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Abstract: The Bose-Chaudhuri-Hocquenghem (BCH) codes are a well-known class of powerful error
correction cyclic codes. BCH codes can correct multiple errors with minimal redundancy. Primitive
BCH codes only exist for some word lengths, which do not frequently match those employed in
digital systems. This paper focuses on double error correction (DEC) codes for word lengths that
are in powers of two (8, 16, 32, and 64), which are commonly used in memories. We also focus on
hardware implementations of the encoder and decoder circuits for very fast operations. This work
proposes new low redundancy and reduced overhead (LRRO) DEC codes, with the same redundancy
as the equivalent BCH DEC codes, but whose encoder, and decoder circuits present a lower overhead
(in terms of propagation delay, silicon area usage and power consumption). We used a methodology
to search parity check matrices, based on error patterns, in order to design the new codes. We
implemented and synthesized them, and compared their results with those obtained for the BCH
codes. Our implementation of the decoder circuits achieved reductions between 2.8% and 8.7% in the
propagation delay, between 1.3% and 3.0% in the silicon area, and between 15.7% and 26.9% in the
power consumption. Therefore, we propose LRRO codes as an alternative for protecting information
against multiple errors.

Keywords: reliability; fault tolerance; error control codes; double error correction; BCH codes

1. Introduction

Error control codes (ECCs) are frequently employed for fault tolerance in dependable systems.
Coding theory has been studied for over half a century, and it is still going stronger than ever [1,2],
because of its extensive application in computing, data storage, communications, etc.

The Bose-Chaudhuri-Hocquenghem (BCH) codes are one of the best-known ECCs. They were
discovered in 1959 by Hocquenghem [3] and, independently, in 1960 by Bose and Ray-Chaudhuri [4].
Since then, BCH codes have been extensively employed in several applications, namely: flash
memories in solid-state drives (SSDs) [5], optical storage like compact disks (CDs) or digital versatile
disks (DVDs) [6], ethernet [7], video codecs [8], digital video broadcasting (DVB) [9], and satellite
communications [10]. Their algebraic features make BCH codes very useful in a wide range of
situations, and their error coverage is achieved with minimum redundancy.

Nevertheless, when applied to computers, these codes have two main weaknesses. First, primitive
BCH codes (those generated according to their strict definition) only exist for a limited number of word
lengths [11]. This problem can be easily solved by shortening a longer code. However, although they
maintain their error coverage, shortened BCH codes may lose other properties, such as cyclicity or
minimal redundancy, as stated later.
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The second problem with these codes is the latency of the decoding process. Although their
algebraic structure is useful in simplifying the encoding and decoding procedures, most of the decoding
algorithms have a sequential structure that requires several clock cycles to complete the decoding [11].
Commonly, this is not a problem in software implementation or even in hardware when the speed
requirements are not very high. However, the usefulness of BCH codes is limited when very fast
encoding and decoding operations are required.

The information stored in key elements of a computer system, such as registers and memories, may
be perturbed by different physical mechanisms [12–14]. As technology increases in integration scale,
single error correction (SEC) or single error correction-double error detection (SEC-DED) codes may
not be enough for present and future computers. Multiple error correction codes, like BCH, become
an interesting alternative, but designers have to deal with the two problems described previously.
First, the lengths of data words are commonly in a power of two (8, 16, 32, etc.), and they do not
match to the block sizes of primitive BCH codes. Second, their “slow” decoding may reduce the
system performance.

This paper focuses on binary codes for double error correction (DEC), applied to common data
word lengths in computers (i.e., 8, 16, 32, and 64). We propose new low redundancy and reduced
overhead (LRRO) DEC codes, which maintain the same error coverage and redundancy as the
equivalent BCH codes, but reduce the overhead introduced by the encoder and decoder circuits in
terms of the propagation delay, silicon area, and power consumption. Different encoder and decoder
circuits have been implemented and synthesized in order to validate the error coverage and to measure
and compare those parameters. The results validate the improvements achieved by our proposal, and
confirm LRRO codes as an interesting alternative to BCH codes in high-speed applications, like random
access memories (RAM) and processor registers. These codes are especially well suited for RAM
memories, where low redundancy, high-speed operations, and low power consumption are mandatory.

