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Abstract: An inductively coupled wireless power transfer system is proposed in this paper, which is
designed to comply with the battery’s load characteristics. A loosely coupled transformer with high
coupling coefficient is proposed. A heterogeneous compensation topology is proposed which is able
to switch between constant current and constant voltage output mode according to the load resistance.
The output characteristic curve agrees with the charging curve of the battery in a whole cycle.
The proposed topology has a misalignment range of 300 mm where the coupling coefficient is 0.2.
A 3 kW experimental platform is established to verify the theoretical analysis, and the experimental
results show that the proposed loosely coupled transformer has high coupling coefficient and high
power transmission efficiency (95.2% in aligned position) within a large misalignment range, which
agrees with the charging scenario of the electric vehicle.

Keywords: wireless power transfer; electric vehicles; heterogeneous compensation topology

1. Introduction

Inductive power transfer (IPT) realizes power transmission in a contact-less way [1,2], and this
technique has been proven to be an ideal technical solution in various applications, like consumer
electronics, biomedical implant devices, an underwater power supply, ball-joint structures [3],
high-voltage insulation [4], and especially electric vehicles (EVs) [5]. Compared with the conventional
“plug-in” charging method, wireless charging features electrical isolation between the primary and
secondary side, and can thus be used in bad weather conditions. Moreover, wireless charging eliminates
mechanical contact, which lowers the danger of operators getting an electric shock.

The lithium battery is widely applied in electric vehicles as the energy storage unit. The typical
charging process of a lithium battery starts with constant current phase and, as the battery voltage
increases, the charging scenario switches to constant voltage mode [6,7]. The typical charging curve
for a lithium battery is shown in Figure 1. To extend the battery’s service life, the charging system is
intended to maintain the precise voltage and current to satisfy the battery’s requirements.
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The typical diagram of an inductive charging system is shown in Figure 2. Inductive power 
transfer system contains the high-frequency inverter, magnetic coupling transformers, resonant 
compensation topology and rectifier. Usually the IPT system’s compensation parameters and 
operating frequency are designed with specific output requirements, and the system’s output is 
influenced by the load conditions. 
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Typical transformer structures of the WPT (wireless power transfer) system include a circular 
structure, DD structure (which is composed of two circular coils in reverse series) and solenoid 
structure [8–12] (shown in Figure 3). The circular winding is distributed circularly in a plane, ferrite 
strips are placed on the back to guide the magnetic flux and shield magnetic leakage, but the coupling 
coefficient is low and this structure is sensitive to misalignment. In a DD structure, the magnetic flux 
flows in from one coil and flows out from another. The general coupling coefficient is improved, but 
there exists a zero-coupling position at which energy cannot be transferred from the primary side to 
secondary side. The solenoid structure features a high coupling coefficient, and the zero-coupling 
position is eliminated; an aluminium plate is always placed on the back to shield the magnetic field 
leakage. The bipolar transformer has two receiver coils on the secondary side, and when the two coils 
are overlapped and placed at a certain position, the coupling coefficient between two receiver coils is 
zero. (Assuming one receiver coil is excited with current, the part of the magnetic flux flowing into 
the other coil is canceled by the part which flows out of it, and the magnetic field generated by one 
coil will not induce electromotive force in another.) 

Figure 1. Typical charging curve of a lithium battery.

The typical diagram of an inductive charging system is shown in Figure 2. Inductive power
transfer system contains the high-frequency inverter, magnetic coupling transformers, resonant
compensation topology and rectifier. Usually the IPT system’s compensation parameters and operating
frequency are designed with specific output requirements, and the system’s output is influenced by
the load conditions.
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Typical transformer structures of the WPT (wireless power transfer) system include a circular
structure, DD structure (which is composed of two circular coils in reverse series) and solenoid
structure [8–12] (shown in Figure 3). The circular winding is distributed circularly in a plane, ferrite
strips are placed on the back to guide the magnetic flux and shield magnetic leakage, but the coupling
coefficient is low and this structure is sensitive to misalignment. In a DD structure, the magnetic flux
flows in from one coil and flows out from another. The general coupling coefficient is improved, but
there exists a zero-coupling position at which energy cannot be transferred from the primary side
to secondary side. The solenoid structure features a high coupling coefficient, and the zero-coupling
position is eliminated; an aluminium plate is always placed on the back to shield the magnetic field
leakage. The bipolar transformer has two receiver coils on the secondary side, and when the two coils
are overlapped and placed at a certain position, the coupling coefficient between two receiver coils is
zero. (Assuming one receiver coil is excited with current, the part of the magnetic flux flowing into the
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Figure 3. Typical transformer structures of the WPT system.

