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Abstract: In recent times, several machine learning models have been built to aid in the prediction of
diverse diseases and to minimize diagnostic errors made by clinicians. However, since most medical
datasets seem to be imbalanced, conventional machine learning algorithms tend to underperform
when trained with such data, especially in the prediction of the minority class. To address this challenge
and proffer a robust model for the prediction of diseases, this paper introduces an approach that
comprises of feature learning and classification stages that integrate an enhanced sparse autoencoder
(SAE) and Softmax regression, respectively. In the SAE network, sparsity is achieved by penalizing
the weights of the network, unlike conventional SAEs that penalize the activations within the hidden
layers. For the classification task, the Softmax classifier is further optimized to achieve excellent
performance. Hence, the proposed approach has the advantage of effective feature learning and
robust classification performance. When employed for the prediction of three diseases, the proposed
method obtained test accuracies of 98%, 97%, and 91% for chronic kidney disease, cervical cancer, and
heart disease, respectively, which shows superior performance compared to other machine learning
algorithms. The proposed approach also achieves comparable performance with other methods
available in the recent literature.

Keywords: sparse autoencoder; unsupervised learning; Softmax regression; medical diagnosis;
machine learning; artificial neural network; e-health

1. Introduction

Medical diagnosis is the process of deducing the disease affecting an individual [1]. This is usually
done by clinicians, who analyze the patient’s medical record, conduct laboratory tests, and physical
examinations, etc. Accurate diagnosis is essential and quite challenging, as certain diseases have similar
symptoms. A good diagnosis should meet some requirements: it should be accurate, communicated,
and timely. Misdiagnosis occurs regularly and can be life-threatening; in fact, over 12 million people
get misdiagnosed every year in the United States alone [2]. Machine learning (ML) is progressively
being applied in medical diagnosis and has achieved significant success so far.

In contrast to the shortfall of clinicians in most countries and expensive manual diagnosis,
ML-based diagnosis can significantly improve the healthcare system and reduce misdiagnosis caused
by clinicians, which can be due to stress, fatigue, and inexperience, etc. Machine learning models
can also ensure that patient data are examined in more detail and results are obtained quickly [3].
Hence, several researchers and industry experts have developed numerous medical diagnosis models
using machine learning [4]. However, some factors are hindering the growth of ML in the medical
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domain, i.e., the imbalanced nature of medical data and the high cost of labeling data. Imbalanced data
are a classification problem in which the number of instances per class is not uniformly distributed.
Recently, unsupervised feature learning methods have received massive attention since they do not
entirely rely on labeled data [5], and are suitable for training models when the data are imbalanced.

There are various methods used to achieve feature learning, including supervised learning
techniques such as dictionary learning and multilayer perceptron (MLP), and unsupervised
learning techniques which include independent component analysis, matrix factorization, clustering,
unsupervised dictionary learning, and autoencoders. An autoencoder is a neural network used for
unsupervised feature learning. It is composed of input, hidden, and output layers [6]. The basic
architecture of a three-layer autoencoder (AE) is shown in Figure 1. When given an input
data, autoencoders (AEs) are helpful to automatically discover the features that lead to optimal
classification [7]. There are diverse forms of autoencoders, including variational and regularized
autoencoders. The regularized autoencoders have been mostly used in solving problems where optimal
feature learning is needed for subsequent classification, which is the focus of this research. Examples
of regularized autoencoders include denoising, contractive, and sparse autoencoders. We aim to
implement a sparse autoencoder (SAE) to learn representations more efficiently from raw data in order
to ease the classification process and ultimately, improve the prediction performance of the classifier.
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Usually, the sparsity penalty in the sparse autoencoder network is achieved using either of these
two methods: L1 regularization or Kullback–Leibler (KL) divergence. It is noteworthy that the SAE
does not regularize the weights of the network; rather, the regularization is imposed on the activations.
Consequently, suboptimal performances are obtained with this type of structure where the sparsity
makes it challenging for the network to approximate a near-zero cost function [8]. Therefore, in this
paper, we integrate an improved SAE and a Softmax classifier for application in medical diagnosis.
The SAE imposes regularization on the weights, instead of the activations as in conventional SAE,
and the Softmax classifier is used for performing the classification task.

