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Abstract: Siamese network-based trackers are broadly applied to solve visual tracking problems due
to its balanced performance in terms of speed and accuracy. Tracking desired objects in challenging
scenarios is still one of the fundamental concerns during visual tracking. This research paper proposes
a feature refined end-to-end tracking framework with real-time tracking speed and considerable
performance. The feature refine network has been incorporated to enhance the target feature
representation power, utilizing high-level semantic information. Besides, it allows the network
to capture the salient information to locate the target and learns to represent the target feature in
a more generalized way advancing the overall tracking performance, particularly in the challenging
sequences. But, only the feature refine module is unable to handle such challenges because of
its less discriminative ability. To overcome this difficulty, we employ an attention module inside
the feature refine network that strengths the tracker discrimination ability between the target and
background. Furthermore, we conduct extensive experiments to ensure the proposed tracker’s
effectiveness using several popular tracking benchmarks, demonstrating that our proposed model
achieves state-of-the-art performance over other trackers.

Keywords: siamese network; visual object tracking; feature refine network; attention mechanism

1. Introduction

Visual object tracking (VOT) is widely used to estimate the trajectory of objects in a video sequence
and one of the fundamental research areas in computer vision having applications in intelligent
surveillance [1], video understanding to analyze human motion [2], robotics [3], and autonomous
vehicle driving [4]. The applications of VOT usually depend on the reliable prediction of the target
location. The tracker locates objects by exploiting an initial target from a video frame to estimate
the new target positions in the subsequent frames. However, VOT is particularly a challenging
problem because of the limitation of desired object information supplied in the initial frames from
video sequences. Therefore, high-performance VOT approaches with satisfactory efficiency and
accuracy are necessary to overcome real-world challenges such as deformation and illumination
changes, scale variations, occlusion, background clutter, pose changes, fast motion, and motion blur.
Recently, numerous deep learning methods have been employed to solve the VOT challenges.

Tracking by detection and template matching are two major tracking techniques in deep
learning-based approaches [5]. The tracking by detection considers tracking as a classification problem.
Building a competent classifier is one of the key concerns to build tracking by detection based trackers.
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The classifier network is used to learn to discern the desired object from the background, and it is
usually updated by utilizing the previous target information to infer the new location in the current
frame. With the advent of the correlation filters (CF), some of the detection based trackers [6,7] includes
CF with the convolution neural network feature map, and others use domain-based target classifier
to locate the object such as MDNet [8]. However, these kinds of trackers use an online updating
strategy during tracking, which is enormously time-consuming, and it is prone to be over-fitted on the
historical frames.

On the other hand, template matching considers tracking as a similarity learning problem.
The template patch is extracted from a video frame as a target object, and it uses to match the
most analogous patch in the current frame. Similarity learning is exploited to train the Siamese
network, which is first introduced for signature verification [9]. Later, it is gained popularity to
the tracking community after introducing the SiamFC [10] tracker. Siamese network is two parallel
CNN based Y-shaped deep learning framework where one branch utilizes for template image and
another responsible for subsequent frames of the video. It uses cross-correlation to match the template
patch with the current frame of the video, which utilizes fewer operations and increases the network
computational power. Due to its efficient computational ability, several trackers [11–15] are developed
recently to solve the tracking problems using the Siamese network. However, they suffer a lack of
robustness to handle challenging sequences, particularly background clutter, occlusion, and appearance
changes because of offline training on the large dataset without considering the most discriminative
features that reduce the performances. To improve the Siamese network tracking performance,
some of the trackers integrated online target updating strategies inside the Siamese architecture during
tracking. However, the updating technique enables a pitfall of compromising tracking speed that
creates instability of trackers performing in real-time applications.

To overcome the challenges without compromising the real-time tracking facility, we have
introduced a feature refine Siamese network (SiamFRN). In SiamFRN, the feature refine mechanism
has been incorporated as an extension of the baseline Siamese architecture to improve the underlying
backbone feature representation power. It enables the overall network feature gains for learning
better discriminative ability. In our feature refined mechanism, we have adopted high-leveled
fully convolutional features to capture the salient information of the target object, which shows
less discernibility with background and other similar objects. Therefore, we employ an attention
module inside the feature refine mechanism to enhance the learning network to be more discriminative.
To preserve high tracking speed with accuracy, we only exploit feature refine network in the stationary
branch during testing. In summary, the main contributions of the proposed work are the following:

• We introduce an effective feature refine network with an end-to-end learning facility to enhance
the target feature representation ability that enables us to capture the salient information location
of the target.

• We employ an attention module within a residual feature refine block using identity mapping to
augment the overall network discriminative power.

• Extensive experiments has been performed that demonstrates excellent performance over
state-of-the-art trackers on several popular benchmarks including (OTB100 [16,17], OTB50 [16,17],
UAV123 [18], TC128 [19], VOT2017 [20], and VOT2018 [21]) with 60 frames per second ( f ps)
tracking speed. The codes and results will be available at https://github.com/maklachur/
SiamFRN.

