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Abstract: In the proposed study, we examined a multimodal biometric system having the utmost
capability against spoof attacks. An enhanced anti-spoof capability is successfully demonstrated by
choosing hand-related intrinsic modalities. In the proposed system, pulse response, hand geometry,
and finger—vein biometrics are the three modalities of focus. The three modalities are combined using a
fuzzy rule-based system that provides an accuracy of 92% on near-infrared (NIR) images. Besides that,
we propose a new NIR hand images dataset containing a total of 111,000 images. In this research,
hand geometry is treated as an intrinsic biometric modality by employing near-infrared imaging for
human hands to locate the interphalangeal joints of human fingers. The L2 norm is calculated using
the centroid of four pixel clusters obtained from the finger joint locations. This method produced an
accuracy of 86% on the new NIR image dataset. We also propose finger—vein biometric identification
using convolutional neural networks (CNNs). The CNN provided 90% accuracy on the new NIR
image dataset. Moreover, we propose a robust system known as the pulse response biometric against
spoof attacks involving fake or artificial human hands. The pulse response system identifies a live
human body by applying a specific frequency pulse on the human hand. About 99% of the frequency
response samples obtained from the human and non-human subjects were correctly classified by
the pulse response biometric. Finally, we propose to combine all three modalities using the fuzzy
inference system on the confidence score level, yielding 92% accuracy on the new near-infrared hand
images dataset.

Keywords: convolutional neural network; intrinsic modalities; multimodal biometric system;
the fuzzy inference system

1. Introduction

Automated verification and authentication is a widely addressed issue across the globe nowadays.
In this regard, human physical and behavioral characteristics are under research. Fingerprints, irises,
faces, and finger veins are some physical biometric traits. On the other side, human gait, keystrokes,
and handwriting may be treated as behavioral biometric traits. In the proposed research, we have
focused on physical biometric characteristics (e.g., hand geometry, finger-vein, and pulse response).
Hand geometry has been used for identification in automated biometric systems. It is classified
as a medium-level, dependable biometric modality. This means that it moderately satisfies all the
characteristics which are required to qualify as a biometric modality [1]. Certain characteristics must
be satisfied to some extent to be qualified as a biometric modality [2—4], which are as follows:
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o  The first characteristic is universality, meaning that the characteristic chosen as the biometric
should be globally present in humans. Except for disabled people, features related to chosen
modalities are present in all living human beings with no limitation of place.

e  Next is collectability, meaning the biometric trait must have quantified, measurable value so that
it may be captured from a human without any difficulty. The three modalities of focus fulfill
this condition.

e  Then there is permanence, meaning a biometric modality must remain invariable within a specified
period so the systems based on that modality may be considered reliable for a specified time limit.
This quality is also present in the considered modalities.

e  Acceptability is another characteristic that must be satisfied. Acceptability means users should
feel comfortable with the biometric capturing setup. It is not an easy task to assure that each
user is satisfied, but the setup should be made easier and hassle-free. Our proposed biometric
capturing setup is simple in that users have to place their hands on a pad for image and pulse
response capturing.

o  The fifth trait is liveliness, which means that the human character cannot be duplicated by using
some non-living thing. In other words, the modality must only be gatherable from a living human
body. Finger—vein and pulse response biometrics fulfill this quality perfectly. In the case of the
hand geometry biometric, it is possible to form a hand from non-living material with the same
features as a living human. This deficiency of the hand geometry biometric is dealt with by
capturing images using a mounted camera with a near-infrared filter. In the captured hand image,
the phalangeal joints will have brighter regions while the rest of the image will be darker. This way
of treating the hand geometry biometric may be called the phalangeal biometric. Therefore, for
the phalangeal biometric, it is not an easy task to falsely produce the same NIR images of the
human hand by using non-living materials.

e  Finally, it must be hard to counterfeit, which is another essential and desirable characteristic.
This means that a modality must be less and less vulnerable to spoofing attacks. The finger—vein
biometric has proven capable against spoof attacks. On the other hand, the hand geometry
biometric is easier to break for a spoof in comparison with a phalangeal biometric-based system.
The main reason behind this fact is that, for the phalangeal biometric, we are going to locate bone
joints within the human hand by using NIR images, while in a simple hand geometry biometric,
normal camera images are processed to extract external features related to the human hand.
It also clarifies that the phalangeal joint biometric is intrinsic, while hand geometry is an extrinsic
biometric modality.

2. Related Works

Biometric traits play an important role in the identification and classification of humans. For us
humans, recognition and classification is a very simple job with the help of evolved and dedicated
biological neural networks. However, due to the infancy of the machine learning age, these tasks are
quite difficult for a computer to achieve flawlessly. Hence, throughout the computer vision literature,
we find researchers trying to achieve better classification accuracy using different biometric traits.
The face is one of the most popular biometric traits used for human classification. In [5], Q. Feng et al.
used various classifiers, and their accuracies were compared using face biometric traits. Facial marks
were also used by C. Zeinstra, R. Veldhuis, and L. Spreeuwers as a biometric trait in [6]. The authors
used the Bayesian classifier, and better accuracy was reported at around twenty-five facial marks per
face. This paper concluded that the accuracy of face classification is dependent on the number of facial
marks. Hence, it implies that biometric traits play an important role in the identification of humans.

