, and two personal computers
as the ground control station. The quadrotor used for the experiment (shown in Figure 7) is a ZY-B/P
type provided by Beijing Zhuoyi Intelligent Technology Co., Ltd. Four photosensitive balls attached
to the fuselage reflect infrared light from the optical cameras and can be located by the positioning
system. The quadrotor attitude and position data are transmitted back to the ground control station
via wireless routers and switches to form an entirely closed-loop system.
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It should be noted that the flight mission is completed in the ground control station, including the
design of the HODFC and the tuning of parameters. The quadrotor only has a tiny size, although we
can roughly measure the mass of the quadrotor and the length between the center of the quadrotor
and the rotor, the exact values of the moments of inertia, the air resistance coefficient, lift coefficient
and inverse torque coefficient are unknown. The accurate mathematical model of the experimental
quadrotor cannot be determined, therefore, a PID controller is selected for the comparison experiment.
The sliding mode, back-step, or robust control are model-dependent. Although these methods are
allowed to have uncertainty and disturbance under some assumptions, at least the normal part must
be known, so they cannot be tested for this experiment and the unknown model. However, the PID
and the HODFC can be used because they just need tuning of the parameters.

Three different sets of experiments are performed to show the control performance of HODFC on
the static trajectory, dynamic trajectory and external disturbance. At the same time, the PID comparison
experiments are performed. The HODFC and the PID parameters are selected carefully based on a
trial and error method, to achieve the best control effect possible, which are listed in Tables 1 and 2,
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respectively. Simultaneously, the idea of the pole assignment structure is also applied to the HODFC
parameters determination process. For example, the pole of gain of the x position is selected as

λ1 = −1.2358, λ2 = −0.1615, and height λ = −0.5; the value of
¯
K can then be obtained by scaling the

gain multiple. It is noted that the yaw and height are independent channels, and the second-order
derivative information is removed to avoid noise interference caused by high-order derivative
information. All the parameters remain unchanged during the experiment. Both the HODFC and the
PID controllers are model-independent.

Table 1. The values of parameters of the HODFC.

Parameter Yaw Height x Position y Position

K [0.07, 0.12, 0] [0.1, 0.2, 0] [0.01, 0.07, 0.05] [0.01, 0.07, 0.05]
a 5 7 5 5
λ 30 15 25 25

Table 2. The values of parameters of the proportional-integral-derivative (PID).

Parameter Yaw Height x Position y Position

Kp 1 2 0.8 0.8
Ki 0.2 0.2 0.04 0.04
Kd 0.05 0.01 0.18 0.18

To make the experiment results more convincing, the numerical performance metrics are presented.
The obtained error signals are used as the difference between the reference trajectory and the actual
trajectory, to calculate a numerical performance index. The error-based performance metrics are

MAE =
1
n

n∑
i=1

|ei|, (26)

IAE =

∫ t

0

∣∣∣e(t)∣∣∣dt, (27)

ITAE =

∫ t

0
t
∣∣∣e(t)∣∣∣dt. (28)

where n denotes the number of collected data, f = 120 Hz is the sampling frequency of the experimental
device, t is the time, and e(t) is the trajectory tracking error at time t. MAE, IAE and ITAE stand for the
mean absolute error, integral of absolute error and integral of time-weighted absolute error, respectively.

4.1. Static Trajectory Tracking

The effectiveness of both the HODFC scheme and the PID controller for a static trajectory in
height and yaw channel are analyzed in this subsection. The reference trajectories of height and
yaw are defined as zr = 0.7 m and ψr = 0.2 rad for t ∈ [0, 60] ( s). The tracking responses of the
quadrotor tracking trajectory obtained using the two controllers are shown in Figures 8 and 9. As can
be seen from those two figures, overshoot occurs in the PID controller response, while the HODFC
scheme not only well suppresses the occurrence of overshoot, it also has less settling time than that
of the PID. A small fluctuation in the PID scheme occurs around 20 and 50 s without any external
interference in the dashed box of Figure 9. The tracking errors and control output, i.e., uT, uψ are given
in those figures as well. It can be seen that both control output values and errors stay within reasonable
ranges. The numerical performance metrics are listed in Table 3. The HODFC scheme has a smaller
performance metric compared with the PID. The improvement ratio between the PID and the HODFC
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more intuitively show the difference between the performance of the two control strategies. The bigger
the ratio, the better the control effect of the HODFC relative to the PID.
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Table 3. Numerical performance metrics of the static trajectory.