The IPT system output is determined by compensation parameters, operating frequency and
load condition. Usually the IPT system’s compensation parameters and operating frequency are fixed,
and the system’s output varies with load conditions [13,14]. As the equivalent resistance of the battery
increases during the constant current mode (the equivalent resistance of the battery is defined as
Vbat/Ibat), it is of significance for the system to maintain the required charging current and voltage
against a wide load variation range. Researches on CC-CV (constant current-constant voltage) hybrid
compensation topology have been reported in previous literature. Southeast University and Hong Kong
Polytechnic University [15] proposed a hybrid compensation topology to realize the switch between
CC-CV mode. Appropriate alternating current (AC) switches are needed in order to change the
topologies between two modes [16]. Y. Li et al. systematically investigates the load-independent output
voltage and output current characteristics of a three-coil WPT system [17]. Existing compensation
topology being able to offer automatic switching between constant current and constant voltage output
always requires additional switches, extra coils or complicated control algorithms [15–18]. On the other
hand, the system output can also be regulated by adjusting the duty cycle [19,20] at the price of adding
an additional direct current-direct current (DC-DC) converter.

Phase shifting at a fixed frequency is also an effective method to adjust the system output
parameters [21,22], but the inverter may not operate at zero voltage switching (ZVS) state for wide
load variations, which will decrease the efficiency of the system, and may even cause power devices
failure. Variable frequency control method is a promising method to maintain stable output with
load variations. However, in the over-coupling region of the system, frequency splitting occurs
and the resonant frequency splits into two modes (shown in Figure 4). The frequency splitting
phenomenon restricts the monotonic interval, and may cause instability when requiring a wide
frequency modulation region [23–25].
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Figure 4. Normalized voltage-frequency response surface of a typical WPT system (λ is the coupling
factor, which indicates the tightness of coupling between the transmitter and receiver, and ζ is the
detuning factor, which represents the degree to which the working frequency deviates from the
resonant frequency).

Because of the deviation of manual parking, misalignment usually exist between the transmitter
and receiver coil in a real scenario. The desired system should have high misalignment tolerance, and the
output characteristics should agree with the charging curve of lithium battery. In this paper, the design
of loosely coupled transformers is discussed first, then a compensation network with constant current
output and constant voltage output features is proposed. The output switches between two modes
automatically according to the load condition without an additional control loop. The system operates
at a fixed frequency and a zero phase angle condition is ensured during the entire charging process.

2. Design of Loosely Coupled Transformers

As discussed in previous literature [5,8–12], the solenoid transformer has a high coupling coefficient
between primary and secondary side, but it also has high magnetic leakage on the back, so additional
shielding is always necessary. In this paper, the solenoid structure is used as the primary side and the
bipolar structure as a secondary side. An aluminum plate is placed behind the primary coil to shield
the leakage flux. The proposed transformer structure is shown in Figure 5. Position (x = 0, y = 0) is the
aligned position between the transmitter and receiver.
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A typical flux distribution of the proposed transformer structure is shown in Figure 6. The total
flux concerns the internal leakage flux, external leakage flux and mutual flux. The corresponding
equivalent magnetic reluctance network is analyzed in Figure 7. The primary structure with excitation
winding is modeled as a mmf (magnetic motive force) source. Each magnetic flux path is modelled as a
magnetic reluctance, both in the core and in the air. Rf 1 and Rf 2 are the internal resistances of the ferrite.
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According to the equivalent magnetic circuit model,

F−φP·R f 1 = φ1·Ri = φ2·(Rm1 + R f 2//Ri2 + Rm2) = φ3·Rl (1)