Gait recognition [7,8] was also used by S. M. Darwish, X. Wang, and S. Feng as a biometric trait
for human identification and recognition. Fingerprint recognition [9] with the Support Vector Machine
(SVM) classifier was used by M. Komeili, N. Armanfard, and D. Hatzinakos as another biometric
trait. Surprisingly, in [10], E. Maiorana and P. Campisi processed electroencephalogram (EEG) signals
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and used those as a biometric trait. Iris recognition was researched by J. Peng et al., N. Ahmadi, and
G. Akbarizadeh [11,12] and considered a powerful trait in the classification of humans.

In [13], M. Chaa, Z. Akhtar, and A. Attia introduced a three-dimensional palmprint and used it for
human classification. The authors of [14], S. Veluchamy, and L. R. Karlmarx, used finger knuckles and
finger veins as the novel biometric traits. The authors reported that they achieved 96% classification
accuracy using these traits.

The researchers in [15] worked on remote photoplethysmography for detecting spoof attacks using
fake finger—vein data. In [16], a multimodal biometric system was proposed based on finger vein and
finger shape biometric modalities using NIR images. An efficient technique for the enhancement of NIR
finger-vein images was proposed in [17]. The authors of [18] presented a robust technique for region
of interest localization in the finger—vein biometric system. One research article [19] discussed the
implementation of deep learning techniques for the proposed multimodal biometric system combining
the iris, face, and finger—vein biometrics. In [20], the researchers proposed feature level fusion of the
finger—vein and fingerprint biometrics. They used an NIR imaging device for capturing images.

The pulse response biometric is a recently researched biometric. Rasmussen et al. [2] introduced
this biometric. According to the authors, the pulse response biometric may be effectively used as it
satisfies the aforementioned characteristics of biometric modality.

In [21], the researchers introduced a new methodology for finger vein authentication using
a convolutional neural network and supervised discrete hashing. They claimed to investigate its
performance using well-known CNN architectures in other domains (e.g., light CNN, VGG16, Siamese,
and a CNN with Bayesian inference-based matching). They performed a comparative analysis between
the proposed and existing methods and claimed unmatched performance by the proposed system.
For comparative analysis, the researchers used a publicly available two-session finger vein database.

The authors of [22] presented a novel convolutional neural network-based finger—vein identification
system. They tested the proposed CNN by using four publicly available databases of finger vein
images. They claimed that their proposed system was almost independent of the quality of the images
captured and analyzed. They also claimed to achieve an accuracy of identification beyond 95% for all
of the four considered databases of images.

The researchers in [23] introduced a biometric recognition system, based on the dorsal hand vein,
using a convolutional neural network. They tried CNNs of different depths to compare the recognition
rate. They also analyzed the effect of the dataset size on the recognition rate. They reported extraction
of the region of interest (ROI) from the image. Then, these ROI images were preprocessed by using
contrast limited adaptive histogram equalization (CLAHE) and a Gaussian smoothing filter algorithm.
Features were extracted by using Reference-CaffeNet, AlexNet, and VGG-depth CNN. In the last stage,
they applied logistic regression for identification. They performed experiments on datasets of two
different sizes and reported achieving different degree effects on the recognition rate. They claimed to
observe a 99.7% recognition rate by VGG19 for the dorsal hand vein. They also reported a declined
recognition rate of 99.52% for SqueezeNet.

The authors of [24] proposed a robust finger—vein recognition method. They employed different
databases and considered environmental changes, based on the convolutional neural network.
They claimed to maintain new finger vein databases during this research. They performed the
experiments by using these databases and the openly available SDUMLA-HMT finger vein database.
They claimed to observe better performance in comparison with the conventional systems.

In [25], the authors proposed a multimodal biometric system based upon three modalities.
They used fingerprint, finger—vein, and face biometrics to develop an accurate and efficient identification
system. They tested the performance by using the publicly available SDUMLA-HMT dataset.
The researchers preprocessed images for fingerprints and finger veins in the first step using
their respective algorithms. In the second step, the convolutional neural networks were used to
extract features for all three modalities of focus separately. After that, the softmax classifier was
used for fingerprints and faces while the random forest classifier was used for the finger—vein
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biometric. Then, matching scores were generated for each of the three modalities. They declared the
recognized subject after performing score-level fusion and comparing the overall matching score with
a predefined threshold.

