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Abstract: In this paper, we propose an on-chip learning method that can overcome the poor characteristics
of pre-developed practical synaptic devices, thereby increasing the accuracy of the neural network
based on the neuromorphic system. The fabricated synaptic devices, based on Pr1−xCaxMnO3, LiCoO2,
and TiOx, inherently suffer from undesirable characteristics, such as nonlinearity, discontinuities,
and asymmetric conductance responses, which degrade the neuromorphic system performance.
To address these limitations, we have proposed a conductance-based linear weighted quantization
method, which controls conductance changes, and trained a neural network to predict the handwritten
digits from the standard database MNIST. Furthermore, we quantitatively considered the non-ideal case,
to ensure reliability by limiting the conductance level to that which synaptic devices can practically
accept. Based on this proposed learning method, we significantly improved the neuromorphic system,
without any hardware modifications to the synaptic devices or neuromorphic systems. Thus, the results
emphatically show that, even for devices with poor synaptic characteristics, the neuromorphic system
performance can be improved.
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1. Introduction

Recently, deep learning has been implemented in systems central processing units (CPUs) and
graphics processing units (GPUs), and has performed successfully in most fields that utilize an artificial
neural network (ANN) [1,2]. However, bottlenecks are often caused by the strict hardware requirements,
excessive memory access, and high power consumption [3,4]. Consequently, neuromorphic systems have
attracted attention recently as an alternative to replace the Von-Neumann architecture [5–7]. Various types
of synaptic devices have been researched for implementing these neuromorphic system [8–12]. Wong et al.
studied in-memory computing based on Re-RAM after analyzing the structure of Von Neumann [13].
Qian et al. proposed a parallel convolution structure using memristor devices [14]. High energy efficiency
was verified using this method, and the possibility as a next-generation computing was shown. Improving
the undesirable synaptic characteristics remains a significant challenge, as nonlinear, discontinuous,
and asymmetric conductance changes of potentiation and depression produce critical failures in on-chip
learning performance [15,16].

Improving system reliability for non-ideal cases is also important. Generally, synaptic devices have
a critical limitation on the levels of conductance they can access because the conductance has a certain
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variation and uncertainty. Thus, many studies have been conducted to improve the performance of the
overall neuromorphic system using the poor characteristics of such devices [17,18]. Kwon et al. [17]
proposed an off-chip training method, such as changing the weight after training, so it is significantly
different from this paper, which proposed an on-chip training method. This paper optimizes weight while
reflecting the actual conductance of the device during on-chip training. In addition, Chang et al. [18]
proposed learning techniques such as activation functions and threshold weight update scheme, and thus
has a different perspective from the proposed method.

Considering these challenges, we have proposed a new method that can improve the performance
of the entire neuromorphic system by quantizing the conductance used for learning in a synapse-based
neural network (NN). Broadly, this provides a new on-chip training technique for neuromorphic systems.
The method presented herein includes a conductance-based linear weighted quantization procedure and
on-chip learning approach, intended for use in devices with non-ideal and undesirable characteristics.
Using this method, we construct, train, and evaluate an NN that accurately and efficiently predicts the
MNIST dataset.

The composition of this paper is as follows: Section 2 briefly introduces the proposed system and the
overall experimental process. Section 3 describes three devices fabricated to demonstrate the generality
of the proposed method, proposes a quantization system, and compares and analyzes the experimental
results. Finally, Section 4 concludes and suggests future research directions.

2. Analysis of Synapse Device

Three types of synaptic devices, based on PCMO, LiCoO2, and TiOx, were fabricated as shown
in Figure 1 and characterized to evaluate and confirm the performance improvements provided
by the proposed method. The previously listed synaptic devices had two-terminal structures of
Pt/PCMO/N:TiN/Pt, Ti/a-Si/LiCoO2/Ni, and TiN/TiOx/Mo, respectively, with a detailed description
of the fabrication methods provided in our previous works [11,19,20]. Using our conductance-based
quantization method, we converted the analyzed conductance values into weights. We then constructed an
NN composed of fully-connected layers, which could classify MNIST with the quantized weight. Finally,
we demonstrated the effectiveness of the proposed method via training and evaluation.