φP = φ1 + φ2 + φ3 (2)

The coupling coefficient between transmitter and receiver is:

k =
φ2

φP
=

1
Rm1+R f 2//Ri2+Rm2

1
Ri

+ 1
Rm1+R f 2//Ri2+Rm2

+ 1
Rl

=
1

(Rm1 + R f 2//Ri2 + Rm2)·(
1
Ri

+ 1
Rl
) + 1

(3)

As displacement occurs in the +x direction, magnetic resistance Rm1 increases while Rm2 decreases,
the variation in coupling coefficients in two receiver coils compensate with each other, and the overall
coupling coefficient changes slowly. This is also the case when the displacement occurs in the −x
direction. As the displacement increases in the y axis, both Rm1 and Rm2 increase. The overall coupling
coefficient decreases correspondingly.

Given fixed design parameters as shown in Figure 8, the coupling coefficient values are calculated
in FEM (finite element method) simulations. The variation of coupling coefficient with displacement in
x axis is shown in Figure 9. As displacement occurs in the x axis, the coupling coefficient k12 increases
while k13 decreases. When the displacement reaches a certain value, k13 starts to increase and k12 starts
to go down.
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The FEM-based analysis in terms of misalignment tolerance is shown in Figure 10.
The misalignment tolerance of the proposed coupler structure has been compared with circular,
rectangular, “DD”, bipolar and solenoid structures, based on FEM analysis. The comparison is shown
in Table 1. The proposed coupling structure in this paper outperforms the other typical couplers in
comprehensive evaluation.
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Table 1. Comparison with different coupling structures.

Structure Coupling Cost Misalignment
Tolerance

System
Complexity

Electro-Magnetic
Radiation

Circular Low Low Low Low High
Rectangular Low Low Middle Low High

DD Middle Middle Middle Middle Low
DDQ 1 High High High High Low
Bipolar High High High High Low

Solenoid High Middle Middle Low High
Proposed High Middle High Middle Low(shielded)

1 An additional circular coil added on DD structure.

3. Heterogeneous Compensation Network

It has been discussed in previous literature that the S-S (series-series) compensation network
features constant current output while the S-LCL compensation network (which adopts series
compensation topology on primary side and LCL compensation topology on secondary side) features
constant voltage output [13]. As the charging profile of a battery is composed of a constant current phase
followed by constant voltage phase, it is straightforward to try to combine the output characteristics
of S-S and S-LCL compensation network to fit into the charging curve of the battery. The desired
compensation network should satisfy the requirements of a battery, and switch between constant
current mode and constant voltage mode. The proposed compensation topology in this paper utilizes
the output characteristics of S-S and S-LCL compensation networks, and as the charging process goes
on, the system switches between different output modes.

3.1. Basic Principles

The proposed heterogeneous system is shown in Figure 11. A series-resonant full-bridge inverter
is implemented as an AC source on the primary side. The secondary side consists of two decoupled
coils; each connects with its own compensation network and rectifier, and the two networks are
connected in parallel to the load. The output voltage and current signal are collected on the secondary
side and transferred to the controller on the primary side.
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Figure 11. Schematic diagram of the proposed system.

Lp is the inductance of the primary coil, Ls1 and Ls2 are the inductance of the secondary coil.
Cp, Cs1, Cs2 are the compensation capacitors, Cp resonant with Lp, Cs1 resonant with Ls1, Cs2 resonant
with Ls2. Rp, Rs1 and Rs2 are the internal resistances of the coils. The battery is modeled as a voltage
source E in series with a resistance, and the ESR (equivalent series resistance) of the battery is a function
of the battery’s SOC (state of charge).

Figure 11, Uo1 shows the output DC voltage of S branch and Uo2 is the output DC voltage of LCL
branch. As the outputs of two rectifier bridges connect in parallel, Uo1 = Uo2 = Uo. The output of the
system depends on the comparison of amplitude of Us1 (Us1_m), the amplitude of Us2 (Us2_m), and the
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battery equivalent voltage (Uo). As two receiver coils are decoupled, the transfer characteristic of each
receiver coil is analyzed individually.