3. Proposed System

In our proposed work, we used the pulse response, hand geometry (in the form of the
interphalangeal joint biometric), and finger-vein biometric modalities for the detection of a live
human body to improve performance against counterfeit attempts. The block diagram of the proposed
system is shown in Figure 1. Our paper consists of the following key contributions:

e A new near-infrared (NIR) hand images dataset is proposed, with a dataset containing a total of
111,000 images acquired from 185 humans. The dataset will be uploaded online and made freely
available (under approval of the ethical committee).

e A novel hand geometry biometric system is implemented. The proposed system uses image
processing, pixel clusters, and centroid distances for hand geometry recognition. The proposed
system achieved 86% accuracy on the proposed NIR hand dataset.

e  Finally, the fuzzy rule-based system combines all three biometrics for human recognition using
hand images. The proposed method combines the pulse response, hand geometry, and finger—vein
biometrics using fuzzy rule-based inference and gives a cumulative confidence score. The proposed
method achieved 92% accuracy on the proposed dataset.
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Figure 1. Block diagram of the proposed method. Blue = pulse response; green = hand geometry; and
yellow = finger—vein.

The steps involved for each one of the selected biometric modalities are described in the
following discussion.

3.1. Pulse Response Biometric

In our proposed work, we developed a device for applying a train of pulses to the human palm
and capturing the response from the other hand. The authors in [2] used brass electrodes for applying
and capturing signals, while we have used more sophisticated and reliable Tens electrodes for applying
and capturing signals. We also tried brass electrodes, but those were unable to capture desired signals
better than the Tens electrodes.

The biometric signal capturing device was made with the help of INA128P (High Precision, Low
Power Instrumentation Amplifier), TLO71CN (Low Noise, JFET Input Operational Amplifier), and
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7660S (Super Voltage Converter). The square wave pulses of a 200Hz frequency were applied through
the Tens electrode on the palm of the first hand, and the response was captured for 5 ms from the other
hand. A sampling rate of 10 kHz was used. The device and the Tens electrode pairs are shown in
Figure 1.

The captured signal was fed into a computer using the microphone audio interface. The signal
was read and processed further by using MATLAB. MATLAB recorded the input signal at a sampling
rate of 10 kHz for 5 ms and stored it in a 50 X 1 matrix. The frequency of the applied pulse was
200 Hz because the response was captured for 5 ms, such that for a single iteration of the applied pulse,
the response was captured.

In the next step, a fast Fourier transform (FFT) was applied to the acquired signal. The FFT
transformed the time domain signal into the frequency domain. The frequency domain response was
stored in a database maintained in Microsoft Excel. For an applied pulse, we got a column of 50 cell
entries. A total of 50 iterations were performed for each subject to record his or her response signals,
which resulted in a 50 X 50 matrix.

When we analyzed a response from any human, it could easily be observed that the 26th cell entry
of the column was zero for almost all of the columns. In addition to that, we observed that 25th and
27th cell values were the same, as well as the 24th, 23rd, 22nd, and so on until the 2nd cell value were
the same as the 28th, 29th, 30th, and so on until the 50th cell value, respectively. However, when we
captured the pulse response from any non-living thing, the responses were all zero response patterns.
We tried and validated our pulse response biometric state by capturing the response of wood, metal,
and plastic surfaces.

Therefore, for identifying that the response was captured from a living human, we performed
cell-to-cell subtraction as shown in Equation (1) below:

25
ijz(CELL(j) —-CELL(52-j)) = 0 1)

In addition to this, it was also required to check that all the entries in all 50 columns were not
zeros, as shown in Equation (2) below:

50
Zi:l CELL(i) # 0 o)

These equations were used to differentiate between a living human response and an artifice
body response.
In Equations (1) and (2), CELL denotes the Excel sheet cell entry for the captured response.

3.2. Hand Geometry as an Intrinsic Biometric

Our approach to deal with hand geometry was to further enhance the anti-spoofing capability of
the proposed system. We treated hand geometry, which is an extrinsic modality, as an intrinsic modality.

Hand geometry is a proven biometric modality, and many researchers have worked on it in
unimodal as well as multimodal biometric systems. In [15-18], ]J. Svoboda, O. Klubal, and M.
Drahansky [26], T. A. Budi Wirayuda et al. [27], ]. Svoboda, M. M. Bronstein, and M. Drahansky [28],
and R. Srikantaswamy [29] treated hand geometry as an extrinsic modality. That is why all the
disadvantages related to extrinsic physical biometric modalities apply to their work. The main
disadvantage is the vulnerability to spoof attacks. Some false user may replicate another user’s hand
geometry by using some fake hand made of artificial material.