(a) (b) (c)
Figure 1. Cross-sectional TEM images and I–V characteristics for (a) PCMO synaptic devices (Pt/PCMO/N:
TiN/Pt); (b) LiCoO2 synaptic devices (TE/Li1−xCoO2 /a-Si/BE); and (c) TiOx synaptic devices.
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Figure 1 shows the transmission electron microscopy (TEM) images and current-voltage (I–V)
characteristics of the applied synaptic devices, which all exhibit conductance changes in response to
applied biases. This conductance change in PCMO (Figure 1a) is attributed to the formation, or elimination,
of the metal-oxide layer between the PCMO and N:TiN. When a negative (positive) bias is applied, oxygen
in the PCMO (TiNOx) migrates to the N:TiN (PCMO) layer, and the sub-oxide layer of TiON is formed
(dissolved), causing a change in the device conductance [19].

The LiCoO2 conductance also changes under sequential positive and negative bias application
(Figure 1b). LiCoO2 is known as conductance-tunable material because the conductance can be altered
by modifying its Li-concentration [11]. In our fabricated Ti (BE)/a-Si/ LiCoO2/Ni (TE) stacked synaptic
devices, a positive (negative) bias was applied to the TE (BE). This caused Li-ions within the LiCoO2 (a-Si)
to migrate towards the a-Si (LiCoO2), causing the device conductance to decrease (increase).

Additionally, the conductance of TiOx (Figure 1c) can be modulated via the oxygen concentration.
Specifically because oxygen vacancies contribute to the local conducting path, the material conductance
is impacted by the amount of oxygen vacancies within the TiOx layer, where oxygen serves the role
of a dopant [20]. Therefore, applying positive (negative) bias to the Mo (TE) of the devices provides a
mechanism for controlling the device conductance through the bi-directional migration of oxygen ions.

In addition to the specific devices used in this paper, similar demonstrations with varying conductance
levels may be possible. However, for the practicality of focusing the experiments, this paper is limited to
the aforementioned devices.

3. Proposed On-Chip Learning

3.1. On-Chip Training

The previous studies and the proposed method are explained in terms of neural networks as follows.
In the learning process, Kwon et al. use a method of updating weights by applying quantization after
normalizing weights [17]. Chang et al. uses a method of controlling the activation function of neurons
and applying a threshold to the weight of each neuron [18]. Each method has a different synaptic device.
Gated Schottky diode (GSD) was used in [17], and Ta/HfO2/Al-doped TiO2/TiN was used in [18]. In this
paper, PCMO, Li, and TiOx are used. All neural network architectures used a fully connected (FC) layer,
and hard-sigmoid, sigmoid, and ReLU were used as activation functions, respectively. The method of [17]
is for off-chip training, and the rest is for on-chip training. Table 1 summarizes the characteristics of
each study.

Table 1. Comparison of the previous and proposed method.

Items [17] [18] Proposed

Dataset MNIST MNIST MNIST
Synaptic device Gated schottky diodes Ta/HfO2/Al-doped TiO2/TiN PCMO, Li, TiOx
Neural network 784-256-10 FC layer 784-300-10 FC laye 784-300-100-10 FC layer

Activation function Hard-sigmoid Sigmoid, ReLU ReLU
Training Off-chip On-chip On-chip