2. Related Work

In this section, we have summarized the most relevant research literature on visual object
tracking (VOT) covering tracking with convolution neural network, tracking with the siamese network,
and tracking with visual attention. The detailed overview of all trackers is beyond the scope of our
work. However, we included these survey studies [22,23] for the interested readers to gather more
information about tracking frameworks overview.

https://github.com/maklachur/SiamFRN
https://github.com/maklachur/SiamFRN
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2.1. Tracking with Convolution Neural Network (CNN)

Deep learning algorithm such as CNN has achieved great success in the field of computer
vision, for instance, image classification [24,25], object detection [26], and semantic segmentation [27].
Additionally, work [28] proposed a traffic light detector using a hybrid strategy designed by a support
vector machine, and a convolutional neural network (CNN) with the AlexNet structure that acts as the
self-learned detector. CNN has also been performed well in visual object tracking, but not enough
research is done so far. The main critical challenge behind this belongs to the unavailability of data
sources or data size, which is considered as the power of CNN. Besides, updating the CNN model is
also another challenge comparing with the conventional tracking approaches [29,30]. The traditional
tracking methodologies generally used the handcrafted features preprocessed by the human experience
of the tracking object, which has the generalization limitation over CNN features [31]. As in [32,33],
former work adopted the pixel values in correlation filter-based tracking, while the later work applied
principal component analysis (PCA) for frames processing respectively for VOT.

In [34], Ma et al. considered the convolutional features by replacing the handcrafted features
for correlation filter-based tracking. During offline training of the CNN model, most of the
research work analyzes the first frame of a sequence and some of them also considered later
frames in tracking however in both cases still there is the data and quality problem of tracking
performance. Doulamis et al. performed network adaptation to update the algorithm with minimum
degradation, which is the aggregation of tracking problems in neural networks [35]. In [36],
Wang et al. analyzed the semantic features of the tracking object by fusing the convolutional layers.
However, these trackers utilized good feature representation, but it is challenging to train them offline
on the large datasets. Thus, the online strategy of these trackers dramatically reduces the performance,
especially, the tracking frame rates.

2.2. Tracking with Siamese Network

The Siamese network popularity increases recently in visual object tracking due to the power of
similarity matching such as patch comparing [37] and stereo matching [38]. Because of its satisfactory
efficiency in similarity matching, works [10,39,40] were introduced Siamese based network into the
object tracking field to calculate the similarity score to generate more effective candidate–template
sets. Guo et al. [11] proposed DSiam to extract the background information and implemented online
training to reduce the target appearance discrepancies. Tao et al. in work [40], to match with template
feature, they carefully chosen the candidates from the nearby regions of interest of the previously
located region.

However, Bertinetto et al. utilized a sliding window search to learn the similarity between target
and search images to design SiamFC tracker [10], which is one of the popular and pioneering works.
But it shows less discriminative ability and easily troubled on the challenging sequences. To improve
the SiamFC network, numerous follow-up works have been developed. Using a closed-form equation,
CFnet [13] employed a correlation filter in the template branch to enhance the target feature map.
SiamTri [12] introduced triplet loss to progress SiamFC tracker performance. MemTrack [14] utilized
a memory mechanism to handle challenging sequences. To augment the generalization ability of the
tracker, IRCA-Siam [41] added several noises [42,43] to the input images during training. In contrast,
we have employed a feature refines mechanism in the semantic branch of the baseline siamese network
to boost the tracker performance by enhancing target feature representation power.

2.3. Tracking with Visual Attention

Visual attention to the objective image can be helpful to emphasize the vital parts by
decreasing the effect of the background, which is a beneficial strategy with changes in ambient
behaviors, objects nature, and illumination. The popularity of the visual attention mechanism is
increasing in many computer vision applications including image captioning and classification [44,45],
semantic segmentation [46], and activity recognition [47].
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In [48], Cui at el. introduced a multi-directional recurrent neural network to engender the saliency
maps gaining target attention. In [49,50], ACFN, and SCT attention methods have been improved
respectively by incorporating the correlation filters for object tracking. He et al. [51] included a channel
attention module in calculating the channel-wise weights, but they considered only the max-pooled
feature. MemTrack [14] used a long short term memory (LSTM) attention controller for updating
features into the memory. IMG-Siam [52] utilized channel attention to integrating the foreground target
mask for enhancing target structural information. In this work, we have incorporated the attention
module to improve the discriminative ability of the feature refine mechanism to boost the overall
tracking performance on the challenging sequences where we have utilized both max-pooled and
average-pooled features together. The max-pooled operation considered the distinctive target features,
whereas average-pooled used to get the general idea about the feature map.

3. Proposed Method

The overview of the proposed tracking pipeline is shown in Figure 1. We have introduced a fully
convolutional siamese network to extract the feature map from the input, and a feature refine network
to improve the feature representation power that helps to learn better discrimination ability between
the foreground object and the background information. The following sections describe the key
components of the SiamFRN network in details.

Figure 1. The pipeline of the proposed tracker which consists of two parallel branches: one for target
image and another for search image. We have calculated the response map using cross-correlation
between target and search feature map at the end of the Y-shaped network. The target branch is
computed once during tracking and remained static for the rest of the image frames. This maximum
point from the response map is used to predict the target location in the subsequent search frames of
a video sequence.

3.1. Siamese Baseline Network

Siamese network was first introduced to solve the tracking problem by Bertinetto et al. [10].
The template matching strategy during tracking is the basic principle of the siamese network.
It usually comprised of two parallel feature extractors that learn through parameter sharing. The fully
convolutional neural networks (FCNs) are embedded as a feature extractor backbone for two input
patches where one is responsible for the exemplar image (z), and another for the search image (x).
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Image z is considered as an object of interest that is tracked in the subsequent frames of the video
utilizing image x. The objective of the siamese network is to produce a response map to learn the
similarity score between exemplar and search images. The maximum similarity score position in the
response map is considered as the corresponding target location. To compute the similarity score,
a cross-correlation operation is performed at the end of the feature embedding layers as,

rθ(z, x) = ψθ(z) ∗ ψθ(x) + b · 1, (1)

where ψθ(·) represents the fully convolutional embedding function that processed the input images
by learning parameters θ, b · 1 used as bias value b ∈ R for each location, and ∗ represents for the
cross-correlation operation between exemplar and search embedded feature map.

