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Abstract: Deep neural networks are vulnerable to the adversarial example synthesized by adding
imperceptible perturbations to the original image but can fool the classifier to provide wrong
prediction outputs. This paper proposes an image restoration approach which provides a strong
defense mechanism to provide robustness against adversarial attacks. We show that the unsupervised
image restoration framework, deep image prior, can effectively eliminate the influence of adversarial
perturbations. The proposed method uses multiple deep image prior networks called tandem deep
image priors to recover the original image from adversarial example. Tandem deep image priors
contain two deep image prior networks. The first network captures the main information of images
and the second network recovers original image based on the prior information provided by the first
network. The proposed method reduces the number of iterations originally required by deep image
prior network and does not require adjusting the classifier or pre-training. It can be combined with
other defensive methods. Our experiments show that the proposed method surprisingly achieves
higher classification accuracy on ImageNet against a wide variety of adversarial attacks than previous
state-of-the-art defense methods.
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1. Introduction

In recent years, deep learning technology [1] has made breakthroughs in the Artificial Intelligence
area and has been successfully applied in many computer vision tasks such as image classification [2],
speech recognition [3], natural language processing [4]. The accuracy of deep neural networks (DNNs)
in image classification even exceed human performance. Because of these excellent performances,
DNNs are deployed in many important real-world systems such as autonomous vehicles and disease
diagnosis. In these scenarios, DNNs need to be highly robust.

However, many researchers [5–7] have shown that DNNs are vulnerable to adversarial
attacks. Adversarial attacks lead DNNs into making incorrect predictions easily by adding small,
well-crafted perturbations to the original image. These perturbations are generated by calculating
the gradient of the input image to the network, called adversarial perturbations. The images with
adversarial perturbations, known as adversarial examples. Figure 1 shows the process of adversarial
attacks. Adversarial examples not only exist in digital images but also the physical world [8–12].
Adversarial attacks lead to security threats in real-world applications of DNNs. Therefore, to deal with
the threat of adversarial examples has become a major concern in the safety of DNNs.
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Figure 1. DNN provides the wrong prediction with high confidence by adding imperceptible
perturbations to the original image.

The process of making the model correctly classify adversarial examples is defense. The existing
defensive methods can be divided into three classes: (a) preprocessing the input data, (b) adversarial
training, (c) adversarial example detection. The methods of first class use multiple image processing
techniques such as image randomization [13,14], image denoising [15], image compression [16] to
remove adversarial perturbations or destroy the structure of adversarial perturbations. The methods
of second class retrain the network on a training set containing adversarial examples to enhance the
robustness of network [17–19]. This kind of defense is vulnerable to attacks in the future because
the adversary can fool them by back-propagating the classifier error through it. The methods of
third class use the difference between clean images and adversarial examples to find whether the
input is adversarial or not [20–22]. This kind of method is usually used as a pre-detection module,
combined with other defensive methods. Generally speaking, the first class methods are more
applicable because they do not require to adjust the model. However, some preprocessors like denoiser
or compression network also need to learn image priors and synthetic adversarial perturbations
statistics from plenty of training images. Besides this, these preprocessors also face the risk of being
attacked by calculating gradients, for they are differentiable.

In this paper, we regard adversarial perturbations as a special “noise”, which is
human-imperceptible and intentionally designed. Thus, the defense can be considered as an image
restoration problem, which is sorted into the first class. The proposed method is on top of “deep
image prior” (DIP) work of Ulyanov et al. [23]. DIP is a powerful unsupervised framework for image
restoration and achieves excellent results in standard inverse problems like denoising, inpainting,
and single-image super-resolution. Given a target image, DIP trains to reproduce that image from
random noise. Ulyanov et al. demonstrate that deep convolutional network inherently has the ability
to learn the natural part of a corrupted image before learning its corrupted part. That is, the network is
easier to recover the original image and harder to recover adversarial perturbations.