3.1.1. S-S Compensation Topology

The equivalent S-S compensation topology is shown in Figure 12. The rectifier bridge load can be
represented using equivalent resistance. At the start if charging process, Uo is so small that it cannot
clamp on the rectifier bridge input.
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The equivalent impedance of primary and secondary side is,

Zp =
1

jωCp
+ jωLp + Rp (4)

Zs1 =
1

jωCs1
+ jωLs1 + Rs1 + Req (5)

According to Kirchhoff’s voltage law (KVL) equations,

ZP
•

IP − jωM1
•

IS1 =
•

Up (6)

jωM1
•

IP −ZS1
•

IS1 = 0 (7)

Solving Equations (6) and (7),

•

Ip =
(Rs1 + Req)

•

Up

Rp(Rs1 + Req) + (ωM1)
2 (8)

•

Is1 =
jωM1

•

Up

Rp(Rs1 + Req) + (ωM1)
2 (9)

•

Us1 =
jωM1·Req·

•

Up

Rp(Rs1 + Req) + (ωM1)
2 (10)

•

Io1 =
•

Is1 =
jωM1

•

Up

Rp(Rs1 + Req) + (ωM1)
2 (11)

Assume Rp = Rs1, for different coil internal resistance Rs1, the variation of the effective value of
output current IS1 with the equivalent load resistance Req is plotted in Figure 13. As we can see from
Figure 14, when the coil resistance is small, the effective value of output current of S-S topology almost
remains unchanged with the variation of load resistance. As a matter of fact, the Litz wire used in WPT
system is thick and well-fabricated, so the coil resistance is tiny, and the influence of coil resistance on
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system outputs is minimum. When the coil resistance is tiny, this is a topology with a constant current
output feature.Electronics 2020, 9, x FOR PEER REVIEW 9 of 20 
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3.1.2. S-LCL Compensation Topology

The equivalent S-LCL compensation topology is shown in Figure 15. The equivalent impedance
of the receiver side is:

Zs2 = Rs2 + jωLs2 +
Req + jωLs2

1+ jωCs2(Req + jωLs2)
(12)
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The reflected impedance on primary side is:

Zr2 =
(ωM2)

2

Zs2
=

(ωM2)
2

Rs2 + jωLs2 +
Req+ jωLs2

1+ jωCs2(Req+ jωLs2)

(13)
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The total input impedance is:

Zin = Zp + Zr2 = jωLp +
1

jωCp
+ Rp +

(ωM2)
2

Rs2 + jωLs2 +
Req+ jωLs2

1+ jωCs2(Req+ jωLs2)

(14)

The current in primary loop is:

•

IP =

•

Up

Zin
(15)

Based on Kirchhoff’s voltage law:

ZP
•

IP − jωM2
•

IS2 =
•

Up (16)

jωM2
•

IP −ZS2
•

IS2 = 0 (17)

To solve Equations (16) and (17), the currents in transmitter and receiver loop are:

•

IP =
ZS2

•

Up[
ZPZS2 + (ωM)2

] (18)

•

IS2 =
jωM2

•

Up[
ZPZS2 + (ωM2)

2
] (19)

The output current I2 is:

•

Io2 =

•

IS2

1 + jωCS2(Req + jωLS2)
=

jωM2
•

Up

[ZPZS2 + (ωM2)
2][1 + jωCS2(Req + jωLS2)]

(20)

The output voltage Us2 is:
•

Us2 =
•

Io2·Req (21)

Assume Rp = Rs2, for different coil internal resistance Rs2, the variation of the effective value of
output voltage with the equivalent resistance is plotted in Figure 15. As seen from Figure 16, the output
voltage is maintained as almost stable when the load resistance increases above a certain value. With
regard to the equivalent resistance of the battery in constant voltage mode, there is a large resistance.
The output voltage of the S-LCL topology is regarded as constant voltage.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 20 

 

p
P

in

U
I

Z

•
•

=
 

(15) 

Based on Kirchhoff’s voltage law: 

2 2P P S pZ I j M I Uω
• • •

− =  (16) 

2 2 2 0P S Sj M I Z Iω
• •

− =  (17) 

