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Abstract: Given the complexity of real-world datasets, it is difficult to present data structures using
existing deep learning (DL) models. Most research to date has concentrated on datasets with only
one type of attribute: categorical or numerical. Categorical data are common in datasets such as
the German (-categorical) credit scoring dataset, which contains numerical, ordinal, and nominal
attributes. The heterogeneous structure of this dataset makes very high accuracy difficult to achieve.
DL-based methods have achieved high accuracy (99.68%) for the Wisconsin Breast Cancer Dataset,
whereas DL-inspired methods have achieved high accuracy (97.39%) for the Australian credit dataset.
However, to our knowledge, no such method has been proposed to classify the German credit
dataset. This study aimed to provide new insights into the reasons why DL-based and DL-inspired
classifiers do not work well for categorical datasets, mainly consisting of nominal attributes. We also
discuss the problems associated with using nominal attributes to design high-performance classifiers.
Considering the expanded utility of DL, this study's findings should aid in the development of a new
type of DL that can handle categorical datasets consisting of mainly nominal attributes, which are
commonly used in risk evaluation, finance, banking, and marketing.

Keywords: deep learning; categorical dataset; nominal attribute; convolutional neural networks;
DL-based classifier; DL-inspired classifier

1. Introduction

1.1. Background

Among existing deep learning (DL) models, convolutional neural networks (CNNs) [1,2] are the
best architecture for most tasks involving image recognition, classification, and detection [3]. However,
Wolpert [4,5] described what has come to be known as the no free lunch (NFL) theorem, which
implies that all learning algorithms perform equally well when averaged over all possible datasets.
This counterintuitive concept thereby suggests the infeasibility of finding a general, highly predictive
algorithm. Gŏmez and Rojas [6] subsequently empirically investigated the effects of the NFL theorem
on several popular machine learning (ML) classification techniques using real-world datasets.

1.2. Types of Data Attributes

It is substantially more challenging to accurately present data structures using existing DL models
due to the complexity and variety of real-world datasets. Most of the research on this issue has
concentrated on datasets with only one attribute: categorical or numerical. However, the number
of cases with more than one type of attribute in a supervised control architecture has increased [7].
Categorical attributes are composed of two subclasses—nominal and ordinal—with the latter inheriting
some properties of the former. Similar to nominal attributes, all of the categories (i.e., possible values) of
the attributes in ordinal data—in other words, the data associated with only the ordinal attributes—are
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qualitative and therefore unsuitable for mathematical operations; however, they are naturally ordered
and comparable [8]. As an example, consider a dataset related to individuals containing a numerical
attribute such as 0.123, 4.56, 10, 100, an ordinal attribute such as a Stage I, II, or III cancer diagnosis,
and a nominal attribute such as university student, public employee, company employee, physician,
or professor [9].

1.3. Heterogeneous Datasets

A numerical dataset’s characteristics differ from those of categorical datasets that contain only
ordinal attributes, such as the Wisconsin Breast Cancer Dataset (WBCD). (https://archive.ics.uci.edu/

ml/datasets/breast+cancer+wisconsin+(original)). From a practical perspective, categorical data
that involve a mix of nominal and ordinal attributes are common in credit scoring datasets [10].
The German (-categorical) credit scoring dataset (https://archive.ics.uci.edu/mL/datasets/statlog+

(german+credit+data)) is a typical heterogeneous dataset that contains numerical, ordinal, and
nominal attributes. The heterogeneous structure of this dataset makes very high accuracy difficult
to achieve. Several alternative approaches, such as artificial bee colony (ABC)-based support vector
machines (SVMs) [11], feature selection and random forest (RF) [12], Information Gain Directed Feature
Selection [13], synthetic minority oversampling technique (SMOTE)-based ensemble classification [14],
and extreme learning machines (ELMs) [15], have been developed in recent years for the German
credit dataset.