Inspired by DIP, we design an unsupervised network which consists of two tandem DIP networks,
called tandem deep image priors (t-DIPs). The input to the first network DIP1 is random noise and the
network learns to reconstruct the target image. The DIP1 captures the main information of the image
quickly by setting a small number of iterations. The output of network is used as prior information to
enhance and accelerate the image restoration of the second network DIP2. Figure 2 gives the main idea
of t-DIPs. The entire networks do not require pre-training, the networks only use the prior captured by
themselves to filter out adversarial perturbations from the adversarial example. This allows our model
to be applied to any image classification network in a “plug-and-play” way.

In summary, this paper has the following contributions:

• This paper proposes the t-DIPs, an unsupervised generative model to defend adversarial examples.
The first DIP network captures the main information of image. The second DIP network recovers
clean-version image based on the output of the first DIP network.
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• The proposed method serves as a preprocessing module and does not require pre-training.
Therefore, it reduces the time and computation cost and can be applied to any image classification
network without modification.

• The proposed method can achieve higher accuracy than the current state-of-the-art defense on
a variety of adversarial attacks.

The main structure of this paper is as follows. Section 2 discusses the main attack and defense
techniques in image classification. Section 3 introduces our method t-DIPs in detail. Section 4 shows
a series of experimental results. Section 5 shows the conclusion.

Figure 2. The main idea of t-DIPs. The first network DIP1 captures the main information of the image.
The second network DIP2 generates the corresponding clean image based on the output of network
DIP1. The two DIP networks set the loss function as minimizing the difference of recovery image and
adversarial example.

2. Background and Related Works

In this section, we review the main methods for generating adversarial examples and defending
against adversarial examples.

2.1. Definitions and Notations

We first specify some of the notations used in this paper. Let x denote the clean image from
a given dataset and y denote its corresponding ground-truth label. F represents the target model,
which is attacked by adversarial examples. δ denotes adversarial perturbations intentionally crafted.
In this paper, we focus on the untargeted attacks. In untargeted attacks, the attacker wants to generate
adversarial example xadv = x + δ, which makes F(x) 6= F(xadv) and |δ| < ε. ε is the magnitude of
adversarial perturbations, measured by the lp norm.

White-Box Attack: In a white-box setting, the adversary can make full use of the network
information including its architecture, parameters, gradients and so on to carefully craft adversarial
examples. As stated by [18], security against white-box attacks is the property that we desire DNN
to have.

2.2. Methods for Generating Adversarial Examples

Szegedy et al. [5] first implemented the L-BFGS algorithm to attack a deep neural network.
They formulated their optimization problem as a search for minimal distorted adversarial example.
Goodfellow et al. [6] suggested a classic one-step method to fast generate adversarial examples,
called Fast Gradient Sign Method (FGSM). FGSM generates adversarial example by adding increments
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in the gradient direction of the loss gradient. Given a loss function L(θ, x, y), where θ denotes the
network parameters. The formulation is:

xadv = x + εsign(∇xL(θ, x, y)) (1)

For it only calculates the gradients once, FGSM is fast in generating adversarial example and
weak in attacking. Thus, Kurakin et al. [24] introduce a stronger attack Basic Iterative Method
(BIM), which is also known as Projected Gradient Descent (PGD) [17]. BIM attack heuristically
searches adversarial example that has the largest loss value in the L∞ ball around the original image.
These adversarial examples are called “most-adversarial” examples when the perturbation intensity is
limited. Y. Dong et al. [25] proposed the Momentum Iterative Fast Gradient Sign Method (MI-FGSM),
which was the winner of the NIPS 2017 Targeted and Non-Targeted Adversarial Attack competitions.
MI-FGSM attack integrates the momentum term into the iterative process to boost adversarial attacks.
Carlini-Wagner et al. [26] designed C&W attack aiming to find the minimally distorted perturbation.