To solve Equations (16) and (17), the currents in transmitter and receiver loop are: 

S2
P 2

2

=
( )
p

P S

Z U
I

Z Z Mω

•
•

 + 

 
(18) 

2
S2 2

2 2

=
( )

p

P S

j M U
I

Z Z M
ω

ω

•
•

 + 

 
(19) 

The output current I2 is: 

22
o2 2

2 2 2 2 2 2

=
1 ( ) [ ( ) ][1 ( )]

pS

S eq S P S S eq S

j M UII
j C R j L Z Z M j C R j L

ω
ω ω ω ω ω

••
•

=
+ + + + +

 
(20) 

The output voltage Us2 is: 

2 2s o eqU I R
• •

= ⋅  (21) 

Assume Rp = Rs2, for different coil internal resistance Rs2, the variation of the effective value of 
output voltage with the equivalent resistance is plotted in Figure 15. As seen from Figure 16, the 
output voltage is maintained as almost stable when the load resistance increases above a certain 
value. With regard to the equivalent resistance of the battery in constant voltage mode, there is a 
large resistance. The output voltage of the S-LCL topology is regarded as constant voltage. 

 
Figure 16. Equivalent S-LCL compensation topology. 

3.2. Transition Point Analysis 

At the start of the charging process, the SOC of the battery is small and the equivalent output 
voltage is low. As SOC increases, the battery’s equivalent output voltage gradually surpasses the 
output of receiver circuits. Therefore, according to the relative size and relations of US1_m (amplitude 
of Us1), US2_m (amplitude of Us2) and Uo, there are three charging scenarios: 

• Us2_m>Us1_m>Uo  

Figure 16. Equivalent S-LCL compensation topology.



Electronics 2020, 9, 1978 11 of 20

3.2. Transition Point Analysis

At the start of the charging process, the SOC of the battery is small and the equivalent output
voltage is low. As SOC increases, the battery’s equivalent output voltage gradually surpasses the
output of receiver circuits. Therefore, according to the relative size and relations of US1_m (amplitude
of Us1), US2_m (amplitude of Us2) and Uo, there are three charging scenarios:

• Us2_m > Us1_m > Uo

At the beginning of the charging process, when the equivalent voltage of the battery Uo is smaller
than the amplitude of Us1 and Us2, both receiver circuits deliver power to the battery. The output
current of S branch gradually reduces and the output current LCL branch gradually increases, resulting
in a small variation of the total current delivered to the load, and this charging process is regarded as
constant current charging.

• Us2_m > Uo > Us1_m

As the SOC of the battery increases, Uo increases and exceeds the amplitude of Us1, the S branch
is clamped as the existence of the rectifier bridge. The LCL branch delivers power to the battery.

• Uo > Us2_m > Us1_m

As the SOC further increases, Uo finally exceeds Us1 and Us2, both of the receiver circuits are
clamped, and the charging process comes to an end.

The amplitude of output voltage of two receiver circuits are:

•

Us1_m =

√
2 jωM1·Req·

•

Up

Rp(Rs1 + Req) + (ωM1)
2 (22)

•

Us2_m =

√
2 jωM2

•

Up·Req

[ZPZS2 + (ωM2)
2][1 + jωCS2(Req + jωLS2)]

(23)

As the system switches from CC to CV mode, Uo = Us1_m

•

Uo =

√
2 jωM1·Req·

•

Up

Rp(Rs1 + Req) + (ωM1)
2 (24)

As the system switches from CV mode to the end of charging, Uo = Us2_m

•

Uo =

√
2 jωM2

•

Up·Req

[ZPZS2 + (ωM2)
2][1 + jωCS2(Req + jωLS2)]

(25)

The transition equivalent resistance Rt between CC and CV mode, and transition equivalent
resistance Rt’ between CV and the end of charging can be determined accordingly.

As Req = π2
•RL/8, and referring to Figure 10,

RL =
E + RESR·Io

Io
(26)

The one-to-one corresponding relation between the transition ESR = f(SOC) between different
charging modes can thus be found.
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As for the specific battery chosen, the battery voltage and charging current are measured at the
start point, rated point and end point (as shown in Table 2). An ideal voltage source in series with a
load resistance is used to represent the battery model.