Generally, siamese baseline tracker exploits a single image feature map and remains fixed while
tracking the whole sequences. Due to this steady nature of siamese-based trackers, it encounters
difficulties to handle the challenging scenarios including occlusion, background clutter, fast motion,
and motion blur. Hence, learning discrimination ability from the target object to background and
also able to learn more generalization ability for the target template are the foremost concerns when
designing a tracker framework. However, the baseline network simultaneously learns the target feature
representation by solving Equation (1), which may lead to less generalization and discrimination ability.

To overcome these shortcomings, we extend baseline siamese architecture by introducing
a feature refined network in the semantic layer that enables the network to be more generalized
and discriminative through learning fine target feature representation. The proposed tracker pipeline
can be summarized as,

rθ(z, x) = ξ(ψθ(z) ∗ ψθ(x)) + b · 1, (2)

where ξ represents the feature refined network for both target and search branches of siamese pipeline.
To train the proposed framework, we randomly select paired images (z, x) as target, and search

regions to compute the response maps rθ(z, x). Similar to SiamFC [10], we adopt binary cross-entropy
loss function to calculate the overall training loss of the framework as,

L(rθ(z, x), y) =
1
|N| ∑

n∈N
log(1 + exp(rθ(z, x)[n].y[n])), (3)

where N represents all of the possible response map locations n ∈ N, and ground truth response map
is calculated as y[n] ∈ {+1, 0} for respective location n.

We obtain stochastic gradient descent as an optimizer to all over the training pairs T to learn
overall proposed network parameter θ using the following equation:

argminθ
1
T

T

∑
i=1

L(rθ(zi, xi), yi). (4)

3.2. Feature Refine Network

To handle the limitations of the underlying siamese architecture, we introduce a novel Feature
Refined Network (FRN) inside the baseline framework. The feature map from the deep layers is capable
of capturing the semantic feature information of salient target regions. In contrast, features from
shallow layers hinder the generalized target feature representation by apprehending non-salient
details [53]. Hence, FRN learns to focus on the salient region of the target by utilizing a high-level
semantic feature map from the backbone network. The FRN mechanism is illustrated in Figure 1.

Since the spatial dimension of the feature maps from different convolutional layers are not
equivalent, we apply a 3× 3 and 1× 1 convolution operation to down-sample the feature map L4 and
produce the invariable feature dimension like L5. To incorporate high-level features from different
convolution layers, we empirically choose features from the last two convolution layers that able to
capture more semantic information. We integrate these two feature maps by applying concatenation
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in the channel dimension represented as Fcat. After concatenating the high-level semantic features,
a residual refine module Fγ

cat is employed to learn the finer target information. Fγ
cat consists of two

3× 3 and a single 1× 1 convolutional operations with learn-able ReLU activation functions called
PReLU [54]. PReLU works as different compared to the ReLU activation function, and it introduces
a learnable parameter for negative values during training so that it can help to learn better nonlinear
adaptability with other network parameters such as weights and biases. Hence, we compute the
refined feature by incorporating identity mapping L5 using element-wise summation. In general,
the FRN can be summarized as

Fcat = Concat( f 3×3
ϕ ( f 1×1

ϕ (L4)), L5), (5)

Fγ
cat = f 1×1

ϕ (PReLU( f 3×3
ϕ (PReLU( f 3×3

ϕ (Fcat)))), (6)

ξ(ψθ(·)) = ((Fγ
cat ⊕ L5)⊗ Fα

cat)⊕ L5, (7)

where ξ(ψθ(·)) represents the ultimate refined feature over corresponding branch, ϕ is responsible for
convolution operation, Fα

cat denotes the attentional feature map, and Parametric ReLU (PReLU) [54]
denoted as PReLU(xi) = max(0, xi) + wi ∗min(0, xi).

The alternative way we can define the PReLU equation as

PReLU(xi) =

{
xi, xi ≥ 0

wixi, otherwise
, (8)

where i represents any input from the ith channel and wi is a learnable parameter.
During backpropagation, the gradient of the PReLU activation function is computed by:

∂PReLU(xi)

∂wi
=

{
0, xi ≥ 0

xi, otherwise
. (9)

Furthermore, an attention module is integrated to increase the network’s discriminative ability
between target and background information. We present a channel attention module to augment
our network’s discriminative learning. The channel attention reduces the weights of less important
channels by adding lower weights while strengthening the target focused channels with higher weights.
The details attention module has been discussed in the later section. The normalized features from the
attention module are propagated to fuse with the refined feature using element-wise multiplication.
Therefore, the ultimate refined features ξ(ψθ(·)) from FRN has been computed by employing L5 as
a residual skip connection based identity mapping operation.

3.3. Feature Attention Network

To perceive any objects from a scene, the human visual system focuses on the important parts
of the object rather than focusing on the whole scene. Similarly, we integrate an attention module to
focus more on the salient target feature than the background. To strengthen the feature fusion network
module, we introduce a feature attention module inside the FRN mechanism. Figure 2 depicts the
attention module. It is capable of intensifying target information details by exploiting target-specific
weights while suppressing the background information. Each channel from a convolutional feature
map is considered as a feature detector, and the contribution of each channel is not the same during
deep convolution operations. Hence, to obtain the attention feature map, we incorporate a channel
attention module to learn the salient information from the image feature map.
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Figure 2. The channel attention module over the concatenated feature map.