Controller MAE IAE ITAE

Height with fixed value

HODFC 0.0223 1.3376 9.6850

PID 0.0238 1.4273 17.9791

Improvement Ratio 1.6073 1.0671 1.8564

Yaw with fixed value

HODFC 0.0052 0.3087 2.2582

PID 0.0055 0.3311 6.5964

Improvement Ratio 1.0577 1.0726 2.9211

4.2. Dynamic Trajectory Tracking

The maneuver flight experiments are carried out in this subsection. The reference trajectories of
height and yaw are defined as zr = 1 + 0.3 sin(0.4t) m and ψr = 0.25 sin(0.5t) rad for t ∈ [0, 60] ( s).
The results of the dynamic tracking trajectory are shown in Figures 10 and 11. The height and yaw can
be achieved by both methods, and the tracking errors are driven into a small region around zero by
the HODFC scheme. However, the tracking errors with PID control in the dynamic process performs
poorly as there is always a large delay between the actual trajectory of the quadrotor and the reference
trajectory. It can also be seen from the control output that the PID control output lags behind the
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HODFC control output, which results from the condition that the quadrotor is not sensitive enough to
the change of trajectory.
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For the spatial plane trajectory tracking, the quadrotor tracks a circle in the x-y plane,
the radius of the tracked circle is set as 1.8 m, and the reference trajectory equation is expressed
as xr = 1.8 sin(0.4t) m, yr = 1.8 cos(0.4t) m, zr = 1 m for t ∈ [0, 100] ( s). The obtained results are
illustrated in Figure 12 where the black circle denotes the reference track. Compared with the blue
trajectory controlled by the PID, the red trajectory controlled by the HODFC is closer to the reference
trajectory, and there is no overshoot in the y direction in the initial dynamic process. The 3D trajectory
tracking is shown in Figure 13. To show the spatial plane trajectory in more detail, the position,
error and control output of the x and y directions are given in Figures 14 and 15, respectively. Obviously,
there is always much more error between the blue curve obtained by PID control and the black reference
curve, which means that the PID control cannot achieve a good performance in maneuvering flights.
The large error in the PID control is still caused by the lag of the control output. In comparison, the red
curve executed by the HODFC can track the trajectory with a smaller error. The control output is
also kept within a reasonable range, which means less damage to the actuator. In dynamic tracking
experiments, the HODFC can react faster to trajectory changes, thereby exhibiting higher control
accuracy. The performance of the HODFC is significantly improved over that of the PID. The numerical
performance metrics in Table 4 also show that the HODFC scheme has excellent performance with the
improvement ratios of around 2 to 5 with respect to the PID method.
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Table 4. Numerical performance metrics of the dynamic trajectory.

Controller MAE IAE ITAE

Height with a sinusoidal function

HODFC 0.0538 3.2279 89.2979

PID 0.0977 5.8636 179.4122

Improvement Ratio 1.8160 1.8165 2.0091

Yaw with a sinusoidal function

HODFC 0.0238 1.4290 37.6433

PID 0.1059 6.3561 191.7916

Improvement Ratio 4.4496 4.4479 5.0950

Spatial plane trajectory

HODFC 0.3243 32.4210 1.3776 × 103

PID 0.7197 71.9629 3.3282 × 103

Improvement Ratio 2.2192 2.2196 2.4159

4.3. Experiments with Disturbance

The ability of interference suppression is an essential indicator of a controller. In this case, the primary
purpose is to prove the interference suppression performance of the HODFC on a quadrotor. After the
quadrotor has stabilized for a while, we touched the quadrotor’s fuselage with a pen to change its height
or attitude. The results of the experiment with human disturbance are provided in Figures 16 and 17.
From these figures, the HODFC method quickly drives the quadrotor to the preset height or angle after
the disturbance occurs, and the steady-state error is close to zero. The output value of the controller is
also adjusted to prevent external interference. During quadrotor flight, its attitude is susceptible to
gusts. Therefore, we designed additional wind disturbance experiments for the yaw channel. After the
yaw angle has stabilized, a small electric fan is used to blow the quadrotor with the same wind speed
and angle. Figure 18 shows the experimental trajectory tracking results, errors and control output.
Table 5 shows the calculated numerical results. The improvement ratios of the HODFC to the PID
are around 1.8–3.4. As the gusts continued, the quadrotor angle with the HODFC trembled sharply,
but remained near the set value. When the gusts disappear, the state of the quadrotor quickly stabilizes
with little error. In contrast, for the PID controller, the fuselage has a huge shake when gusts occur
and disappear, which means that the PID control is very sensitive to external interference and has low
interference suppression, and there is a small steady-state error in the final state. Therefore, we can
conclude that HODFC has a strong ability to resist external interference.
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Table 5. Numerical performance metrics of static trajectory with disturbance.

Controller MAE IAE ITAE

Height with human interference

HODFC 0.0192 1.1513 24.8912

PID 0.0311 1.8679 55.8895

Improvement Ratio 1.6198 1.6224 2.2454

Yaw with human interference

HODFC 0.0147 0.8813 15.2536

PID 0.0291 1.7456 51.1210

Improvement Ratio 1.9796 1.9807 3.3514

Yaw with wind disturbance

HODFC 0.0165 0.9870 14.6846

PID 0.0279 1.6721 49.8645

Improvement Ratio 1.6909 1.6941 3.3957

5. Conclusions

In this paper, the quadrotor model was analyzed to fit the form of the affine nonlinear system
used for the HODFC. The HODFC scheme based on the fifth HOD was applied to the quadrotor,
which acts as a position controller in the semi-autopilot experimental platform. The HOD can extract
the derivatives of the reference input and outputs of the system with high precision. The stability of
the HOD was proved, and only one meaningful parameter is needed to choose. The stability of the
HODFC designed for the quadrotor UAV was proved, and parameters can be easily selected according
to the requirement. The HODFC does not need to use the model or disturbance information to control
the system. To analyze the trajectory tracking performance of the HODFC scheme, three different
sets of experiments were carried out on the static trajectory tracking, dynamic trajectory tracking and
static trajectory tracking with disturbance. The parameters were tuned and carefully designed for
comparison with the PID controller. The experimental results were analyzed from both visual and
data aspects, which support the superiority of the HODFC scheme over the traditional PID controller.
Our future work will improve the HODFC strategy, compare it with additional control strategies,
and apply it to additional practical engineering systems.
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