2.3. Defense Against Adversarial Examples

Existing defensive methods can be roughly divided into three categories.
Preprocessing the input data is a normal strategy for protecting the model. These methods add

a preprocessor to transform adversarial examples into its clean version or destroy the structure of
adversarial perturbations. For example, Xie et al. [13] randomly resized and padded an image before
input it to a classifier. F. Liao et al. [15] designed high-level representation guided denoiser (HGD)
to remove adversarial perturbations. Jia X. et al. [16] devised ComDefend, which utilized the image
compression to defend against adversarial examples. W. Fan et al. [27] erased adversarial perturbations
via a deep residual generative network (RGN). Negin E. et al. [28] utilize tensor decomposition
techniques as a preprocessing step to find a low-rank approximation of images that significantly discard
high-frequency perturbations. The problem with these methods is that preprocessors performing
better like HGD and ComDefend still require pre-training. In addition to this, these preprocessors are
differentiable, which means they are likely to be attacked by gradients in the future.

Adversarial training is also a useful way of defending, which is first introduced by
Goodfellow et al. [6]. They added a large number of adversarial examples generated by FGSM during
the training process to improve the robustness of the model. After that, Madry et al. [17] suggested
using more adversarial attack method PGD for adversarial training. The model trained under PGD is
more robust against single-step attacks. Tremer et al. [18] introduced an adversarial training method
called ensemble adversarial training, which augments the classifier’s training set with adversarial
examples generated from other pre-trained classifiers. Then Harini et al. [19] introduced an enhanced
defense using a technique called adversarial logit pairing, a method that matches the logits from a clean
image and its corresponding adversarial image. Xie et al. [29] proposed feature denoising networks
which denoise the features using non-local means. Ahmadreza J. et al. [30] introduced Learn2Perturb,
an end-to-end feature perturbation learning approach for improving the adversarial robustness of
deep neural networks. Although these methods can increase the classification accuracy effectively,
adversarial training requires retraining the model end-to-end with adversarial data augmentation,
which costs more time and computation than natural training.

Adversarial example detection is another main approach to protect classifiers. Instead of
predicting the model’s input directly, these methods first distinguish whether the input is benign or
adversarial. Then, if it can detect that the input is adversarial, the classifier will refuse to predict its
label. For example, Grosse et al. [20] used a statistical test: Maximum Mean Discrepancy (MMD) test,
which was used to test whether two datasets are drawn from the same distribution. They used this
testing tool to test whether a group of data points are benign or adversarial. Gong et al. [21] trained
a binary classification model to discriminate all adversarial examples apart from benign samples and
then train a classifier on recognized benign samples. Frosst N. et al. [22] proposed to detect adversarial
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examples by reconstruction from class conditional capsules. Scott F. et al. [31] developed UnMask,
which detects attacks by verifying that an image’s predicted class (“bird”) contains the expected robust
features (e.g., beak, wings, eyes).

3. Methods

3.1. The Basic Idea of Tandem Deep Image Priors

The methods that protect the model by preprocessing the input data try to find a preprocessor T(.).
To achieve F(T(x)) = F(T(xadv)), T(.) should retain the original image information which is highly
predictive while removing adversarial perturbations. Thus, the preprocessors with better performance
still need to learn the prior of adversarial perturbations and clean images on the training set.

Deep image prior is a convolutional neural network, which captures image statistics by its
structure. The network is often used as prior to solve image restoration problems. As we considered
defense as image restoration problems, we use deep image prior network to defend against adversarial
examples, showing good potential. We feed the images generated by deep image prior network under
different number of iterations into the target model Inception v-3 [32] to calculate the classification
accuracy. The variation of classification accuracy with the number of iterations is shown in Figure 3.
The experiments are performed on 1000 ImageNet-compatible images. BIM attack is used to generate
adversarial examples. The accuracy of target model with no defense is 0%. The maximum number
of iterations for DIP is set to 1500. The DIP outputs are classified every 100 iterations. From Figure 3,
it can be seen that DIP mainly learns to generate the natural part of image. Noisy patterns in adversarial
example is hard for DIP to learn. DIP is able to recover the original image from adversarial example.