1.4. Deep Learning (DL) Approaches for Datasets with Ordinal Attributes

The present author previously proposed a general-purpose and straightforward method [16] to
map weights in deep neural networks (DNNs) trained by deep belief networks (DBNs [17]) to weights
in backpropagation neural networks (NNs). It uses the recursive-rule eXtraction (Re-RX [18]) algorithm
with J48graft [19,20], which led to the proposal of a new method to extract accurate and interpretable
classification rules for categorical datasets, including rating or grading ordinal attributes. This method
was then applied to the WBCD, a small, high-abstraction ordinal dataset with prior knowledge [21].
The present author also noted that the German credit dataset was a relatively low-level abstraction
dataset that mainly includes the nominal attributes of banking professionals without prior knowledge.

1.5. State-of-the-Art DL Classifiers for Categorical and Mixed Datasets

A variety of high-accuracy classifiers have recently been proposed. DL-based methods used for the
WBCD have achieved accuracy as high as 99.68% [22–24], whereas DL-inspired methods used for the
Australian credit dataset (http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval))
have achieved accuracy as high as 97.39% [24,25].

Recently, the present author presented a new rule extraction method [26] for achieving transparency
and conciseness in credit scoring datasets with heterogeneous attributes using a one-dimensional
(1D) fully-connected layer first (FCLF)-CNN [23] combined with the Re-RX algorithm with a J48graft
decision tree (hereafter 1D FCLF-CNN [Figure 1]). Although it does not completely overcome the
accuracy–interpretability dilemma for DL, it does appear to resolve this issue for credit scoring datasets
with heterogeneous attributes.

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original
https://archive.ics.uci.edu/mL/datasets/statlog+(german+credit+data
https://archive.ics.uci.edu/mL/datasets/statlog+(german+credit+data
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval
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Figure 1. Schematic overview of a one-dimensional fully-connected layer first convolutional neural
network (1D FCLF-CNN).

1.6. Novelty of This Paper

Nevertheless, and contrary to our expectation, although it appears relatively easy to construct
DL-based and DL-inspired classifiers with very high accuracies, to our knowledge, no method has
been proposed to classify the German credit dataset. We hypothesized that one reason for the high
accuracies would be the ratio of the number of ordinal and nominal attributes.

In this paper, we provide new insights for the reasons why DL-based and DL-inspired classifiers
do not work well for categorical datasets mainly consisting of nominal attributes, as well as the barriers
to achieving very high accuracies for such datasets. We also discuss the pitfalls of using nominal
attributes to design high-performance classifiers.

2. Categorical Datasets and Their Recent High Accuracies

In this section, we first tabulate the characteristics of three categorical datasets (Table 1).
Tables 3 and 4 show the test accuracies and area under the receiver operating characteristic curves
(AUC-ROCs) [27] obtained by recent high accuracy classifiers for the WBCD, and the German dataset.
A new method of concordant partial AUC (cpAUC) [28] was proposed as a related reference. Table 2
shows parameter settings for training the 1D FCLF-CNN for the German and Australian credit scoring
datasets. Table 5 also shows the test accuracies and AUC-ROCs obtained by recent high accuracy
classifiers for the Australian dataset.

Table 1. Characteristics of the Wisconsin Breast Cancer Dataset (WBCD), German, and
Australian datasets.

Dataset # Instances # Total Features Categorical Nominal Categorical Ordinal Numerical

WBCD 699 9 0 9 0
German 1000 20 10 3 7

Australian 690 14 0 8 6

Table 2. Parameter settings for training the 1D FCLF-CNN for the German and Australian credit
scoring datasets.

Dataset German Australian

Pruning stop rate for 1D FCLF-CNN 0.13 0.20
# of first layer hidden units for 1D FCLF-CNN 4 3

Learning rate for 1D FCLF-CNN 0.0182 0.0106
Momentum factor for 1D FCLF-CNN 0.1154 0.7549

# of filters in each branch in the inception module 19 8
# of channels after concatenation 57 24
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2.1. The Wisconsin Breast Cancer Dataset (WBCD) and Classification Accuracies

2.1.1. The Wisconsin Breast Cancer Dataset (WBCD)

The WBCD is composed of 699 samples (16 with missing values) obtained from fine-needle
aspiration (FNA) [29] of human breast tissue. FNA allows malignancy in breast masses to be
investigated in a noninvasive and cost-effective manner. In total, nine features related to the size,
shape, and texture of the cell nuclei are measured in each sample. The observed values are scored on
a 10-point scale, where 1 denotes the closest to being benign, and each sample is given a class label
(benign or malignant). Among the 683 complete samples, 339 malignant and 444 benign cases were
observed. Pathologists assessed the features based on an analysis of these nine ordinal features [30].