In this research work, we considered the index, middle, and ring fingers for gathering raw data,
using a near-infrared (NIR) camera, in the form of images. Once an image was captured using an NIR
camera, it was pre-processed and went through a few math functions for the generation of identification
and authentication results.
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Our proposed algorithm comprises the stages as shown in Figure 2. Each step is explained in the
following discussion.
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Figure 2. Hand geometry algorithm flow diagram.
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3.2.1. Image Acquisition

Allied Vision’s Manta G145B—GigE—Camera was used for capturing NIR images. It is a
monochrome camera, having a 1.4 megapixel resolution and giving an image of 1360 x 1024 pixels.
A near-infrared (NIR) filter was attached to this camera for capturing NIR images. The camera was
mounted on a specially designed metal stand, facing downward. A lighting source of a constant
intensity was placed at the bottom of the stand. We designed a lighting pad with high-intensity LEDs
placed beneath only the human finger joints. The focus of the camera and the distance between the
camera and the lighting source was adjusted at the start of the image acquisition phase and remained
constant for all the images taken from volunteers. Under these specially designed lighting conditions,
NIR images for the right hand were captured and stored in the database for further processing.
Figures 3a and 4a show the captured images.

3.2.2. Region of Interest Localization

As reported in Section 3.2.1., we used a metal stand to mount the camera. The design of the image
capturing setup was such that there was no need to crop or align the captured image. Therefore, in this
step, a predefined pixel region of the captured image was extracted. Our pixel region of interest (ROI)
was from row 230 to 700 and from column 300 to 990. In this way, our ROI image covered the index,
middle, and ring fingers of the volunteer. The example ROI images are shown in Figures 3b and 4b.

3.2.3. Image Binarization

In this step, the output image of the previous step was converted into a black and white image.
After iterative preprocessing of the images, for getting the best results, an intensity threshold value
of 100 was selected for the applied lighting conditions for image binarization. If some different
intensity lighting source were to be used, then the threshold would also need to be adjusted accordingly.
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Figures 3c and 4c show the threshold output image of this step. It is visible in the images that, at the
location of the interphalangeal joint, there are brighter regions, whereas other portions are darker.

(2) Captured image for Subject 1 (b) Region of mnterest for Subject 1

(c) Binary #mage for Subject 1 (d) Morphological operations for Subject 1

Figure 3. Images for Subject 1.

(a) Captured image for Subject 2 (b} Region of interest for Subject 2

(c) Binary image for Subject 2 (d) Morphological operations for Subject 2

Figure 4. Images for Subject 2.
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3.2.4. Morphological Operations

By using morphological operations, the brighter regions were converted into a bright spot. For this,
two morphological operations, called fill and shrink, were applied.

The morphological fill operation removed any darker spot surrounded by a brighter region in
the threshold image. This fill operation limited the number of scattered brighter regions. As a result,
the unnecessary smaller, brighter regions were merged to form a bigger, brighter region.

The morphological shrink operation converted the brighter region into a bright spot. Therefore,
by applying the two selected morphological operations, we got an image with bright spots representing
each brighter region. The output images for this step are shown in Figures 3d and 4d.

3.2.5. Cluster’s Centroids Calculation

It may be seen clearly that, after performing the morphological operations, there was a cluster
of white dots for each brighter region. Now, we have to calculate the distances between the brighter
regions. Therefore, we needed to locate the centroid for each brighter region. To achieve this task,
we grouped the neighboring white dots and located the single point to get a single white dot instead of
a cluster.

For the formation of the clusters, we started with locating the white dot (pixel position) having
the lowest row and column location. Then, we located the white dots situated within +X rows and +Y
columns to form a group of pixels or clusters. We worked with values of X and Y of 140, 100, 70, and
40. The centroid of the located cluster was then calculated by adding the row pixel positions together
and then dividing it by the total number of pixels within the cluster. This gave the pixel row position
for the centroid of the cluster. Besides this, the column pixel positions were added together and then
divided by the total number of pixels within the cluster. This gave the pixel column position for the
centroid of the cluster.

The very next white dot located outside the cluster was considered as the starting point of the
next cluster. In this way, we located four clusters and calculated their centroids.

3.2.6. Calculating Parameters

In this final step, the Euclidean distances between the located four centroids of bright regions were
calculated. Matrix M, shown in Equation (3), was formed by arranging our data in such a way that it
may be stored in an organized database. Later on, this matrix is used for generating matching score
results by performing subtraction with Matrix N (see Section 4.3), followed by taking the determinant
for the resultant Matrix S. Matrix M had six entries for inter-centroid distances, as listed below:

dl d2 43
M=|d4 d5 dé 3)
2 2 2

d1 = Distance between Centroids 1 and 2
d2 = Distance between Centroids 1 and 3
d3 = Distance between Centroids 1 and 4
d4 = Distance between Centroids 2 and 3
d5 = Distance between Centroids 2 and 4
d6 = Distance between Centroids 3 and 4

3.2.7. Storing and Matching Parameters

The matrix containing the calculated parameters (i.e., Matrix M) was stored in the database
for each user during the enrollment phase. In the matching and authentication phase, the matrix
calculated on runtime (i.e., Matrix N) was matched with the matrices stored in the database by
performing element-to-element subtraction. The output matrix (i.e., Matrix S) was converted into a
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determinant value. The subject with the lowest determinant value was picked as the most probable
authenticated person.