The channel attention module learns through exploiting the inter-channel relationship of
the feature map that is useful to improve the discrimination ability of the network from
background to foreground. It helps to extend the target adaptation ability of the proposed
tracker by strengthening more weighted channels while minimizing the impact of less weighted
channels. Usually, average pooling utilizes to aggregate the spatial information for channel attention.
SAsiam [51], RASNet [55], and AWMF-CFNet [56] trackers used only average pooled feature to
improve the target feature representation power. Since our model proposed to track a single object,
we also include the max-pooled feature Fmax beside the average-pooled feature Favg to learn our
network finer clue of the distinctive target features rather than considering only the overall idea of the
feature map.

For computing our attention module, concatenated feature map Fcat has taken as input from
the high-level convolution features. We squeeze the spatial dimension by performing both average
pooling and max pooling operations to produce two pooled featured map Favg and Fmax. Favg and
Fmax are considered as generated different special feature descriptors for the feature map. Both feature
descriptors are propagated to the multi-layer perceptron (MLP) that comprises of two fully-connected
layers ( f c1 with 256 nodes and f c2 with 512 nodes) and a non-linear operation after performing
f c1 layer, respectively. To facilitate the heterogeneity of the feature descriptors, we perform MLP
for both descriptors individually and produce two feature vectors Fv

avg and Fv
max. Then, we employ

element-wise summation operation to fuse both Fv
avg and Fv

max together. The output of fused feature
vectors are normalized through a sigmoid function. Therefore, we broadcast the overall attentional
effect Fα

cat to the residual refined feature map by using element-wise multiplication. In short, the overall
attention pipeline are computed as,

Fv
max = f c×512

2 (ReLU( f c×256
1 (MaxPool(Fcat)))), (10)

Fv
avg = f c×512

2 (ReLU( f c×256
1 (AvgPool(Fcat)))), (11)

Fα
cat = sigmoid(Fv

max ⊕ Fv
avg), (12)

where the usual sigmoid function denoted as sigmoid(t) = 1
1+e−t .

4. Experiments

This section presents a detailed explanation of the practical consideration of implementation,
including backbone network architecture and parameter setting for training and testing. We also
include the evaluation and comparison of our proposed model performance with other’s
state-of-the-art trackers on various tracking benchmarks such as OTB100 [16,17], OTB50 [16,17],
UAV123 [18], TC128 [19], VOT2017 [20], and VOT2018 [21].
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4.1. Implementation Details

Our tracker has been implemented using PyTorch deep learning framework with Python.
To perform all of the experiments, a desktop with an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz
and Nvidia Geforce RTX 2080 Super GPU has been used.

4.1.1. Network Architecture

Siamese network extracts the feature map from the target and search images by exploiting two
parallel networks as a backbone. We introduce two fully convolutional branches in our tracking
architecture instead of considering fully connected layers to reduce the overall parameter overhead.
Moreover, our network learns through parameter sharing and makes it more generalized during
testing. We utilize a different backbone network rather than underlying SiamFC [10] that is better
adaptable for the proposed feature refined network. The shared backbone that we have utilized to
learn, it is developed by modifying underlying Alexnet architecture [57]. The proposed network
includes five convolutional layers with different input-sized images and feature maps, keeping the
overall network’s kernel size and stride are identical to the SiamFC tracker.

Table 1 shows the overall tracker backbone for the feature extraction network. The network output
for target and search images are used to calculate the similarity score (response map) between two
extracted feature maps using a cross-correlation operation. Like the SiamFC network, we also exploit
the same sized (17× 17× 1) response map to keep the overall tracking framework simple.

Table 1. The backbone architecture of the proposed framework for the feature extraction.

Layers Target Image Search Image Kernel Size No. of Stride Feature Map Size

Input image 135× 135 263× 263 - - ×3
convol1 63× 63 127× 127 11× 11 2 ×192
pool1 31× 31 63× 63 3× 3 2 ×192

convol2 27× 27 59× 59 5× 5 1 ×512
pool2 13× 13 29× 29 3× 3 2 ×512

convol3 11× 11 27× 27 3× 3 1 ×768
convol4 9× 9 25× 25 3× 3 1 ×768
convol5 7× 7 23× 23 3× 3 1 ×512

4.1.2. Training

The data curation steps of our method have been integrated with the training process. To prepare
the training dataset, we consider the ImageNet Large Scale Visual Recognition Challenge (ILSVRC15)
called ImageNet-2015 [58] and GOT-10k [59] dataset together. We adopt the target and search images
from these datasets. We utilize 135× 135× 3 and 263× 263× 3 image-sized for target (z) and search
(x) input frames respectively. We preprocess and crop our target and search images where the desired
object is located in the center of the frame. If any of the cropped images exceed the original image
boundary, we fill it up by the RGB mean of the original image to meet our target and search image size.
We perform all of the data curation settings during the training time; therefore, we do not process the
training data separately. From ImageNet-2015 and GOT-10k dataset sequences, we randomly choose
only ten training pairs (z, x) per sequence within the nearest hundred frames to learn the target’s
appearance changes.