2.1.2. Recent High Accuracies by Classifiers for the WBCD

The accuracy for the WBCD plateaus at around 99.00%. DL-based classifiers [22–24] are relatively
competitive with other recent high-accuracy classifiers; however, Deep Forest does not work well for
the WBCD. Zhou and Feng [31,32] proposed a unique gcForest (multi-grained cascade forest) approach
for constructing a non-NN-style deep model. Their approach was a novel decision tree ensemble with
a cascade structure that enables representation learning. We first demonstrated that this DL-inspired
method had a considerably lower classification accuracy of 95.52%.

2.2. Credit Scoring Datasets

Credit application scoring is an effective method for classifying whether a credit applicant belongs
to a legitimate (creditworthy) or suspicious (non-creditworthy) group based on their credentials.
Improving the predictive performance of credit scoring models, especially for applicants that fall
into the non-creditworthy group, could be expected to have a substantial impact on the financial
industry [38].

2.2.1. German (-Categorical) Dataset

The German dataset contains 1000 samples with 20 features that describe the applicant’s credit
history. In this dataset, 700 and 300 samples describe creditworthy and uncreditworthy applicants,
respectively. Nominal attributes include the status of an existing checking account, credit history, the
purpose of credit taken by a customer, savings accounts/bonds, present type and length of employment,
personal characteristics and sex, debtors or guarantors, property holdings, installment plans, housing
status, and job status [39].

2.2.2. Recent High-Accuracy Classifiers for the German Dataset

In many cases, credit scoring datasets contain customer profiles that consist of numerical,
ordinal, and mainly nominal attributes; here, these are referred to as heterogeneous credit scoring
datasets [26]. This section on the German dataset reveals the pros and cons of DL, DL-based classifiers,
and DL-inspired classifiers from different perspectives. Ensemble classifiers with a neighborhood
rough set [10], ABC-based SVM [11], and Bolasso based feature selection and RF [12] showed very
high accuracies.

We used the parameter settings shown in Table 2 for training the 1D FCLF-CNN for the German
and Australian credit scoring datasets.
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Table 3. Comparisons of recent classifier performances for the Wisconsin Breast Cancer Dataset
(WBCD).

Method TS ACC (%) AUC-ROC Year

Fuzzy-rough nearest neighbor with instance feature selection [10CV] [33] 99.71 1.000 2015
DBN-NN [22] 99.68 ---- 2016
Particle Swarm Optimization (PSO)_SVM [10CV] [34] 99.30 0.993 2012
Genetically Optimized Neural Network (GONN) [10CV] [35] 99.26 1.000 2015
Gauss-Newton Representation-based Algorithm [10CV] [36] 99.23 0.997 2017
C-MLP2LN [10CV] [37] 99.00 ---- 2000
Ensemble of 1D FCLF-CNN [10CV] [23] 98.71 ---- 2018
Deep neural network (DNN) and recursive feature elimination (RFE) [80:20 split] [24] 98.62 ---- 2018
Bio-inspired weighted quantum swarm optimization and SVM ensemble [10CV] [38] 98.70 ---- 2019
Deep Forest [10CV] [31,32] 95.52 1 ---- 2020

1 We investigated the WBCD using Zhou and Feng’s codes. “----“means that the literature provided no information
about the area under the receiver operating characteristic curve (AUC-ROC); TS ACC: accuracy for test dataset;
SVM: support vector machine; 10CV: 10-fold cross-validation; 1D FCLF-CNN: one-dimensional fully-connected
layer first convolutional neural network.

Table 4. Comparison of recent classifier performances for the German dataset.