3.3. Finger—Vein Biometric

We proposed to learn the finger—vein biometric that was introduced in [14]. However, the
authors in [14] used finger vein information after filtering those images by several handcrafted filters.
Eventually, they learned the features using the K-SVM classifier. We, on the other hand, proposed to
learn the finger vein information directly from near-infrared (NIR) hand images using a convolutional
neural network (CNN). During the experiments, we found out that the CNN also had learned hand
phalangeal joint biometric (PJB) information. This biometric trait captures information based on the
distance between the distal phalange joint of the middle finger and the proximal phalangeal joints of
the index and little fingers. These distances can be translated into a relationship, which may provide
distinct characteristics or features about humans. In Section 3.2, we proposed a handcrafted technique
(i.e., hand geometry as an intrinsic biometric). It finds the distance between finger joints by using NIR
images to calculate cluster distance relationships.

3.3.1. Methodology

In this section, we will discuss the data set collection, augmentation, and CNN architecture used
for NIR image training.

3.3.2. Dataset

The dataset was collected from a total of 185 subjects. Two hundred images were collected
from each subject. Once the images were collected, the data was augmented using random values
of translation, angular rotation, size, and horizontal flipping of the images. These augmentations
provided us with four hundred more images per subject, in addition to the two hundred collected
images per subject. Hence, the total number of images per subject reached six hundred. Samples from
the dataset are shown in Figure 5. Our proposed NIR dataset consisted of 185 subjects, 600 images per
subject, and a total of 111,000 images.

Figure 5. Four sample subjects from the near-infrared (NIR) dataset.
3.3.3. Convolutional Neural Network Architecture

We used the framework of Alexnet [30], which consisted of eight layers. The first five were
the convolutional layers. In these layers, various filters were convolved with NIR images to extract
distinct features from all the classes. These filters extracted rich information from the images, such
as edges, curves, and colors. In NIR images, vein information is represented by the darker regions
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inside the fingers, whereas the non-vein region is represented by the brighter regions inside the fingers.
Once extraction was completed, those discriminative features were forwarded to the remaining three
fully connected layers, where weights were converged using a loss function in several iterations.

By default, the architecture of the convolutional neural network (CNN) used two graphics
processing units (GPUs) to speed up the processing. In our experiments, we used a single GPU;
hence, all the operations were performed inside the sole GPU. We randomly split the data into 80%
training data and 20% validation data. It took about 10 h on an INTEL core i5 with 8GB RAM and
an NVIDIA 1050 GPU to train 185 classes containing 80% of the total images. Each image was of
a 224 x 224 x 3 pixel size, as per the CNN architecture requirement. The training was completed
using four epochs, having a batch size of sixty-four images. We used a constant learning rate of 0.001
throughout the training. The classification accuracy was evaluated on the validation set containing
20% of the total data.

3.4. Fuzzy Logic System

We designed a fuzzy logic system to combine the outputs of all the biometric modalities that
were used in our proposed system (i.e., pulse response, hand geometry, and finger-vein biometrics).
The fuzzy system will render a confidence value on a scale of 0-1. The values near 0 represent that the
person is an imposter, and values near 1 represent that the person belongs to the predicted class by
the hand geometry and finger—vein systems. This combination of all the biometric traits is shown in
Figure 6 with the help of a block diagram. Figure 6 shows that the fuzzy inference system takes input
values from all three modalities and gives a confidence value in the range of 0-1.

pulse response (1)

Biometrics

(mamdani)

hand geometry (5)

25 rules

confidence (2)

finger vein (5)

System HG: 3 inputs, 1 outputs, 25 rules
Figure 6. Fuzzy biometric fusion system.

There were three steps to making the fuzzy logic system. First, we converted real values into
fuzzy linguistic variables (e.g., 20 km/h to slow speed, 100 km/h to high speed, and 200 km/h to very
high speed). Next, we designed a rule set that conformed to our needs. Finally, the answer calculated
by fuzzy logic had to be de-fuzzified to make it understandable in the real world. The following section
will elaborate on the procedure of loading all the modalities into the fuzzy logic system to derive a
cumulative answer.
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3.4.1. Fuzzification of Pulse Response

As we mentioned earlier, the pulse response biometric only identifies whether the hand is of a
living person or not. For this purpose, Equations (1) and (2) need to be true for a living person and false
for a non-living person. Figure 7a shows the fuzzification of the pulse response trait. Although pulse
response will either be true or false, we assigned all true values to be above 0.98. Once it was certain
that a person was living, the system would go further to evaluate other modalities.
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Figure 7. Fuzzification of inputs and outputs: (a) Fuzzification of Pulse Response System; (b)
Fuzzification of Hand Geometry System; (c) Fuzzification of Finger-Vein System; (d) Fuzzification of
the Output.