To demonstrate the effectiveness of the approach, three publicly available medical datasets are
used, i.e., the chronic kidney disease (CKD) dataset [9], cervical cancer risk factors dataset [10],
and Framingham heart study dataset [11]. We also aim to use diverse performance evaluation metrics
to assess the performance of the proposed method and compare it with some techniques available in the
recent literature and other machine learning algorithms such as logistic regression (LR), classification and
regression tree (CART), support vector machine (SVM), k-nearest neighbor (KNN), linear discriminant
analysis (LDA), and conventional Softmax classifier. The rest of the paper is structured as follows:
Section 2 reviews some related works, while Section 3 introduces the methodology and provides
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a detail background of the methods applied. The results are tabulated and discussed in Section 4,
while Section 5 concludes the paper.

2. Related Works

This section discusses some recent applications of machine learning in medical diagnosis.
Glaucoma is a vision condition that develops gradually and can lead to permanent vision loss.
This condition destroys the optic nerve, the health of which is essential for good vision and is usually
caused by too much pressure inside one or both eyes. There are diverse forms of glaucoma, and they
have no warning signs; hence, early detection is difficult yet crucial. Recently, a method was developed
for the early detection of glaucoma using a two-layer sparse autoencoder [7]. The SAE was trained using
1426 fundus images to identify salient features from the data and differentiate a normal eye from an
affected eye. The structure of the network comprises of two cascaded autoencoders and a Softmax layer.
The autoencoder network performed unsupervised feature learning, while the Softmax was trained in
a supervised fashion. The proposed method obtained excellent performance with an F-measure of 0.95.

In another research, a two-stage approach was proposed for the prediction of heart disease using
a sparse autoencoder and artificial neural network (ANN) [12]. Unsupervised feature learning was
performed with the help of the sparse autoencoder, which was optimized using the adaptive moment
estimation (Adam) algorithm, whereas the ANN was used as the classifier. The method achieved
an accuracy of 90% on the Framingham heart disease dataset and 98% on the cervical cancer risk factors
dataset, which outperformed some ML algorithms. In a similar research, Verma et al. [13] proposed
a hybrid technique for the classification of heart disease, where optimal features were selected via
the particle swarm optimization (PSO) search technique and k-means clustering. Several supervised
learning methods, including decision tree, MLP, and Softmax regression, were then utilized for the
classification task. The method was tested using a dataset containing 335 cases and 26 attributes,
and the experimental results revealed that the hybrid model enhanced the accuracy of the various
classifiers, with the Softmax regression model obtaining the best performance with 88.4% accuracy.

Tama et al. [14] implemented an ensemble learning method for the diagnosis of heart disease.
The ensemble method was developed via a stacked structure, whereby the base learners were also
ensembles. The base learners include gradient boosting, random forest (RF), and extreme gradient
boosting (XGBoost). Additionally, feature ranking and selection were conducted using correlation-based
feature selection and PSO, respectively. When tested on different heart disease datasets, the proposed
method outperformed the conventional ensemble methods. Furthermore, Ahishakiye et al. [15]
developed an ensemble learning classifier to detect cervical cancer risk. The model comprised of CART,
KNN, SVM, and naïve Bayes (NB) as base learners, and the ensemble model achieved an accuracy of 87%.

The application of sparse autoencoders in the medical domain has been widely studied, especially
for disease prediction [12]. Furthermore, sparse autoencoders have been utilized for classifying
Parkinson’s disease (PD). Recently, Xiong and Lu [16] proposed an approach which involved a feature
extraction step using a sparse autoencoder, to classify PD efficiently. Prior to the feature extraction,
the data were preprocessed and an appropriate input subset was selected from the vocal features via
the adaptive grey wolf optimization method. After feature extraction by the SAE, six ML classifiers
were then applied to perform the classification task, and the experimental results signaled improved
performance compared to other related works.