Figure 3. The ability of deep image prior to recover original image from adversarial example.
The accuracy of Inception v-3 with no defense is 0%.

However, DIP requires lots of iterations, which is rather slow. We propose to use multiple DIP
networks to reconstruct images, termed t-DIPs. The proposed method consists of two DIP networks.
The first DIP network outputs with less number of iterations. The image prior it implicitly captured
is projected onto the images generated. The second DIP network starts from the output of the first
DIP network and trains to recover the target image. The experiments show that with the image prior
provided by the first network, the performance of the second network is improved, and the number of
iterations needed gets less.

3.2. Network Structure of Tandem Deep Image Priors

The experiments are conducted on commonly used U-Net [33] type “hourglass” architecture.
The network contains operations such as convolution, upsampling and non-linear activation.
In particular, skip-connections are used in the second DIP network.

3.2.1. The First Deep Image Prior Network

The first DIP network which we note as DIP1 outputs in early iterations. Thus, the image generated
misses the image details. DIP1 learns the main information of the target image and there are almost no
adversarial perturbations. We design the first DIP network architecture shown in Figure 4. DIP1 consists
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of 9 weight layers. Different arrows represent convolution or upsampling operations. The ReLU is
used as an activation function. We use four 5× 5 convolutional layers to generate a set of feature maps.
The stride of the 1st and 3rd convolutional layer is set to 2× 2 for downsampling. Then two upsampling
layers and two 3× 3 convolutional layers are used to upsample the feature maps to the same size as
input and reduce the number of channels. Corresponding to downsampling, the stride of upsampling
layers are set to 2× 2. The reconstructed image is obtained by 1× 1 convolution.

Figure 4. The structure of the network DIP1.

3.2.2. The Second Deep Image Prior Network

The second DIP network which we note as DIP2 recovers the target image from the output of
DIP1. It should be a high-capacity network. So we design the second DIP network shown in Figure 5.
The DIP2 network can be seen as two components, a feedforward path and a feedback path. The first
part feedforward path consists of two 3× 3 convolutional layers and five ‘unetDown’ blocks which
each of them is composed of two 3× 3 convolutional layers and a 2× 2 max-pooling layer. The second
part feedback path consists of five ‘uetUp’ blocks and a convolutional layer. Each block consists
of a deconvolutional layer and two 3× 3 convolutional layers. The ReLU non-linearity is used as
an activation function. There are shortcuts between ‘unetDown’ blocks and corresponding ‘uetUp’
blocks. These shortcuts transmit multi-scale information contained in the images. Thus, DIP2 can
generate images with better details in the later stage of iteration.

Figure 5. The structure of the network DIP2.
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3.3. Loss Functions

The DIP1 network starts from a random value z, and trains to recover the target image.
The reconstruction loss can be set up as the distance between the generated image and xadv. So MSE is
used to calculate the reconstruction loss:

L1(θ1) = | fθ1(λ1, z)− xadv|2 (2)

where x is the adversarial example, z is the input random noise, fθ1() represents the network DIP1

with parameters θ1, λ1 is the number of iterations which is determined by experiments.
The DIP2 network generates the target image based on the output of the network DIP1.

Thus, the loss function of network DIP2 is defined as:

L2(θ2) = | fθ2(λ2, fθ1(λ1, z))− xadv|2 (3)

where fθ2() represents the DIP2 network with parameters θ2, λ2 is the number of iterations which is
determined by experiments.

The original image reconstructed by t-DIPs network is related to the number of iterations. For the
image quality to increase steadily with the number of iterations, we use an exponential sliding window
to smooth the restored images obtained in the last iterations.