3.4.2. Fuzzification of Hand Geometry

As mentioned in Section 3.2, cluster distances were calculated and stored in Matrix M, represented
by Equation (3) in the enrollment phase. Then, during the identification phase (see Section 4.2), Matrix N
was arranged for the candidate subject, and hence the determinant of Matrix S (see Equation (5)) was
calculated. The value of the determinant gave us information about the NIR image belonging to one of
the various classes. We fuzzified the hand geometry output by normalizing the determinant values in
the range of 0-1. A total of five linguistic variables were assigned in the said range (i.e., very low, low,
medium, high, and very high). Those variables were all assigned triangular membership functions, as
shown in Figure 7b.

3.4.3. Fuzzification of Finger Vein

As mentioned in Section 3.3, the convolutional neural network (CNN) provided an output in the
form of a confidence score for each subject class. The score was in the range of 0-1. Similar to hand
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geometry fuzzification, a total of five linguistic variables were assigned in the said range (i.e., very
low, low, medium, high, and very high). All of those variables were assigned triangular membership
functions, as shown in Figure 7c.

3.4.4. Fuzzification of Output (Confidence Value)

The output of the fuzzy system would be a confidence value in the range 0-1. We defined two
triangular membership functions (i.e., pos and neg), as shown in Figure 7d. It should be noted that the
fuzzy membership value (on the Y-axis) of neg decreased when the confidence increased from 0 to 1
and vice versa.

3.4.5. Designing a Fuzzy Inference System

Once all inputs (biometric modalities) were fuzzified, fuzzy rule-based inference was designed.
A total of twenty-five rules were incorporated in the fuzzy inference system. Rules were designed
and tweaked to give an advantage to the output of the finger-vein CNN-based system. For example,
if the hand geometry system identified an input NIR image with the membership function of medium
to a different class other than the finger—vein CNN-based system with the membership function of
medium, the decision of the latter would be considered. In another example, if the hand geometry
system identified an input NIR image with the membership function of very high to a different class
other than the finger-vein CNN-based system with the membership function of very low, only then
would the decision of the former be considered.

3.4.6. De-Fuzzification

The centroid method was used to de-fuzzify the answer obtained from the fuzzy rule-based
inference system. The de-fuzzified value would be in the range of 0-1.

4. Experimental Setup

Our proposed dataset was formed by capturing NIR hand images and pulse response information
from 185 volunteers. We captured these in two sessions, separated by a four-week interval. In the first
session, one hundred NIR hand images and twenty-five pulse response instances per subject were
captured. In the second session, one hundred more NIR hand images and twenty-five pulse response
instances from the same volunteers were captured. Those two hundred images were augmented using
translation, angular rotation, size, and horizontal flipping of the images. This yielded a total of six
hundred NIR hand images per subject and a total of 111,000 images. The dataset was split into 80%
training and 20% testing sets.

4.1. Pulse Response Biometric Setup

In the pulse response setup, we captured the pulse response biometric from each subject.
Those volunteers were called, and their pulse response biometrics were measured and stored. A sample
of a captured pulse response is shown in Figure 8. The response shown was captured at a sampling rate
of 5000 samples per second. Hence, there are 25 entries per column in the response shown in Figure 8,
and only nine columns are shown. It is easily visible that the second entry within each column is the
same as 25th and 3rd, 4th, 5th, and so on, until the 13th entries, which are the same as the 24th, 23rd,
22nd, and so on until the 14th entries. The response for 10,000 samples per second is not shown here
because of the limitation of space. We found that every living body had the property mentioned in
Section 3.1. It was also verified that non-living bodies all had zero responses when the same type of
pulse was applied.
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Figure 8. Pulse response captured at 5000 samples per second.

4.2. Hand Geometry Biometric Setup

In the hand geometry setup, the same dataset split of the test set was used. NIR hand images in
the test set were used to validate the respective subject class. In the identification phase, we calculated
the six distances, as discussed in Section 3.2, for every test set candidate and substituted those six
values in the following equation:

dl d2 d3
N=|d4 d5 d6 @)
1 1 1

This matrix N is used to calculate matrix S in the following equation:
S=M-N ®)

Then, the absolute determinant was calculated and stored in the Excel file, which was declared as
the final matching score. The enrolled user (or subject) with the lowest value of the final matching
score with the corresponding class was regarded as the identified person or subject. It should be noted
that M was calculated and saved for 165 subjects out of 185 in the enrollment phase. Images for all 185
subjects—165 enrolled and 20 non-enrolled subjects—were used for the matching phase to observe
the performance of the proposed algorithm. After iterative experiments, we selected a minimum
threshold of 200 for the final matching score to differentiate between the enrolled users (or subject) and
the imposters. If matching scores exceeded the threshold, the candidate was identified as an imposter.
Finally, matching scores and class labels obtained from all the test images were stored.