Table 2. Battery charging profile.

Start Rated Point End

Battery Voltage (V) 200 380 ~400
Charging Current (A) 15 9 Small current

According to the charging profile of the battery in Table 2, the battery is composed of a 400 V
voltage source in series with series-connected resistance. As the charging current decreases from
the start point to the rated point, and to the end, the subdivision of the battery’s internal resistance
decreases, and the external voltage of the battery increases, which agrees with the charging profile of
the battery. The theoretical output curve of the system is plotted in Figure 17.Electronics 2020, 9, x FOR PEER REVIEW 12 of 20 
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Figure 17. Theoretical output curves of system.

3.3. Formatting of Mathematical Components

According to the above analysis on two output modes of the topology, the system output voltage
and output current as per the transition resistance is expressed as follows:

•

Uo =


jωM2ZS1

•

UiReq
√

2[ZPZS1ZS2+ω2(M2
1ZS2+M2

2ZS1)]

jωM2
•

UiReq
√

2[ZPZS2+(ωM2)
2][1+ jωCS2(Req+ jωLS2)]

Req < Rt

Req > Rt
(27)

•

Io =


jωM2ZS1

•

Ui
√

2[ZPZS1ZS2+ω2(M2
1ZS2+M2

2ZS1)]

jωM2
•

Ui
√

2[ZPZS2+(ωM2)
2][1+ jωCS2(Req+ jωLS2)]

Req < Rt

Req > Rt
(28)

Since the system output transfers from constant current to constant voltage mode, the system
output can be written as:

•

Io =
jωM2ZS1

•

Ui
√

2[ZPZS1ZS2 +ω2(M2
1ZS2 + M2

2ZS1)]
Req < Rt (29)

•

Uo =
jωM2

•

UiReq
√

2[ZPZS2 + (ωM2)
2][1 + jωCS2(Req + jωLS2)]

Req > Rt (30)
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Usually for a given WPT system, the system resonant frequency is determined to align with
commercial regulations. The coupling coefficients k12 and k13 only depend on Lp, Ls1 and Ls2 for a fixed
transmission distance. Therefore, according to the specific charging current (IO) and charging voltage
(UO) requirement of the battery, the relationship between transition resistance and primary inductance
Lp, Ls1 and Ls2 can be derived.

When the internal resistance of the coils is ignored, there is no energy loss in the LCL branch in
CC mode, so ZS2 can be ignored, and the system output can be written as:

•

Io =
jZS1

•

Ui
√

2ωM2ZS1
Req < Rt (31)

•

Uo =
jωM2

•

UiReq
√

2[ZPZS2 + (ωM2)
2][1 + jωCS2(Req + jωLS2)]

Req > Rt (32)

The variation of transition resistance, output voltage and output current with inductance Lp,
Ls1 and Ls2 are plotted in Figure 18. So for a given UO, IO and Rt, corresponding design values of Lp,
Ls1 and Ls2 can be found in Figure 18, which can be used as a reference value when designing the
WPT system.
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When the internal resistance of the coils is ignored, the original system output expressions,
Equations (25) and (26), cannot be simplified. It becomes in-feasible to build a direct mapping relation
between UO, IO, Rt and Lp, Ls1, Ls2. Instead, the relationship between UO, IO, Rt and M1, M2 is derived
first (As shown in Figure 19), and the values of Lp, Ls1, Ls2 can be obtained, correspondingly.
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4. Experimental Verification

A 3 kW experimental platform was established to verify the performance of the transformer and
topology proposed in this paper, as shown in Figures 20 and 21. The winding uses 0.1 mm × 400 litz
wires and the ferrite material is DMR95 with 2500 permeability. The main parameters of the system are
shown in Table 3.Electronics 2020, 9, x FOR PEER REVIEW 14 of 20 
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Table 3. System key parameters.