4. Experimental Results and Discussion

In this section, the proposed method is evaluated and compared with existing methods
for four different classifiers: Inception-v3, ResNet152 [34], ResNet50 and DenseNet161 [35].
For these models, we obtain ImageNet pre-trained weights from Torchvision Library
(https://github.com/pytorch/vision) and do not perform any re-training or fine-tuning.
The experiments are performed on the NIPS 2017 Competition on Adversarial Attacks and Defenses
DEV dataset [36]. The dataset is collected by Google Brain organizers and consists of 1000 images of
size 299× 299. The weights of tandem DIPs are randomly initialized. The network is optimized using
Adam [37]. The learning rate is initially set to 0.001. The input noise is uniform, ranging from 0 to 1.

4.1. Adversarial Examples

To prepare adversarial examples, we use Foolbox [38], a publicly available toolbox for adversarial
attacks, to generate different adversarial examples, including FGSM, DeepFool, PGD, MI-FGSM,
C&W. For each adversarial example, adversarial perturbations are considered under L∞ norm and the
perturbation level ε is set to 8.

4.2. DIP vs. t-DIPs

In this paper, we propose to use image restoration techniques to recover clean image from
adversarial example. We design t-DIPs based on deep image prior network. The proposed method
contains two DIP networks. The first network captures the main information of images and the
second network recover original image based on the prior information provided by the first network.
The experiments show that deep image prior alone is effective to defend against adversarial examples.
However, the proposed method that uses multiple DIP networks needs fewer iterations and has better
performance. The results are shown in Figure 6. For DIP, we choose U-Net which is same as the second
DIP network in our method for comparison. Specifically, the number of iterations has a great influence
on the performance of deep image prior networks. We set the number of iterations to 1500, and the
classification accuracy is tested every one hundred intervals. For a full comparison, the number of
iterations of the first DIP network is set to 100, 200 and 300.

https://github.com/pytorch/vision
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Figure 6. The classification accuracy of Inception-v3 on adversarial images generated by four attacks.
The blue line represents the accuracy of Inception-v3 with DIP for defense.

It can be seen from Figure 6 that under all four attacks, our method outperforms DIP and
requires fewer iterations. We also compare the impact of the first network iterations on the proposed
method. It can be seen that in early iterations, classification accuracy increases with the increase of
the first network iterations. That is because that the image with more iterations has more information.
However, in late iterations, classification accuracy is almost not affected by the first network iterations.
Besides, in strong attack BIM and MI-FGSM, classification accuracy first increases and then decreases
with the increase of the number of iterations. That is because that adversarial perturbations are
gradually learned with the iterations increasing. Thus, considering the balance of time and effect on
different attacks, we set the first network iterations to 100, and the second network iterations to 1000.

Additionally, we also compared the subjective visual perception of the images generated by the
single DIP and our method. Please refer to Figure 7 for details. The number of iterations is set to
1500. With a similar number of iterations, the images generated by our method is closer to the original
images, which is better for the following model to classify.

Figure 7. Comparison of images generated by our method with a single DIP network. With a similar
number of iterations, our method can reconstruct images with more details.
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4.3. Comparisons with Other Defensive Methods

To evaluate our proposed method, we compare our method with the current state-of-the-art
defense based on image transformation, including HGD and ComDefend. We input the adversarial
examples processed by different defense methods into the target model to calculate the accuracy.
The higher accuracy represents the better defense effect. We apply different attacking methods
including FGSM, DeepFool, BIM, MI-FGSM and C&W under the white-box settings to the following
models: Inception-v3, ResNet152, ResNet50 and DenseNet161. The attacks have a maximum
perturbation ε = 8 for each pixel.

As shown in Table 1, the proposed defense outperforms across four different models and various
adversarial attacks. In particular, performance is improved a lot on defending strong attacks including
BIM, MI-FGSM and C&W attack methods. Compared to HGD, the proposed method achieves higher
accuracy on the FGSM, BIM, MI-FGSM and C&W attack methods. Specifically, performance is
more balanced by using the proposed method on various adversarial attacks and original images.
Although HGD performs well on original images and DeepFool attack, it performs extremely poorly on
strong attacks. Compared to ComDefend, the proposed defense consistently improves the performance
of defending various adversarial attacks. The accuracy of original images also increases. What’s more,
unlike these existing defenses, which require training pre-processing module, the proposed method
is training-free. It can be used directly as a plug-in module. In general, without training data and
time, our method achieves much higher accuracy than the current state-of-the-art method on defense
against most of adversarial attacks.