From the above-related works, we observed that most of the studies have some limitations: firstly,
most of the authors utilized a single medical dataset to validate the performance of their models and
not many studies experimented on more than two different diseases. By training and testing the model
on two or more datasets, appropriate and more reliable conclusions can be drawn, and this can further
validate the generalization ability of the ML method. Secondly, some recent research works have
implemented sparse autoencoders for feature learning; however, most of these methods achieved
sparsity by regularizing the activations [17], which is the norm. However, in this paper, sparsity is
achieved via weight regularization. Additionally, poor generalization of ML algorithms resulting from
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imbalanced datasets, which is common in medical data, can be easily addressed using an effective
feature learning method such as this.

3. Methodology

The sparse autoencoder (SAE) is an unsupervised learning method which is used to automatically
learn features from unlabeled data [14]. In this type of autoencoder, the training criterion involves
a sparsity penalty. Generally, the loss function of an SAE is constructed by penalizing activations
within the hidden layers. For any particular sample, the network is encouraged to learn an encoding
by activating only a small number of nodes. By introducing sparsity constraints on the network,
such as limiting the number of hidden units, the algorithm can learn better relationships from the
data [18]. An autoencoder consists of two functions: an encoder and decoder function. The encoder
maps the d-dimensional input data to obtain a hidden representation. In contrast, the decoder maps
the hidden representation back to a d-dimensional vector that is as close as possible to the encoder
input [12,19]. Assuming m denotes the input features and n represents the neurons of the hidden layer,
the encoding and decoding process can be represented with the following equations:
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where w1
∈ Rn,m and w2

∈ Rm,n represent the weight matrices of the hidden layer and output layer,
respectively; b1

∈ Rn,1 and b2
∈ Rm,1 denotes the bias matrices of the hidden layer and output layer,

respectively; the vector a1
∈ Rn,1 denotes the inputs of the output layer; the vector a2

∈ Rm,1 represents
the output of the sparse autoencoder, which is fed into the Softmax classifier for classification. The mean
squared error function EMSE is used as the reconstruction error function between the input xi and
reconstructed input a2

i . Additionally, we introduce a regularization function Ωsparsity to the error
function in order to achieve sparsity by penalizing the weights w1

∈ Rn,m and w2
∈ Rm,n. Therefore,

the cost function ESAE of the sparse autoencoder can be represented as:

ESAE = EMSE + Ωsparsity, (3)

The mean squared error function and the regularization function can be expressed as:

EMSE =
1
m
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(
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, (4)
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1
m
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(xi + 10)log
xi + 10
a2
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i

, (5)

Once the data have been transmitted from input to output of the sparse autoencoder, the next stage
involves evaluating the cost function and fine-tuning the model parameters for optimal performance.
Meanwhile, the cost function ESAE does not explicitly relate the weights and bias of the network; hence,
it is necessary to define a sensitivity measure to sensitize the changes in ESAE and transmit the changes
backwards via the backpropagation learning method [8]. To achieve this, and iteratively optimize the
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loss function, stochastic gradient descent is employed. The stochastic gradient descent to update the
bias and weights of the output layer can be written as:

b2 = b2
− η2 ∂ESAE

∂b2 , (6)

w2 = w2
− η2 ∂ESAE

∂w2 , (7)

where η2 represents the learning rate in relation to the output layer. The derivative of the loss function
ESAE measures the sensitivity to change of the function value with respect to a change in its input value.
Furthermore, the gradient indicates the extent to which the input parameter needs to change to
minimize the loss function. Meanwhile, the gradients are computed using the chain rule. Therefore,
(6) and (7) can be rewritten as:
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The sensitivity at the output layer of the SAE is represented and defined as S2 =
∂ESAE
∂a2 . Therefore,