Symbol Variable Value

f System resonant frequency 85 kHz
Lp Self-inductance of primary coil 234 µH
Ls1 Self-inductance of secondary coil1 106 µH
Ls2 Self-inductance of secondary coil2 12 µH
L2 LCL network resonant inductance 12 µH
k12 Coupling coefficient between primary coil and secondary coil1 0.17
k13 Coupling coefficient between primary coil and secondary coil2 0.17
Cp Resonant capacitance on primary side 0.014 µF
Cs1 Resonant capacitance on secondary side 1 0.03 µF
Cs2 Resonant capacitance on secondary side 2 0.276 µF

As shown in Figure 22, when the system works at constant voltage mode, there is no current
output in the series compensated branch, and the system works at S-LCL compensation topology.
In constant current mode and the transient process, both compensation topologies provide power to
the load simultaneously.
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A series of load resistances are used to simulate the resistance variation in a battery charging
process, and the system works at open loop status. The variation of output voltage and current with
ESR is shown in Figure 23. The system is able to switch between different working modes automatically,
and the output characteristics agree with theoretical analysis.
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The waveform of voltage output of the inverter and resonant current on primary side is shown
in Figure 24. In both constant voltage and constant current mode, the phase of current slightly lags
behind the phase of voltage, which ensures the ZVS condition.
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The converter waveform on the primary and secondary side on a large time scale is shown in
Figure 25b and compared with the simulation results in Figure 25a. As ESR decreases, the system
output mode switches from constant current to constant voltage.
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As the primary and secondary coils move apart in the y direction, both of the coupling coefficients
between two coils on the secondary side and the primary coil decrease. Corresponding system output
variations are plotted in Figure 26.
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Figure 26. Variation with equivalent resistance at different displacements in y axis: (a) output voltage
and current; (b) system output power.

When misalignment occurs in the x axis, the coupling coefficients between secondary coils and
primary coil demonstrates different trends of variation. On the one hand, the change of coupling
coefficient affects output voltage and current, and on the other hand, the inequality between two
coupling coefficients will incur the shift point of the working mode. The system outputs under the right
position and 5 cm misalignment are shown in Figure 27. Under the circumstances of 5 cm misalignment,
the output current in constant current mode increases while the output voltage in constant voltage
mode decreases. Meanwhile, the shift resistance between constant current and constant voltage stages
decreases, which will disturb the normal working condition. In real applications, the x direction can be
set as the driving direction of the car, so as to make it easier to adjust the misalignment.
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voltage and current; (b) system output power.

The system DC-DC efficiency has been measured at the aligned and misalignment positions
(see Figure 28), using a high bandwidth power analyzer (WT1800) with less than 0.1% error. At each
position, there is a slight variation in efficiency (1~1.5%) because of the load variations. The measured
efficiency was compared with the results in existing literature in Table 4. The proposed structure
in this paper is proved to have higher energy efficiency compared to other research results with
similar dimensions.
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Table 4. System output parameters and comparison with existing literature.

Dimensions
(mm) × gap

(mm)

Misalignment
(mm)

Coupling
Coefficient

Efficiency
(Aligned)

Efficiency
(300 mm

Misalignment)

Proposed 600 × 600 × 200 ±300 0.35–0.2 95.2% (~94.2%) 92.2% (~90.7%)
The University of

Auckland [26] 775 × 485 × 200 ±200 0.3–0.15 90% 86%

ETH (Swiss Federal
Institute of Technology

Zurich) [27]
760 × 410 × 160 ±150 0.23–0.15 96% 92%

San Diego State
University [28] 600 × 600 × 150 ±200 0.3–0.14 95% 92%

5. Conclusions

This paper presents a novel method of wireless charging to a lithium battery on electric vehicles.
A transformer structure using a solenoid structure on the primary side, and a bipolar structure on the
secondary side, is proposed. To satisfy the charging requirement of a lithium battery on electric vehicles,
a system topology with series compensation on the primary side, and a heterogeneous compensation
network on the secondary side, is proposed. This system is able to automatically switch between
constant current and constant voltage output mode based on transition resistance, without additional
control loops. Theoretical analysis of this heterogeneous topology is presented with explanations,
based on the ESR model of the battery. A 3 kW experimental platform is established and the validity of
theoretical analysis is confirmed. This proposal offers a new open-loop approach to offer the precise
charging curve to lithium batteries without additional control hardware.
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