Training of neural networks refers to the process of finding optimized weights and biases of neurons
using loss functions. After performing an operation that quantitatively compares the correct answer and
the result of the neural network using the loss function, the weight and bias of the neuron are updated
using the result. This process is repeated many times to optimize the neural network. The number of
iterations to use all the data of the prepared dataset at once probabilistically is defined as one epoch.
In other words, the training process consists of many epochs. In the process of learning (or training),
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various experimental conditions for neural networks can be adjusted. In general, adjustable experimental
conditions are called the hyperparameters. Various types of learning can be performed depending on the
number of hyperparameters included in the learning and learning conditions, and the learning time can
be greatly varied. When such learning is performed in a hardware-type neural network (neuromorphic
system) chip composed of a manufactured synapse, this learning is called the on-chip training. In order to
perform on-chip training, the neuromorphic system hardware should have almost all of the functions for
learning. In addition, the deep learning algorithm that has completed learning can immediately infer the
result using the learned neuromorphic system. On the other hand, the off-chip training is a method of
performing learning outside of the neuromorphic system using software, etc. After external learning is
completed, the weights are post-processed according to the neuromorphic system, or the neuromorphic
system is fabricated using the post-processed weights.

A synaptic array is produced by connecting synaptic devices, and an additional circuit is added to
this to create a neuromorphic system. This neuromorphic system corresponds to hardware capable of
executing deep learning algorithms. Because synaptic devices have limitations on conductance values
that can be stably expressed, they cannot have high performance when learning and inferring with the
precision of the original deep learning algorithm. A technique that selects conductances that can show the
best performance of the neuromorphic system among the conductance values that the synaptic device can
express and trains the synaptic device using the selected conductances is a quantization algorithm. A deep
learning model using such a quantization algorithm is a quantized neural network. The quantized neural
network is a neuromorphic system to which the proposed quantization algorithm is applied.

3.2. Proposed Method

The synaptic characteristics, including long-term potentiation and depression, was modeled and
measured, as shown in Figure 2a–d, respectively. Modeling was performed with Equation (1) [21] to apply
these characteristics to the NN simulation:

G =

{
((Gα

LRS − Gα
HRS)× w + Gα

HRS)
1/α if α 6= 0

GHRS × (GLRS/GHRS)
w if α = 0.

(1)

GLRS and GHRS are the low resistance state (LRS) and high resistance state (HRS) conductance, α is a
parameter representing the device conductance characteristics, and w is an internal variable. During the
learning process, w increases and decreases when potentiation and depression pulses, respectively,
are applied to each synaptic device. The modeling function in Equation (1) is well suited for analyzing
both linearity and symmetry. Specifically, if α = 1, it has the highest possible degree of linearity, whereas
α > 1 or α < 1 indicate that it is concave or convex, respectively. Figure 2a shows the model function
with respect to device behavior, where α values change, and αp and αd denote parameters for potentiation
and depression characteristics, respectively. Since fabricated synaptic devices cannot be perfect, there is
disturbance in the distribution of measured conductance. The disturbance of this distribution may be
due to the imperfections of the synaptic device, but may also be caused by the incompleteness of the
experimental environment that occurred during the measurement. Outliers deviating from the mean
distribution appear particularly in Figure 2b. Outliers are approximated to quantized values by a function
estimated based on identical pulses after applying the proposed quantization. Typical synapse devices
show nonlinear conductance property, which should be conducted by pulse numbers with the same
width and amplitude. Thus, we proposed conductance level-based quantization method which utilize
a representative conductance for specific conductance range. It means that, under the identical pulses,
more linear conductance changes can be achieved.
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(a) (b)

(c) (d)
Figure 2. The synaptic characteristics including the potentiation, depression characteristics of the synaptic
devices; (a) modeling function, (b) PCMO, (c) LiCoO2, and (d) TiOx devices for identical pulses and the
histogram of measured conductance values on 10 level. The points correspond to measured conductance
values and the solid line represents the modeling function.

We considered the alpha value as a variable, so we set its range to vary from −10 to 10,
with 0.01 increments, to find the alpha value that would produce the smallest error in the modeling
function and measured the corresponding conductance. Using Equation (1), αp and αd are extracted by
calculating the difference between the predicted conductance (G) and the measured conductance of the
fabricated device. First, the conductance is predicted using Equation (1), increasing a from –10 to 10 in
increments of 0.01. Next, the difference between the predicted value and the measured value is calculated
using MSE (mean square error), and a with the smallest difference is found. In this model, PCMO, LiCoO2,
and TiOx have (αp, αd) of (2.56, −3.77), (1.38, −3.44), and (1.96, 0.18), respectively. Clearly, their nonlinear
and asymmetric properties lessen in severity along the order of PCMO, LiCoO2, and TiOx.