(8) and (9) can be rewritten as:
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Using the same method for computing S2, the sensitivities can be transmitted back to the
hidden layer

b1 = b1
− η1s1, (13)

w1 = w1
− η1s1(x)T, (14)

where η1 denotes the learning rate with respect to the hidden layer, whereas s1 is defined as:
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Furthermore, the Softmax classifier is employed for the classification task. The learned features
from the proposed SAE are used to train the classifier. Though, Softmax regression, otherwise called
multinomial logistic regression (MLR), is a generalization of logistic regression that can be utilized for
multi-class classification [20]. However, in the literature, the Softmax classifier has been applied for
several binary classification tasks and has obtained excellent performance [21]. The Softmax function
provides a method to interpret the outputs as probabilities and is expressed as:

f (xi) =
exi∑k

j=1 ex j
(i = 1, 2, . . . , N), (16)
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where x1, x2, . . . , xN represent the input values and the output f (xi) is the probability that the sample
belongs to the ith label [22]. For N input samples, the error at the Softmax layer is measured using the
cross-entropy loss function:

L(w) =
1
N

N∑
n=1

H(pn, qn) = −
1
N

N∑
n=1

[ynlogŷn + (1− yn) log(1− ŷn)], (17)

where the true probability pn is the actual label and qn is the predicted value. H(pn, qn) is a measure of the
dissimilarity between pn and qn. Furthermore, neural networks can easily become stuck in local minima,
whereby the algorithm assumes it has reached the global minima, thereby resulting in non-optimal
performance. To prevent the local minima problem and further enhance classifier performance,
the mini-batch gradient descent with momentum is applied to optimize the cross-entropy loss of the
Softmax classifier. This optimization algorithm splits the training data into small batches which are
then used to compute the model error and update the model parameters [23]. The momentum [24]
ensures better convergence is obtained.

The flowchart to visualize the proposed methodology is shown in Figure 2. The initial dataset is
preprocessed; then, it is divided into training and testing sets. The training set is utilized for training the
sparse autoencoder in an unsupervised manner. Meanwhile, the testing set is transformed and inputted
into the trained model to obtain the low-dimensional representation dataset. The low-dimensional
training set is used to train the Softmax classifier, and its performance is tested using the low-dimensional
test set. Hence, there is no possible data leakage since the classifier sees only the low-dimensional
training set.
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4. Results and Discussion

The proposed method is applied for the prediction of three diseases in order to show its
performance in diverse medical diagnosis situations. The datasets include the Framingham heart
study [11], which was obtained from the Kaggle website, and it contains 4238 samples and 16 features.
The second dataset is the cervical cancer risk factors dataset [10], which was obtained from the
University of California, Irvine (UCI) ML repository, and it contains 858 instances and 36 attributes.
Thirdly, the CKD dataset [9] was also obtained from the UCI ML repository, and it contains 400 samples
and 25 features. We used mean imputation to handle missing variables in the datasets.

The training parameters of the SAE include: η1 = 0.01, η2 = 0.1, n = 25, and number of
epochs = 200. The hyperparameters of the Softmax classifier include learning rate = 0.01, number of
samples in mini batches = 32, momentum value = 0.9, and number of epochs = 200. These parameters
were obtained from the literature [12,23], as they have led to optimal performance in diverse neural
network applications.

The effectiveness of the proposed method is evaluated using the following performance metrics:
accuracy, precision, recall, and F1 score. Accuracy is the ratio of the correctly classified instances to the
total number of instances in the test set, and precision measures the fraction of correctly predicted
instances among the ones predicted to have the disease, i.e., positive [25]. Meanwhile, recall measures
the proportion of sick people that are predicted correctly, and F1 score is a measure of the balance
between precision and recall [26]. The following equations are used to determine these metrics:

Classi f ication accuracy =
TP + TN

TP + TN + FP + FN
, (18)

Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
, (20)

F1 score =
2 ∗ Precision ∗Recall
Precision + Recall

=
2TP

2TP + FP + FN
, (21)

where

• True positive (TP): Sick people correctly predicted as sick.
• False-positive (FP): Healthy people wrongly predicted as sick.
• True negative (TN): Healthy people rightly predicted as healthy.
• False-negative (FN): Sick people wrongly predicted as healthy.