Method TS ACC (%) AUC-ROC (%) Year

Neighborhood rough set + multi-layer ensemble classification
[10CV] [10] 86.57 ---- 2018

Artificial bee-colony based SVM [10CV] [11] 84.00 ---- 2018
Bolasso based feature selection + random forest [10CV] [12] 84.00 0.713 2020
Information Gain Directed Feature Selection algorithm [10CV] [13] 82.80 0.753 2018
SMOTE-based ensemble method [10CV] [14] 78.70 0.810 2019
Extreme Learning Machine [10CV] [15] 76.40 0.801 2017
1D FCLF-CNN [10CV] [23] 74.70 2 [25] 0.697 2 [25] 2018
Deep Forest [10CV] [31,32] 71.12 1 ---- 2017

1 We investigated the German dataset [25] using Zhou and Feng’s codes [31]. 2 We implemented the program for
the German dataset based on Liu et al.’s method. “----“ means that the literature provided no information about
the area under the receiver operating characteristic curve (AUC-ROC); TS ACC: accuracy for test dataset; SVM:
support vector machine; 10CV: 10-fold cross-validation; 1D FCLF-CNN: one-dimensional fully-connected layer first
convolutional neural network.

2.2.3. Australian Dataset

The Australian dataset consists of 690 samples with 14 features. Each sample in the Australian
dataset is composed of six categorical and eight numerical attributes, as well as a class attribute
(accepted as positive or rejected as negative), where 307 and 383 instances are positive and negative
applicants, respectively. The Australian dataset consists of credit card applications, but the feature
values and names are changed into random symbols to preserve the data’s secrecy [39].

Table 5. Comparison of recent classifier performances for the Australian dataset.

Method TS ACC (%) AUC-ROC (%) Year

Deep Genetic Cascade Ensemble of SVM classifier [10CV] [25] 97.39 ---- 2019
Spiking extreme learning machine [10CV] [40] 95.98 0.970 2019
Artificial bee colony-based SVM [10CV] [11] 92.75 ---- 2018
Ensemble feature selection + multilayer ensemble classification [100 × 10CV] [39] 92.69 ---- 2019
DNN (sequential neural network, convolution neural network) [10CV] [41] 87.54 ---- 2019
1D FCLF-CNN [10CV] [23] 85.80 1 [25] 0.859 [25] 2018

1 We implemented the Australian dataset program [25] based on the Liu et al. method. “----“means that the
literature provided no information about the area under the receiver operating characteristic curve (AUC-ROC);
TS ACC: accuracy for test dataset; SVM: support vector machine; 10CV: 10-fold cross-validation; 1D FCLF-CNN:
one-dimensional fully-connected layer first convolutional neural network.
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3. Discussion

3.1. Discussion

We hypothesized that a reason why DL does not work well was the number of features and
the characteristics of the attributes. At first glance, the results in Table 4 seemed to be following
their descriptions of low-dimensional data for Deep Forest [31,32]. The authors noted that “fancy
architectures like CNNs could not work on such data as there are too few features without spatial
relationships” [32] (p. 81) because a DL-based classifier [23] achieved an accuracy of 98.71%, which
made it easy to classify the WBCD with only nine ordinal attributes.

However, a DL-based classifier [23,41] and Deep Forest [31,32] ranked at the bottom (Tables 4
and 5). Deep Forest showed the lowest classification accuracy, at 71.12%. Differences in the accuracies
obtained using a 1D FCLF-CNN combined with Re-RX with J48graft (1D FCLF-CNN with Re-RX
with J48graft) and Deep Forest were 10.17% and 15.45%, respectively, with the highest accuracy of
86.57% [10]. These accuracies were inferior to that of the highest obtained using a rule extraction
method (79.0%) [42].

We believe that the main reason for this is that the German dataset consists of mainly nominal
attributes, which are commonly found in finance and banking, risk evaluation [12], and marketing [43].
Therefore, innovations are needed for DL, DL-based, and DL-inspired methods for heterogeneous
datasets such as the German credit dataset. We also argue that the Bene1 [44] and Bene2 [44] datasets,
which have been used by major Benelux-based financial institutions to summarize consumer credit
data, consist of mainly nominal attributes.