The measured conductance change characteristics of the three devices are shown in Figure 2b–d.
Each section contains a plot of the conductance of potentiation and depression, according to identical
pulses, and histograms for each of these. The measured conductance histogram is concentrated in a specific
range, and there is a range for which no data exist, indicated by ‘X’. In the case of using 20 conductance
values for each device, a linear device such as Li does not have a nonexistent conductance value, and TiOx

and PCMO have two and seven nonexistent conductance values, respectively. In other words, it can be
seen that the number of nonexistent conductance values increases as the device has a large nonlinear
property. Generally, the widespread use of electrical conductance properties has been limited by problems
such as repeated measurement displacement and non-uniform distributions of measured conductance.
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Considering this, we trained and evaluated our method using only the conductance levels available to
actual, practical synaptic devices.

In this work, the proposed quantization method was applied to the neuromorphic system shown
in Figure 3. The weight was adjusted with pulses in the synaptic cell array to obtain the loss value as a
result of the calculation. The weight which can be implemented by a pair of synaptic cells was adjusted
with pulses in the synaptic cell array to obtain the loss value as a result of the calculation. The gradient is
calculated based on the calculated loss value, and then this is used to update the weight. The weight is
quantized using our proposed quantizer described below, and on-chip learning is performed by inserting
a pulse with a corresponding weight into a synaptic cell array.

Figure 3. Proposed quantization system.

The proposed linear weighted quantizer is described in detail in Figure 4. After precisely analyzing
the characteristics of the various devices using Equation (1), the conductance values are obtained based on
identical pulses. Then, normalization is performed to easily convert the conductance value into the weight
of the neural network. Normalizing all conductance by finding the maximum and minimum values of the
conductance, the conductance has a discrete value between 0 and 1. Among the normalized discontinuous
conductances, we extract the N-level weights that most closely match the uniform function. At this time,
the potentiation and depression characteristics of the device are separately applied based on the weight
magnitude change. This process maximizes the linearity of the device’s inherent conductance. In general,
if the synaptic device is more linear, learning of a neuromorphic-based deep learning system using the
synaptic device is well performed [17,18,22]. However, it is very difficult for a typical synaptic device
to have an electrically linear operation characteristic, and it has a nonlinear operation characteristic as
shown in Figure 2b–d. However, even if a synaptic device has a nonlinear operation characteristic, it can
perform a similar operation to a linear one if a quantization algorithm with high linearity is applied based
on identical pulses. That is, if a quantization algorithm capable of performing a linear operation is applied
to a synaptic device having a nonlinear operation characteristic, the learning efficiency of a neuromorphic
system can be improved.
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Figure 4. The proposed process of converting the measured conductance into the quantized conductance;
after applying the modeling function to the normalized conductance, the conductance is sampled based
on the identical pulse. Next, the conductance that maximizes linearity according to the level is selected,
and the quantized conductance is extracted.

Figure 5 schematically shows the process of converting the measured conductance of the fabricated
synapse device into quantized conductance using the proposed conductance quantization algorithm.
The top three graphs in Figure 5 are for potentiation, and the bottom three graphs are for depression.
As shown in Figure 5a, the measured conductance from the synapse device has a somewhat disordered
form. Using Equation (1), we model the function closest to the trend of unaligned measured conductance.
α used to model the function can be calculated using a variety of methods. Through repeated various
experiments, the optimal α for each synapse device is obtained in advance. The modeled function is shown
in Figure 5b. The conductance that can be expressed by the actual synapse device is sampled among
conductance values that can be expressed by the modeled function. This process is shown in Figure 5c.
Eventually, the neuromorphic system composed of synapse devices is learned using the conductance of
Figure 5c.