To demonstrate the efficacy of the proposed method, it is benchmarked with other algorithms,
such as LR, CART, SVM, KNN, LDA, and conventional Softmax regression. In order to show the
improved performance of the proposed method, no parameter tuning was performed on these
algorithms; hence, their default parameter values in scikit-learn were used, which are adequate for
most machine learning problems. The K-fold cross-validation technique was used to evaluate all
the models. Tables 1–3 show the experimental results when the proposed method is tested on the
Framingham heart study, cervical cancer risk factors, and CKD datasets, respectively. Meanwhile,
Figures 3–5 show the receiver operating characteristic (ROC) curves comparing the performance of the
conventional Softmax classifier and the proposed approach for the various disease prediction models.
The ROC curve illustrates the diagnostic ability of binary classifiers, and it is obtained by plotting the
true positive rate (TPR) against the false positive rate (FPR).
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Table 1. Performance of the proposed method and other classifiers on the Framingham dataset.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 83 84 86 84
CART 75 74 75 74
SVM 82 78 82 80
KNN 81 75 81 77
LDA 83 81 83 82

Softmax classifier 86 84 88 86
Proposed SAE + Softmax 91 93 90 92

Table 2. Performance of the proposed method and other classifiers on the cervical cancer dataset.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 94 96 91 93
CART 90 93 96 94
SVM 94 90 93 91
KNN 93 98 95 96
LDA 95 93 91 92

Softmax classifier 94 97 91 94
Proposed SAE + Softmax 97 98 95 97

Table 3. Performance of the proposed method and other classifiers on the chronic kidney disease
(CKD) dataset.

Algorithm Accuracy (%) Precision (%) Recall (%) F1 Score (%)

LR 98 93 97 95
CART 95 97 95 96
SVM 96 94 96 95
KNN 94 93 89 91
LDA 96 97 93 95

Softmax classifier 96 95 97 96
Proposed SAE + Softmax 98 97 97 97Electronics 2020, 9, x FOR PEER REVIEW 8 of 13 
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From the experimental results, it can be seen that the sparse autoencoder improves the performance
of the Softmax classifier, which is further validated by the ROC curves of the various models.
The proposed method also performed better than the other machine learning algorithms. Furthermore,
the misclassifications obtained by the model in the various disease predictions are also considered.
For the prediction of heart disease, the proposed method recorded an FPR of 7% and a false-negative
rate (FNR) of 10%. In addition, the model specificity, which is the true negative rate (TNR), is 93%,
and the TPR is 90%. For the cervical cancer dataset, the following were obtained: FPR = 3%, FNR = 5%,
TNR = 97%, and TPR = 95%. For the CKD prediction: FPR = 0, FNR = 3%, TNR = 100%, and TPR = 97%.

Additionally, to further validate the performance of the proposed method, we compare it with
some models for heart disease prediction available in the recent literature, including a feature selection
method using PSO and Softmax regression [13], a two-tier ensemble method with PSO-based feature
selection [14], an ensemble classifier comprising of the following base learners: NB, Bayes Net (BN), RF,
and MLP [27], a hybrid method of NB and LR [28], and a hybrid RF with a linear model (HRFLM) [29].
The other techniques include a combination of LR and Lasso regression [30], an intelligent heart disease
detection method based on NB and advanced encryption standard (AES) [31], a combination of ANN
and Fuzzy analytic hierarchy method (Fuzzy-AHP) [32], and a sparse autoencoder feature learning
method combined ANN classifier [12]. This comparison is tabulated in Table 4. Meanwhile, in order to
give a fair comparison, only the accuracies of the various techniques were considered because some
authors did not report the values for other performance metrics.
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Table 4. Comparison of the proposed method with the recent literature that used the heart disease dataset.