4.3. Finger—Vein Biometric Setup

For the finger—vein setup, firstly, the CNN was trained using the training set. Then, the trained
model was used to validate the test set. The confidence scores and class labels from all test sets were
stored. After this, the pulse response output in the form of 0 and 1, hand geometry normalized output
in the range of 0-1, and finger—vein output scores in the range of 0-1 were given to the fuzzy system.
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5. Experimental Results

5.1. Pulse Response Biometric

According to the pulse responses captured from a live human body and non-living materials like
wood, plastic and metal, it was observed that 99% accuracy was demonstrated in identifying the live
human body in comparison with a non-living material body.

5.2. Hand Geometry Biometric

According to the proposed algorithm, it was observed that an accuracy of 86% was achieved in
identifying the correct subject when hand geometry was used in unimodal settings. A false acceptance
ratio (FAR) of 0.18 and a false rejection ratio (FRR) of 0.17 were observed when experiments were
performed for the whole image database collected from the 185 subjects (165 enrolled subjects and 20
non-enrolled subjects).

5.3. Finger—Vein Biometric

We evaluated our proposed method in the NIR hand images dataset. In addition to the CNN
described in Section 3.3, VGG16 [31] and VGG19 [32] were also tested on the NIR hand images dataset.
Furthermore, we used precision-recall metrics for reporting the results. More discussion about the
evaluation metrics is in the following section.

5.3.1. Evaluation Metrics

We used precision-recall as the evaluation metrics and reported the results as shown in Figure 9.
Each of the results was reported using the all-versus-one strategy (i.e., all samples of one class in
the testing images were considered as positives, and all the remaining samples were considered as
negatives). An algorithm was run on the test images. Values of true positive (TP), false positive (FP),
and false negative (FN) were saved for all the classes. This process was repeated until all 185 subject
classes were done. Precision and recall values were calculated using the values of TP, FP, and FN,
saved for one run. After that, the classifier threshold was changed, and the whole process was repeated
a few times.

After obtaining a few values of precision-recall, we plotted those values and calculated the area
under the curve using trapezoid calculations. This area under the curve (AUC) reflects the classifier
accuracy, as shown in Figure 9.

5.3.2. Experiments with NIR Dataset

First of all, we evaluated our proposed method of hand geometry discussed in Section 3.2.
For different values of pixels in the X-Y direction, corresponding accuracies were obtained. It would
be noted that for the cluster size of 140 pixels, the proposed algorithm gave an AUC of around 86%,
as shown in Figure 9a. In our opinion, the accuracy of the proposed hand geometry algorithm was
quite impressive, keeping in mind the accuracies of CNNs.

As mentioned earlier, we compared the accuracies of three different CNNs for the finger—vein
biometric. We trained and tested Alexnet, VGG16, and VGG19. We found out that the CNNs achieved
higher accuracies than their hand geometry counterpart, as shown in Figure 9b.
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Figure 9. ROC curves and training time vs. accuracy: (a) PR Curves of the Proposed Hand Geometry
System; (b) PR Curves of Convolutional Neural Networks tested on NIR Dataset; (c) PR Curves of
Convolutional Neural Networks fused with the Fuzzy System; (d) Training Time vs Accuracy of the

Convolutional Neural Networks on NIR Dataset.

Table 1 lists the performance parameters, accuracy, and training time for the final combined
holistic fuzzy system by employing all three CNNs. For the hand geometry biometric, 140-pixel
clustering was kept constant. When Alexnet was selected for the finger—vein biometric, the overall
output accuracy of the system increased to 92%, which was a 2% increase from the sole finger—vein

biometric using Alexnet, as shown in Figure 9c.

Table 1. Performance comparison.

Name of Method Accuracy Training Time
Fuzzy Alexnet 92.03% =10 h
Fuzzy VGG16 93.30% ~15h
Fuzzy VGG19 94.86% ~18h

We noted that the fuzzy inference rule helped complement the hand geometry and finger—vein
biometric systems positively. We also observed that VGG16 and VGG19 had no influence on the fuzzy
inference rules, and the accuracy remained the same. We noted that this was due to the strong decision

score assigned by the aforementioned algorithms.



Electronics 2020, 9, 1916 16 of 20

Figure 9d shows the accuracy vs. training time for all three CNNs. Alexnet took about 10 h for
training on 80% of the total dataset, whereas VGG16 and VGG19 took 16 h and 18 h on the same training
set, respectively. During the training phase, we noted that Alexnet dealt with 60 million parameters,
VGG16 with 138 million parameters, and VGG19 with 144 million parameters. Our GPU had limited
memory, and all of the dataset could not be loaded into the GPU’s memory in one shot. Due to this,
all the CNNs were spending the majority of the time transfering parameter inter-memory. This implies
that, with a larger GPU memory size, training can be made faster for the aforementioned algorithms.