(a) (b) (c)
Figure 5. Generation process of the quantized conductance; (a) normalization to use the measured
conductance as a weight; (b) after extracting the value of alpha using normalized conductance, modeling
the synaptic device; (c) sampling based on identical pulses to apply the device characteristics to a
function modeling.

A typical method is the most basic method of quantizing synaptic devices. This method samples
and quantizes the conductance of synaptic devices at regular intervals. That is, when this method is
used, the nonlinearity of the device can be reflected as it is. The typical conventional method [22] and
proposed linear weighted quantization method are compared directly in Figure 6a,b. For each method,
the conductance representative values of 5 are depicted in dots. In the typical method, quantized values
are sampled by setting the stride to 2, resulting in nonlinearity because the device characteristics are
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applied as-is. However, in our proposed method, it is possible for the sampled stride to be applied flexibly,
enabling even a nonlinear device to operate linearly.

(a) (b)
Figure 6. Conductance quantization (a) proposed and (b) typical methods. In (a,b), the top is the
potentiation graph and the bottom is the depression graph. In addition, the left is the normalized
conductance for the identical pulse, and the right is the quantized conductance for the normalized
conductance. The index N means the Nth quantization index.

4. Experiment and Results

To thoroughly evaluate our proposed method, back-propagation-based on-chip learning was
performed by classifying the handwritten images of the MNIST dataset with 28 × 28 sizes. The training
and test data had sizes of 60,000 and 10,000, respectively. Additionally, the NN structure is shown in
Figure 7, which consists of two hidden layers with 300 and 100 neurons, respectively, and an output layer
with 10 neurons. If we use the structure of convolutional neurons that can extract spatial characteristics
more efficiently than FC neurons, batch normalization that leads to efficient learning results by controlling
the distribution of results by layer, dropout that randomly removes neurons, and learning techniques such
as weight decay, we would have better learning and inferring performance. However, we fundamentally
experimented with on-chip learning and used the most basic deep learning model based on FC layer to
show the original effect. After performing softmax on the output layer, the number drawn on the input
image was predicted based on the most probably output location. We used ReLU (Rectified Linear Unit)
and CEE (Cross-Entropy Error) as activation and loss functions, respectively. We extracted random
input data in 100 mini-batch units and performed forward through NN. The back-propagation was then
performed based on the loss function. After training and inferring the NN with both methods using
the same training method, the learning results of each method were compared and analyzed. In the
neural network respect, from input layer to the first hidden layer, input data are multiplied by synaptic
weights, and summated to derive intermediate results. Then, the intermediate results are calculated by the
activation function to lead results of the first hidden layer. The synaptic weights, in synaptic cell respect,
can be realized by conductance of the synaptic cells, and the input data are implemented by applied
voltages on the memristor.
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Figure 7. The architecture of the neural network used in the experiment; The network consisted of two
hidden layers with 300 and 100 hidden neurons and one output layer with 10 output neurons. ReLU is
used as an activation function.

The proposed linear weighted quantization technique and the typical method [22] are compared in
Figure 8a,b. For conductance ranges, conductance values representing specific ranges are expressed as
dots. In Figure 8c, the nonlinear conductance of the device based on the identical pulse is represented by
the black line, and the conductance value corresponding to the specific pulse range is represented by the
point using the proposed quantization method. The value of the point in these is the same as the value
of the point in Figure 8a. In both cases, potentiation and depression of PCMO synaptic devices showed
quantized conductance at five levels after normalization. The typical method is very nonlinear because
it applies the characteristics of the device as it is. However, the proposed linear-weighted quantization
technique employs a conductance quantization method that maximizes linearity within the device’s
inherent characteristics. That is, even if the characteristics of the device are not linear, by quantization
conductance that improves linearity, it is possible to show learning characteristics such as an ideal device
has linearity.