To train our proposed model, we utilize a similar parameter setting, like the SiamFC [10], to keep
our overall training procedure simple. We apply end-to-end offline training for our network and save
the trained model for testing purposes. We train our model from scratch and use Stochastic Gradient
Descent (SGD) with the learning rate varies from 10−2 to 10−5 exponentially. We set 0.9 for momentum
and weight decay to 5−4, and choose a mini-batch size of 32 empirically for training.
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4.1.3. Testing

During testing, we consider the pre-trained model that we trained offline and the first frame
of the desired video sequence as a target image (z). In our tracking framework, we utilize only the
first frame to track the whole sequence of the video. After extracting the feature map weights of the
pre-trained model for the target image, the target branch remains stationary, whereas the search branch
will be changing for every upcoming frame. Since we compute the target image once, it ensures to
facilitate performing high tracking speed. Moreover, we use three scaled search images to overcome
the target scaled changes [10] that make the model more robust against scale variation of the objects
and increase accuracy.

Before determining the target location in the subsequent frames, we perform a cross-correlation
between z and three scaled 1.0375{−1,0,+1} search images for x to get three correlation feature maps or
response maps (17× 17× 1) for finding the highest response map. By exploiting the similarity score of
the correlation feature maps, we select a single response map representing the highest score among
them. Therefore, we use that score for determining the ultimate target location on that corresponding
position in the search image. Similarly, our model infers the target location for the whole sequence.

To further extend the proposed tracker’s discriminative ability, we introduce our training and
testing procedures separately. During training, both of the backbone network branches for target and
search images were identical, enhancing similarity learning and producing better response maps useful
to predict effective target location in the tracking time. But the objective of the proposed tracker is to be
more generalized and capable of tracking the objects at high-speed. The identical backbone network is
prone to generate a less discriminative score map for the object from the background. Hence, it fails
to handle challenging sequences such as background clutter. Another benefit of keeping simple the
search branch is to enhance the tracker speed; otherwise, it exploits the feature map for every next
frame of the image sequence. Therefore, during testing, our proposed model competent to preserve
high tracking accuracy beyond real-time speed.

4.2. Comparison with the State-of-the-Art Trackers

To evaluate the tracking model, performance computing success and precision metrics are the
most common practice. The precision score stands for Center Location Error (CLE), which measures
the center pixel distance between the predicted and ground-truth bounding boxes. On the other hand,
the success score represents the overlap score or Intersection over Union (IoU) between the predicted
and ground-truth bounding boxes.

For the comparison of the proposed trackers with other state-of-the-art trackers, we consider the
popular single object tracking benchmarks including OTB100 [16,17], OTB50 [16,17], UAV123 [18],
TC128 [19], VOT2017 [20], and VOT2018 [21]. We utilize the official toolkit of OTB and VOT to produce
the tracker results and comparisons.

4.2.1. Experiments on OTB100 Benchmark

OTB100 or OTB2015 benchmark is used frequently to measure and compare the tracking
performance among all of the available tracking benchmarks. This benchmark draws attention to the
tracking community, which contains a hundred different challenging video sequences. The sequences
are divided into 11 sub-categories to express the challenging sequences individually. Illumination
variation (IV), scale variation (SV), occlusion (OC), deformation (DF), motion blur (MB), fast motion
(FM), in-plane rotation (IR), out-of-plane rotation (OR), out-of-view (OV), background clutter (BC),
and low resolution (LR) are the divided challenging sub-categories. Each category includes several
video sequences to represent a single challenging attribute. However, we compare our proposed
tracker with other popular trackers including MemTrack [14], DSiamM [11], SiamFC [10], SiamTri [12],
TRACA [7], MLT [60], SRDCF [61], UDT [62], and CFnet [13] for performance justification.
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Figure 3 displays the overall precision and success plots over the OTB100 benchmark.
The proposed tracker SiamFRN perform 63.6% for the success score and 84.0% for the precision
score. Our tracker shows an improvement of 8.95% in precision and 9.28% in success scores than the
baseline SiamFC tracker. It also achieve 2.44%, 3.07%, 5.40%, 7.55%, and 10.53% increment in precision
score and 1.60%, 5.12%, 5.82%, 7.80%, and 8.35% increment in success score compared to MemTrack,
DSiamM, MLT, SiamTri, and UDT trackers, respectively.

  
 

Figure 3. Compared overall precision and success plots over OTB100 benchmark.

To exploit the proposed tracker’s effectiveness, we further do extensive experiments on individual
challenging attributes on the same benchmark. Figures 4 and 5 illustrates the performance plots
for success and precision scores, respectively. Each plot from these figures expresses the challenging
image sequences’ performance regarding success and precision scores. The proposed tracker achieves
a dominant performance on most of the challenges (SV, DF, MB, FM, OC, BC, OV, IR, and OR) on
both performance plots over other state-of-the-art trackers. It has shown steady performance even
in challenging scenarios that is one of the significant criteria for a successful visual object tracker.
SiamFRN also can operate at 60 f ps during testing that is beyond real-time.

    

    

   

 

 

Figure 4. Compared success plots for individual challenging attributes including SV, IV, DF, MB, FM,
OC, BC, OV, LR, IR, and OR over OTB100 benchmark.
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Figure 5. Compared precision plots for individual challenging attributes including SV, IV, DF, MB, FM,
OC, BC, OV, LR, IR, and OR over OTB100 benchmark.

Furthermore, we perform a qualitative comparison among recent trackers to evaluate the
frame by frame performance analysis for visual understanding. Figure 6 delineates the qualitative
study, showing the dominative performance of the proposed tracker over state-of-the-art trackers.
Therefore, our tracker preserves a balance between tracking high speed and accuracy with significant
robustness against challenges.