Algorithm Method Accuracy (%)

Verma et al. [13] PSO and Softmax regression 88.4
Tama et al. [14] Ensemble and PSO 85.71

Latha and Jeeva [27] An Ensemble of NB, BN, RF, and MLP 85.48
Amin et al. [28] A hybrid NB and LR 87.4

Mohan et al. [29] HRFLM 88.4
Haq et al. [30] LASSO-LR Model 89

Repaka et al. [31] NB-AES 89.77
Samuel et al. [32] ANN-Fuzzy-AHP 91
Mienye et al. [12] SAE+ANN 90

Our approach Improved SAE + Softmax 91

In Table 5, we compare the proposed approach with some recent scholarly works that used the
cervical cancer dataset, including principal component analysis (PCA)-based SVM [33], a research
work where the dataset was preprocessed and classified using numerous algorithms, in which LR and
SVM had the best accuracy [34], a C5.0 decision tree [35]. The other methods include a multistage
classification process which combined isolation forest (iForest), synthetic minority over-sampling
technique (SMOTE), and RF [36], a sparse autoencoder feature learning method combined ANN
classifier [12], and a feature selection method combined with C5.0 and RF [37].

Table 5. Comparison of the proposed method with the recent literature that used the cervical cancer dataset.

Algorithm Method Accuracy (%)

Wu and Zhou [33] SVM-PCA 94.03

Abdullah et al. [34] SVM
LR

93.4884
93.4884

Chang et al. [35] C5.0 96
Ijaz et al. [36] iForest+SMOTE+RF 98.925

Mienye et al. [12] SAE+ANN 98

Nithya and Ilango [37] C5.0
RF

97
96.9

Our approach Improved SAE + Softmax 97

In Table 6, we compare the proposed method with other recent CKD prediction research works,
including an optimized XGBoost method [38], a probabilistic neural network (PNN) [39], and a method
using adaptive boosting (AdaBoost) [40]. The other research works include a hybrid classifier of NB
and decision tree (NBTree) [41], XGBoost [42], and a 7-7-1 MLP neural network [43].

Table 6. Comparison of the proposed method with the recent literature that used the cervical CKD dataset.

Algorithm Method Accuracy (%)

Ogunleye and Qing-Guo [38] Optimized XGBoost 100
Rady and Anwar [39] PNN 96.7

Gupta et al. [40] AdaBoost 88.66
Khan et al. [33] NBTree 98.75
Raju et al. [42] XGBoost 99.29

Aljaaf et al. [43] MLP 98.1
Our approach Improved SAE + Softmax 98

From the tabulated comparisons, the proposed sparse autoencoder with Softmax regression
obtained comparable performance with the state-of-the-art methods in various disease predictions.
Additionally, the experimental results show an improved performance obtained due to efficient
feature representation by the sparse autoencoder. This further demonstrates the importance of training
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classifiers with relevant data, since they can significantly affect the performance of the prediction
model. Lastly, this research also showed that excellent classification performance could be obtained not
only by performing hyperparameter tuning of algorithms but also by employing appropriate feature
learning techniques.

5. Conclusions

In this paper, we developed an approach for improved prediction of diseases based on an enhanced
sparse autoencoder and Softmax regression. Usually, autoencoders achieve sparsity by penalizing
the activations within the hidden layers, but in the proposed method, the weights were penalized
instead. This is necessary because by penalizing the activations, it makes approximating near-zero loss
function challenging for the network. The proposed method was tested on three different diseases,
including heart disease, cervical cancer, and chronic kidney disease, and it achieved accuracies of
91%, 97%, and 98%, respectively, which outperformed conventional Softmax regression and other
algorithms. By experimenting with different datasets, we aimed to demonstrate the effectiveness of the
method in diverse conditions. We also conducted a comparative study with some prediction models
available in the recent literature, and the proposed approach obtained comparable performance in
terms of accuracy. Thus, it can be concluded that the proposed approach is a promising method
for the detection of diseases and can be further developed into a clinical decision support system to
assist health professionals as in [44]. Meanwhile, future research will apply the method studied in this
paper for the prediction of more diseases, and also employ other performance metrics such as training
time, classification time, computational speed, and other metrics, which could be beneficial for the
performance evaluation of the model.
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