5.3.3. Biometric Performance Parameters

Figure 10a,b show the performance evaluation of the proposed fuzzy Alexnet in terms of the false
acceptance rate (FAR) and false rejection rate (FRR) vs. the threshold of the classifier and the genuine
acceptance rate (GAR) vs. FAR biometric performance metric graphs, respectively.
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Figure 10. (a) Equal error rate; (b) GAR vs. FAR.

In Figure 10a, the FAR, as well as the FRR, was plotted against different values of the sensitivity
threshold of the classifier. This plot helped in finding out the desirable values of the FAR and FRR from
the graph. At the point of intersection, we have FAR = FRR = 0.113. Hence, we achieved an equal error
rate (EER) equal to 1 where the FAR and FRR are at same value, which is the desired performance
parameter for any biometric system.

The graph shown in Figure 10b explains the performance of our proposed multimodal biometric
system by plotting the genuine acceptance rate against the false acceptance rate. It describes the effect
of increasing the accuracy on the FAR of the system by adjusting the sensitivity of the classifier.

6. Conclusions

In this paper, we proposed a robust anti-spoofing system using biometrics modalities. The pulse
response biometric filtered the non-living material very efficiently, as its demonstrated accuracy was
99%. A new near-infrared (NIR) hand images dataset, containing a total of 111,000 NIR hand images
collected from 185 human subjects, was also proposed. Besides that, we formulated a handcrafted
technique for hand geometry recognition that achieved 86% accuracy on the NIR hand dataset. We also
implemented the finger-vein biometric system using convolutional neural networks. Finally, a novel
fuzzy rules-based biometric system was proposed, which achieved an accuracy of 92% on the proposed
NIR hand images dataset. During the experiments, we found out that convolutional neural networks
like VGG16 and VGG19 solely achieved accuracies near the proposed fuzzy rules-based biometric
system at the trade-off of training time. For future work, we plan to make a stronger fuzzy system that
can correct more classification errors with the help of its wider rule base canvas.
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7. Patents

In this research, we maintained a dataset of near-infrared images for the human hand. This dataset
was collected from 185 subjects.

8. On-Request Dataset

The dataset maintained may be provided if requested by submitting through email a scanned
copy of the signed form attached in Appendix A. The form must be signed by the requesting research
personnel, as well as the legal officer of the researcher’s institution.
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Appendix A

Application and Database License Agreement for

Near-Infrared Hand Images Database Access

Emerging Technologies Research Group =

Department of Electronic Engineering— NED University of Engineering & Technology

The database of near-infrared human hand images was collected during the Ph.D. research project
under the approval of the Research Ethics committee of NED University of Engineering & Technology.
The informed consent of all the participating volunteers was fetched. The participants” ages ranged
from 19-55 years.

In order to facilitate researchers working in the field of finger-vein and hand geometry biometrics,
this dataset is available through proper channel requests. All requests to acquire this database must
be submitted by the researcher’s institution on behalf of an individual researcher or the research
laboratory or center. In order to receive a copy of this database, a legal officer of the researcher’s
parent institution must sign this document and agree to observe the restrictions stated below. In
addition to other possible counteractions, failure to comply with these restrictions may result in the
withdrawal of permission to use this database, as well as denial of access to additional facilities
provided by our university and research group. The submission of a completed license agreement
does not automatically guarantee access to the database. The submitted request is to be approved by
the statutory body of the NED University of Engineering & Technology before providing time-limited
access to the database. The distribution of this database may be further restricted to comply with local
legal requirements.

Consent

The researcher and the countersigning official agree to the following terms and conditions:

1.  Redistribution and modification: The database, in whole or in part, will not be further distributed,
published, copied, or disseminated in any way or circumstances whatsoever, whether for
academic, research, or commercial use, without prior approval from the Principal Investigator
and statutory body of the NED University of Engineering & Technology. Researchers will not
forge the originality of the images for any type of violation of copyright for the database.

2. Publication Requirement: The researchers intending to include more than 10 images from the
provided database in reports, papers, and other documents to be published or released must first
obtain approval in writing from the Principal Investigator.

3.  Citation: The researchers getting help from the provided database in their experimental or
literature review are required to include the citation of the published paper, whose details will be
provided with the approval of the database request.

4.  Publications to NEDUET: The researchers requesting the database must submit a copy of all the
reports, and articles that are for public or general release that use this database must be forwarded
immediately upon release or publication to the Department of Electronic Engineering, NED
University of Engineering & Technology.

Authorized Signature of the Researcher

Authorized Signature and Stamp of the Institution’s Legal Officer

Organization Name, Complete Address, and Contact E-mail Address:

Please submit the scanned copy of the signed license agreement to the following official e-mail:
hsageel@neduet.edu.pk; Syed Aqeel Haider, Research Scholar, Department of Electronic Engineering,
NED University of Engineering & Technology, Karachi—Pakistan.
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