Figure 6. The qualitative analysis on some challenging sequences including bird1, bolt2, dragon baby,
motor rolling, and rubik from OTB100 benchmark for visual understanding.
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4.2.2. Experiments on OTB50 Benchmark

The most challenging fifty sequences from the OTB100 benchmark have been combined to make
a separate dataset named OTB50 benchmark [16,17]. It is possible to verify the tracker’s ability to
track the desired object in such difficult scenes. Therefore, to check out how our tracker performs on
these challenging sequences, we use the trackers same as evaluated on the OTB100 benchmark for the
performance comparison.

The overall tracking comparison is shown in Figure 7 for OTB50 benchmark. The proposed tracker
achieves overall 77.8% and 58.1% precision and success scores respectively. SiamFRN outperforms
the underlying SiamFC by 12.43% on precision score and 12.60% on success score. Our tracker shows
3.87%, 6.28%, and 9.12% improvement on precision and 3.57%, 7.79%, and 9.42% success plots over
memory attention based tracker MemTrack [14], correlation filter based CFnet [13] tracker, and triplet
loss with siamese network SiamTri [12], respectively. It also achieves better results over other recent
trackers including DSiamM [11], TRACA [7], MLT [60], SRDCF [61], and UDT [62].

  
 

Figure 7. Compared overall precision and success plots over OTB50 benchmark.

The overall comparison shows that the proposed tracker effectively handles more complicated
sequences and performs better in both terms of success and precision measures against the
compared trackers.

4.2.3. Experiments on UAV123 Benchmark

The Unmanned Aerial Vehicle (UAV) includes 123 video sequences to comprise the UAV123
benchmark [18], which is one of the largest tracking benchmarks that captured using UAV to cover
low altitude aerial videos. This benchmark recently got more attention to the tracking community due
to its real-life applications, including wildlife monitoring, local surveillance, and navigation system.
ECO [6], SRDCF [61], MEEM [63], SAMF [64], MUSTER [65], DSST [66], Struck [67], and KCF [68]
trackers are considered for the comparison.

Figure 8 presents overall tracking results comparison on the UAV123 benchmark. The proposed
SiamFRN tracker performs 74.3% and 52.1% for precision and success plots. The graph shows that the
proposed tracker outperforms all of the compared trackers in both performance metrics except ECO for
success score, where it has shown a bit less score. However, ECO does not operate in real-time speed,
whereas our proposed tracker can operate even more than real-time speed (60 f ps) with a similar
amount of accuracy. Since the UAV123 benchmark is utilized for real-life applications, the tracker
should be performed in real-time to complete the preferred demand. Another version of the ECO
tracker named ECOhc [6], which can operate in real-time but shown 2.48% and 2.96% less performance
for precision and success plots, respectively, than our proposed method.
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Figure 8. Compared overall precision and success plots over UAV123 benchmark.

Therefore, the compared results validate that the proposed tracker will be more usable for real-time
applications than others in terms of high speed and accuracy.

4.2.4. Experiments on TC128 Benchmark

TC-128 [19] dataset introduced to integrate color information providing rich discriminative clues
on the gray-scale images. We perform one-pass evaluation on TempleColor-128 (TC-128) benchmark
containing 128 fully-annotated image sequences. Similar to the OTB benchmark evaluation, we adopt
success and precision plots to compare with the state-of-the-art trackers. We compare our tracker
with SCSAtt [69], MEEM [63], SRDCF [61], MUSTER [65], SAMF [64], KCF [68], DSST [66], truck [67],
and CSK [70] on this benchmark.

The compared trackers are presented in Figure 9 that shows the success and precision plots.
The proposed tracker SiamFRN achieves a 71.9% precision score and a 52.8% success score over
the TC128 benchmark. SiamFRN has shown dominant performance among compared trackers
other than the SCSAtt tracker. Our tracker achieves 8.61%, 12.70%, and 29.60% improvement on
precision score and 8.64%, 12.10%, and 37.14% improvement from SRDCF, MUSTER, and KCF,
respectively. Thus, the proposed tracker shows comparable results among other trackers over
this benchmark.

  
 

Figure 9. Compared overall precision and success plots over TC128 benchmark.
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4.2.5. Experiments on VOT2017 and VOT2018 Benchmark

Both VOT2017 [20] and VOT2018 [21] benchmarks included identical 60 video sequences for
tracking. So, we consider the trackers from both VOT2017 and VOT2018 challenges to our comparison
framework. However, the VOT evaluation metrics are different from the above benchmarks (OTB100,
OTB50, TC-128, and UAV123). The VOT benchmarks are computed on three important evaluation
metrics, including accuracy, robustness, and expected average overlap (EAO). Accuracy is calculated
using the average overlap of the successful tracking, while robustness is evaluated by utilizing failure
times during tracking. And, EAO is measured by considering both accuracy and robustness into
a single metric. However, a good tracker represents higher accuracy and EAO scores but a lower
robustness score. We encourage interested readers to look at the article [20,21] for obtaining more
information about VOT benchmarks and challenges.

Table 2 shows the compared trackers and their corresponding accuracy, robustness, EAO score,
and tracking speed. We consider GradNet [71], SCS-Siam [72], MemTrack [14], ECOhc [6], SATIN [73],
DSiam [11], CSRDCF [74], SiamFC [10], DCFNet [75], DensSiam [76], DSST [66], and SRDCF [61]
trackers for the comparison. The top three performed trackers in terms of VOT measure metrics are
highlighted using red, green, and blue colors, respectively. From Table 2, it is clear that the proposed
tracker achieves highest score in terms of accuracy and robustness and second highest score for EAO
score with real-time tracking speed.

Table 2. Compared our proposed SiamFRN tracker over VOT2017 and VOT2018 benchmarks with
state-of-the-art trackers in terms of accuracy, robustness, EAO, and tracking Speed. The top three
results are highlighted for a better view.