Table 1. Performance comparison with state-of-the-art defenses on NIPS 2017 DEV images under
white-box setting.

Defense Clean FGSM DeepFool BIM MI-FGSM C&W

Inception-v3

No Defense 86.4% 10.9% 1% 0% 0% 0%
HGD 81.7% 61.2% 80.8% 0.8% 0.4% 15.3%

ComDefend 63.3% 61.2% 63.4% 34% 40.2% 60.7%
Our method 67.2% 67.3% 68.1% 47.2% 53.6% 65.2%

ResNet152

No Defense 82.7% 3.4% 1.8% 0% 0% 0%
HGD 77.8% 50.5% 76.3% 3.4% 4% 37.2%

ComDefend 62% 51.9% 54.3% 26.4% 34.7% 50.8%
Our method 64.6% 60.7% 63.2% 39% 45.9% 60.8%

DenseNet161

No Defense 79.6% 1.3% 1.5% 0% 0% 0%
HGD 73.7% 41.4% 71.3% 2.6% 2.8% 28.8%

ComDefend 61% 50.8% 52.3% 23.5% 28.7% 50.1%
Our method 60.8% 56% 59.2% 24.6% 33.8% 52.4%

ResNet50

No Defense 76.7% 1.9% 1.4% 0% 0% 0%
HGD 72.5% 46% 70.3% 3.8% 4.2% 32.9%

ComDefend 55% 44.5% 46.3% 22.1% 28.2% 44.4%
Our method 59.2% 56% 55.3% 32.5% 40.6% 54.4%

Bold: represents the highest defense success rate.

4.4. Analysis of the Proposed Method

To explore the nature of the proposed method we use localization techniques, termed Class
Activation Maps (CAMs) [39]. CAM enables convolutional neural networks with global average
pooling to localize the discriminative regions in the image. This method allows us to visualize the
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predicted class scores on a given image. In CAM, the red highlighted area means the area which
network focus on. The features of this area have a greater weight on the network’s prediction.
Figure 8 shows the CAMs for the top-1 prediction of Inception-v3 model for original, adversarial and
recovered images. It can be seen that the network focus on the areas where soccer, shoes, and chair
are located in original images. Thus, the network can predict correctly. However, for adversarial
examples, adversarial perturbations make the network focus on the wrong regions, resulting in
a wrong prediction. The CAMs of recovered images are closer to the CAMs of the original images.
It is indicated that the proposed method is effective in keeping the original image content and
suppressing adversarial perturbations.

Figure 8. Class activation maps for original, adversarial and recovered images.

5. Conclusions

The existence of adversarial examples brings a serious threat to the application of DNN in
security-sensitive scenarios, such as autonomous vehicles. If the automatic driving system misclassifies
the “stop” sign replaced with the adversarial example, it will be extremely dangerous. Therefore, it is
necessary to explore robust defense methods. In this paper, we design tandem deep image prior
networks, which recover the original images according to adversarial examples. The architecture
of tandem network reduces the number of iterations required and achieving better performance.
The proposed method is unsupervised, does not require training on adversarial examples. Thus, it is
agnostic to the deployed model and attack method. Our work demonstrates that the proposed method
performs better on FGSM, BIM, MI-FGSM, C&W attack methods, compared to the state-of-the-art
defense method.

The limitations to our defense are that we only try U-Net type architecture in current experiments,
and it still takes longer time than other defense methods. The quality of recovered images and the
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number of iterations needed are related to the architecture of network. In future work, we aim to
design a more appropriate network to deal with adversarial examples. Besides, we hope to apply the
proposed framework for more image restoration problems such as inpainting and super-resolution.
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