(a) (b) (c)
Figure 8. Quantization index (Quantized Point) and step size of (a) typical and (b) proposed method,
and (c) quantized potentiation and depression over the pulse number.
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When initializing the weights, the conductance values of the neural network are determined to have
a uniform distribution over the maximum and minimum range of conductance of each synapse device.
As training progresses, these initial weights are quantized using the proposed method and converged to
limited conductance values. Figure 9 shows the results of training about weights with the conductance
values of five levels using the quantization technique proposed in a neural network composed of Li devices.
The initialized weight map is shown in Figure 9a, and the weight map that has been trained is shown in
Figure 9b. Compared to Figure 9a, the weight map in Figure 9b is quantized and optimized with several
specific values.

(a) (b)
Figure 9. The weight map (a) before and (b) after training using the proposed method with five levels.
These maps are made using the result of LiCoO2. (a,b) are composed of three sub-figures. The first and
second are weight maps of 784 × 300 and 300 × 100, respectively. Since two weight maps with different
dimensions are expressed at the same height, the size of the pixels representing a weight in the two
sub-figures are different. The third is information of weight size.

Figure 10 shows the process of training a neuromorphic system composed of Li devices using the
proposed method. Figure 10a is a graph that evaluates the performance of the network during the
training process, and the accuracy of the result inferred by the network and the correct answer is used as
the evaluation method. Figure 10b shows the error between the inferred result and the correct answer.
In Figure 10, “valid” represents the validation result, and “train” represents the training result. The “valid”
result is a result of inferring using data that is not used for training, and can better show the general
performance of the network. As shown in Figure 10, it shows very low performance initially, but it can
be seen that the network performance improves rapidly. That is, it can be confirmed that the proposed
method is suitable for training a network. In addition, in almost all results, it can be seen that the proposed
method shows better performance than the typical method. When learning the three synapse devices,
the learning rate was selected as 0.5 for PCMO, 0.3 for Li, and 0.5 for TiOx through an experimental
optimization process. In network training, the selection of the learning rate is very important. Because the
characteristics of each device are very different, the network designer must experiment to find the learning
rate that best optimizes the network.
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(a) (b)
Figure 10. Performance comparison of typical and proposed method using training and validation results
(a) accuracy, (b) loss. Since MNIST consists of 60,000 training data and mini-batch is set to 100, 1 epoch is
600 iterations in probability.

Using our proposed technique, we improved the performance of a neuromorphic system very simply,
without using complicated calculations, additional circuits, or additional processing steps, and using only
realistic device conductance values. Furthermore, by implementing only these limited device conductance
values, the possibility of on-chip learning for practical synaptic devices is effectively demonstrated. Clearly,
maximizing the linearity of synaptic devices significantly improves the learning capabilities of inherently
nonlinear synaptic devices.

In Figure 11, we directly observe the merits of the proposed method, which improves the NN accuracy.
Compared with the typical method, the accuracy is improved by a remarkable 37.7% when the PCMO
device has five levels of conductance. The analytical results for the three devices show that a more
nonlinear device has a correspondingly higher rate of accuracy improvement.

Figure 11. Ratio of accuracy enhancement between the proposed and typical method [22].

5. Conclusions

In this paper, we analyzed the conductance variation in three synaptic devices for on-chip learning
and proposed a conductance-based linear weighted quantization method and on-chip learning method.
Using on-chip learning for non-ideal synaptic device, we proved the generalizability of the proposed
method by successfully training and evaluating the NN, which exhibited an accuracy improvement rate of
37.7% for the PCMO device. This demonstrates that, although the device had nonlinear, discontinuous,
and asymmetrical properties, it can still achieve high accuracy. Furthermore, our proposed method offers
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practicality and strong applicability, as it does not require additional circuits, adjustment of identical
pulses, or any advances engineering approaches for materials and devices. Thus, even for inherently
nonlinear, discontinuous, and asymmetrical devices, high neuromorphic system performance is possible.
In the future, we intend to proceed with a study that considers conductance variations.
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