Tracker Accuracy (↑) Robustness(↓) EAO (↑) Speed ( f ps)

Ours 0.54 0.22 0.25 60
GradNet [71] 0.50 0.37 0.24 80
SCS-Siam [72] 0.52 0.29 0.24 73
MemTrack [14] 0.49 1.77 0.24 50

ECOhc [6] 0.49 0.44 0.24 60
SATIN [73] 0.49 1.34 0.28 24
DSiam [11] 0.51 0.67 0.20 6

CSRDCF[74] 0.49 0.49 0.25 13
SiamFC [10] 0.50 0.59 0.19 86
DCFNet [75] 0.47 0.54 0.18 60

DensSiam [76] 0.46 0.69 0.17 60
DSST [66] 0.39 1.45 0.08 24

SRDCF [61] 0.49 0.97 0.12 6

4.3. Ablation Analysis

In this section, we investigate the effectiveness of the individual components of the proposed
tracker. To verify the contribution of individual design choice, we carried out an extensive ablation
study on OTB100 benchmark [16,17]. To preserve the rational comparison among the tracker variants,
we considered the same training datasets (ImageNet-2015 [58] and GOT-10k [59]) to train them.

Table 3 shows the overview of the ablation results of several variants of the proposed tracker.
The last row from Table 3 corresponds to the baseline SiamFC network that we re-implemented and
trained from scratch to utilize as a backbone network of the proposed method, which performed
59.7% and 79.8% in success and precision metrics, respectively. The two main components of the
proposed framework are the residual refine module (RRM) and the attention module (AM). The RRM
is responsible for improving the network feature representation power. It helps to apprehend the
important target feature index, enabling the prediction of the target location precisely. On the other
hand, we utilized the channel attention module as AM because each feature channel’s contribution is
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different. It prioritizes the important channels from the feature map by embedding relevant weights to
the features.

Table 3. Ablation analysis results on the OTB100 benchmark. L1–L5 indicates feature for convolutional
layers from 1 to 5, and checkmark represents the feature selection for the evaluation. The proposed
model variants are evaluated on the OTB100 benchmark, and the highest result is highlighted.

Low-Level High-Level FRN Mechanism Performance Results

L1 L2 L3 L4 L5 Residual Refine Module Attention Module Success Score Precision Score

X X X X 58.5 78.8
X X X X 57.9 77.3
X X X X X 61.7 81.9

X X X 62.0 82.3
X X X 62.3 82.5
X X X X 63.6 84.0

X X X X X X X 62.9 83.2
X X X X 62.2 82.0

X X X X 61.3 80.7
X X X X 63.0 82.8

SiamFC-baseline X X 62.5 82.7
SiamFC-baseline X 61.2 80.9
SiamFC-baseline X 61.9 81.9

SiamFC-baseline 59.7 79.8

Firstly, in the ablation analysis, we verify individual RRM and AM effectiveness by incorporating
them separately at the end of the baseline siamFC network. The variant of baseline SiamFC with the
RRM performs 61.2% success score and 80.9% precision score, which shows 2.51% and 1.38% progress
in success and precision score from SiamFC-baseline tracker. The AM module integration achieves
3.69% and 2.63% improvement from the baseline siamFC for success and precision score. When we
embedded both modules together, we noticed that the combination of both modules able to perform
better than the individual module. The fourth row from the bottom of the table presented the combined
RRM and AM module performance results. We have not considered the concatenated-feature map
from the convolutional layers during RRM and AM modules integration with the baseline SiamFC.

Then we carried our experiments to explore the effectiveness of combined features. To utilized
fused features, we concatenated features from different convolution layers. Choosing the appropriate
feature combination from convolutional layers may directly affect the tracker performance. To ensure
the fused feature effects on network performance, we verified RRM and AM impact individually
and combinedly. In our experiments, we considered convolutional layers as a low-level (layer 1 to 3)
and high-level (layer 4 to 5) feature map in our analysis. Usually, the higher convolutional layers of
a network learn more semantic features than lower layers. We found that the low-level feature-based
tracker variants cannot perform well. Even the performance of integrating a low-level fused feature
map with RRM or AM are relatively worse than considering a single convolutional layer feature.

Furthermore, we validate the effectiveness of high-level feature integration with RRM and AM
individually and combinedly. From our experimental results, we observed that the high-level fused
feature-based network boosts the tracker’s performance. We also perceived that combining RRM and
AM with the high-level fused feature hugely augments the network performance, whereas employing
a single feature refine module performance is relatively lower. Similarly, to prove the efficiency of
several proposed tracker variants, we investigate features from layers 2 and 3, 3 and 4, and 3 and 5
together are used to incorporate with RRM and AM. These variants are performed inferior to selecting
the feature from the last two convolutional layers (high-level features). Besides, we considered all
convolutional layers for embedding RRM and AM together, which performed 62.9% in success and
83.2% in the precision score. However, we finalized the combination of high-level (layer 4 and 5) fused
features with the combined RRM, and AM offered the best performance among all variants from the
extensive ablation studies. The combination of RRM and AM are represented as the feature refine
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mechanism (FRN) in our proposed framework. Overall, the FRN mechanism improves the feature
representation and discrimination ability of the underlying siamese network. We consider it our
proposed SiamFRN method that achieves 63.6% and 84.0% success and precision score, respectively.