Surprisingly, a new deep genetic cascade ensemble of different SVM classifiers (so-called Deep
Genetic Cascade Ensembles of Classifiers [DGCEC]) system [25] achieved the current highest accuracy
(97.39%) for the Australian dataset. That study aimed to design a novel deep genetic cascade ensemble
(16-layer system) of SVM classifiers based on evolutionary computation, ensemble learning, and
DL techniques that would allow the effective binary classification of accepted or rejected borrowers.
This new method was based on a combination of the following: SVM classifiers, normalizations,
feature extractions, kernel functions, parameter optimization, ensemble learning, DL, layered learning,
supervised training, feature selection (attributes), and the optimization of classifier parameters using a
genetic algorithm.

Although the spiking extreme learning machine method [39] was very systematic and sophisticated
for the Australian dataset, it achieved the second-highest accuracy (95.98%) DL-inspired tactic
can achieve considerably higher classification accuracies. This method was specialized to predict
creditworthiness in the Australian dataset. Hence, the results obtained by these methods are worse
than those obtained by the DGCEC system.

3.2. A Black-Box ML Approach to Achieve Very High Accuracies for the German (-Numerical) Credit Dataset

Pławiak et al. [45] recently proposed the Deep Genetic Hierarchical Network of Learners,
a fusion-based system with a 29-layer structure that includes ML algorithms, SVM algorithms,
k-nearest neighbors, and probabilistic NNs, as well as a fuzzy system, normalization techniques,
feature extraction approaches, kernel functions, and parameter optimization techniques based on
error calculation. Remarkably, they achieved the highest accuracy (94.60%) for a German (-numerical;
24 attributes) dataset with all numerical and no nominal attributes. However, this dataset had no
nominal attributes, making it easy to classify, and thus, fundamentally different from the German
(-categorical; 20 attributes) dataset. As a result, we omitted the performance from Table 4. Furthermore,
even if this kind of ML technique is effective to enhance classification accuracy, these methods hinder
the conversion of a “black box” DNN trained by DL into a “white box” consisting of a series of
interpretable classification rules [46].
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3.3. Pitfalls for Handling Nominal Attributes to Design High-performance Classifiers

As shown in Table 1, the WBCD consists of ordinal attributes. The Australian dataset is a mixed
dataset, i.e., it consists of ordinal and numerical attributes. On the other hand, the German credit
dataset is a mixed dataset that consists of mainly nominal attributes. When attempting to achieve
only the highest accuracy for the German dataset, many papers often do not focus on handling the
datasets with heterogeneous attributes and maintaining the characteristics of the nominal attributes
appropriately. For example, the highest accuracy achieved for the German (-categorical) dataset
was 86.57% by Tripathi et al. [10]. Kuppili et al. [40] and Tripathi et al. [39] achieved considerably
higher accuracies for the German dataset using an SVM and NN requiring that each data instance
be represented as a vector of real numbers. However, they did not appropriately handle nominal
attributes as they converted them into numerical attributes before feeding them into the classifiers.
If this pitfall can be avoided, classifiers with much higher accuracy can be designed using DL-based or
DL-inspired methods.

4. Conclusions

In this paper, we have provided new insights into why DL-based and DL-inspired classifiers do
not work well for categorical datasets that mainly consist of nominal attributes and the barriers to
achieving very high accuracies for such datasets. One limitation of this work is the limited number of
categorical datasets with mainly nominal attributes. As mentioned above, there are bigger datasets
similar to the German datasets, including the Bene1, Bene2, Lending Club, and Bank Loan Status
datasets. Considering the vastly expanded utility of DL, attempts should be made to develop a new
type of DL to handle categorical datasets consisting of mainly nominal attributes, commonly used in
risk evaluation, finance, banking, and marketing.
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Notations

TS ACC Test accuracy
10CV 10-fold cross-validation

Abbreviations

CNN Convolutional neural network
1D One-dimensional
FCLF Fully-connected layer first
Re-RX Recursive-rule eXtraction
SVM Support vector machine
DL Deep learning
NN Neural network
DNN Deep neural network
ML Machine learning
BPNN Backpropagation neural network
CV Cross-validation
AUC-ROC Area under the receiver operating characteristic curve
SMOTE Synthetic minority oversampling technique
DBN Deep belief network
PSO Particle swarm optimization
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ERENN-MHL Electric rule extraction from a neural network with a multi-hidden layer for a DNN
ABC Artificial bee colony
RF Random forest
ELM Extreme learning machine
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