Finally, to analyze the further effectiveness of SiamFRN, we performed experiments on several
popular tracking datasets with state-of-the-art trackers. Each compared dataset are different from each
other. The performance comparison results of the proposed method are demonstrated in Figures 3–9 for
OTB, UAV123, and TC128 datasets. Table 2 shows the performance comparison (accuracy, robustness,
and EAO) for VOT2017 and VOT2018 datasets. We also analyzed tracking speed, and we observed
that our tracker operates more than the real-time frame rate, which demonstrates that the proposed
SiamFRN can be applicable for real-time applications. Overall, the proposed method reported a
balanced performance over the tracking speed (60 f ps) with accuracy in both success and precision
metrics, which the efficacy of the proposed framework.

4.4. Discussion

This work utilized an FRN mechanism that helps to improve the underlying Siamese network’s
feature representation and discriminative ability. The FRM mechanism comprises of RRM and AM.
The RRM enhances the network’s representation ability by utilizing high-level semantic feature
information for salient target regions. On the other hand, AM is responsible for improving the proposed
network discriminative power by re-calibrating the target-specific channel weights. The feature
learning of individual channels is not identical during training the network. AM helps to provide
more weights to prioritize important features while reducing the importance of irrelevant channels
by embedding lower weights. Therefore, by combining these two modules network learns better
representation power for the template image and more discrimination ability between target and
background, enhancing the overall tracking performance on challenging sequences.

We conducted a detailed ablation study to verify our network design before finalizing the
proposed framework. Table 3 summarizes the comprehensive empirical analysis of the several variants
of the proposed tracker on the OTB100 benchmark. As each module of the SiamFRN has different tasks,
choosing an appropriate combination of the convolutional features impacts tracking performance.
After validating the effectiveness of individual components of the proposed method on benchmark
datasets, we embedded it with other network modules to analyze the effect on overall network
performance. From our ablation analysis, we observed that the integration of the FRN mechanism
with high-level features from the backbone network achieves the best performance among the tracker
variants, which is our proposed SiamFRN tracker. SiamFRN works better than the other variants
because it utilized the high-level features from the backbone network that are useful to learn semantic
information for target representation by avoiding the non-salient detail information from the low-level
feature map.

To analyze the proposed method, we compared our tracking results with other state-of-the-art
trackers. We conducted several experiments on OTB100 [16,17], OTB50 [16,17], UAV123 [18],
TC128 [19], VOT2017 [20], and VOT2018 [21] benchmark datasets. The proposed tracker’s overall
performance seems better; however, it shows some limitations during the performance comparison.
We noticed that the proposed method weakly performs in the low-resolution sequences depicted in
Figures 4 and 5 compared with other trackers. We also observed that our method has a deficiency on
TC128 benchmark against the SCSAtt [69] tracker that introduced stacked channel-spatial attention
based Siamese network for tracking. SCSAtt utilized the spatial feature map to locate the target
besides focusing on the object’s informative part. Our ablation analysis shows that the high-level
feature with the FRN module improves the tracker accuracy. However, the only high-level feature
becomes less effective when target appearance changes frequently and appears on low-resolution
sequences. We investigated that the proposed method does not consider the low-level feature map for
refining through the FRN module. Therefore, we presume it may lose some essential positional details
information of the target, which could be useful for locating the target position more precisely.
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Furthermore, we used a single template image while tracking the entire image sequence
without further updating is susceptible to tracker reliability. In this case, the proposed tracker
shows the weakness of handling such challenging scenarios, particularly when the target object
appearance changes continuously. For improving the tracker reliability, MDNet [8], DSAR-CF [77],
and MemDTC [78] were proposed template update mechanism within their tracking framework.
Usually, these trackers updated the template image frequently with their updating mechanisms during
tracking. However, integrating an effective updating mechanism hinders the tracker’s simplicity
and consumes more time to accurately update the target template. Such trackers increase the
model complexity and compromise the high tracking speed that is one of the major concerns for
real-time applications.

In contrast, to preserve the simplicity of designing the tracker, we have not introduced the template
updating mechanism while building our proposed framework. Therefore, we compute the target
image once rather than introducing any updating mechanism or considering multiple image frames
as our reference template image to maintain a balanced performance in terms of speed and accuracy
using a simple tracking framework. That is the main objective of the proposed tracker. Based on
the above discussion, our proposed tracker performs better with some limitations, requiring more
investigation to overcome.

5. Conclusions and Future Works

This work proposed a fully convolutional feature refined Siamese network to improve the
overall tracking performance. The proposed framework extended the underlying Siamese network by
integrating an FRN mechanism enabling the network to learn more generalized feature representation
using the high-level semantic feature map. To improve the network’s discriminative power,
we employed a channel attention mechanism, and altogether it enhanced the robustness of our
proposed tracker against challenges without compromising the real-time tracking speed. Furthermore,
to verify the effectiveness of the proposed tracker, we performed extensive experiments on
large datasets include OTB100 [16,17], OTB50 [16,17], UAV123 [18], TC128 [19], VOT2017 [20],
and VOT2018 [21] that shown our tracker outperformed the state-of-the-art results. The experimental
results in Section 4 demonstrated the proposed tracker efficiency over several benchmarks, which can
operate at (60 f ps). Therefore, the proposed tracker preserves balance performance between speed
and accuracy, and we believe that it would be useful for real-time applications.

However, the proposed method shows difficulties in handling the frequent appearance changed
targets and low-resolution target sequences. Although our method has such disadvantages, it is still
outperformed the compared trackers on almost all challenging attributes shown in Figures 4 and 5.
In our future work, we are planning to focus on resolving such issues for the proposed tracker with
preserving the balanced performance in terms of tracking speed and accuracy by updating the overall
tracking framework.
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