This paper is organized as follows. Section 2 introduces basic concepts about coding theory and
BCH codes. The proposed LRRO codes are described in Section 3. Section 4 includes the evaluation of
the proposal and a comparison with the BCH codes. Finally, Section 5 presents some conclusions and
ideas for future work.

2. Coding Theory and BCH Codes

2.1. Basics on Error Control Coding

An (n, k) binary linear block ECC encodes a k-bit input word in an n-bit output word [15]. The
input word, u = (u0, u1, . . . , uk − 1), is a k-bit vector that represents the original data. The code word,
b = (b0, b1, . . . , bn − 1), is an n-bit vector, where the (n − k) added bits are called the parity, code, or
redundant bits. b is transmitted through an unreliable channel that delivers the received word, r = (r0,
r1, . . . , rn − 1). The error vector, e = (e0, e1, . . . , en − 1), models the error induced by the channel. If no
error has occurred in the i-th bit, then ei = 0; otherwise, ei = 1. Therefore, r can be interpreted as r = b ⊕
e. Figure 1 synthesizes this encoding, channel crossing, and syndrome decoding processes.
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The generator matrix, Gk × n, of a linear code (together with its related parity check matrix,
H(n − k) × n) defines the code [1]. For the encoding process, b = u·G. The encoded word, b, meets the
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requirement H·bT = 0, which means that it is a correct code word. For syndrome decoding, syndrome
is defined as sT = H·rT, and it exclusively depends on e, as follows:

sT = H·rT = H·(b ⊕ e)T = H·bT
⊕ H·eT = H·eT. (1)

There must be a different syndrome, s, for each correctable error vector, e. Syndrome decoding is
done through a lookup table that relates each syndrome to the decoded error vector, ê. If s = 0, we can
assume that ê = 0, and hence r is correct. Otherwise, an error has occurred. The decoded code word,
b̂, is calculated as b̂ = r ⊕ ê. From b̂, it is easy to obtain û by discarding the parity bits. If the fault
hypothesis used to design the ECC is consistent with the behavior of the channel, û and u must be
equal with a very high probability.

For a binary word, the term Hamming weight, w, denotes the number of ones in that word. As
explained later, the Hamming weights of the rows and columns of the parity check matrix determine
the complexity of a code.

The Hamming distance between two binary words is the number of bits in which they differ. The
minimum Hamming distance of a code (dmin) is the minimum of the distances between all pairs of
valid code words. This parameter determines the error coverage of a code.

Code shortening is a code construction where, starting from a longer linear block code, the number
of data bits is reduced, while maintaining the same number of parity bits [15]. In this way, we can
construct a code for shorter data words, maintaining the same Hamming distance, and, therefore, the
same error coverage.

As stated above, the encoding process in linear block codes can be easily implemented. However,
the decoding process (mainly the lookup table implementation) may be difficult. Cyclic codes form
an important subclass of linear block codes [11]. Encoding and syndrome computation can be
implemented easily using linear feedback shift register circuits operated sequentially. Because of their
algebraic structure, there are different practical methods for decoding.

Cyclic codes are linear block codes with the additional property that, for each code word, all
cyclically shifted words are also valid code words.

Polynomial representation [11] is frequently employed to work with these codes. For example,
the input word, u, can be represented as a (k − 1) or lower degree polynomial with the variable X,
where the power of X is used to locate the bit ui in the following word:

u(X) = uk − 1·Xk − 1 + uk − 2·Xk − 2 + . . . + u1·X + u0 (2)

Cyclic codes can be represented using a generator polynomial, g(X). The data words, b(X),
are computed as b(X) = u(X)·g(X). A parity check polynomial can be obtained from the generator
polynomial. In fact, h(X)·g(X) = Xn + 1 [11]. The generator and parity check matrices can be obtained
from these polynomials.

BCH codes are one of the best-known cyclic codes. Reed–Solomon codes are the most important
subclass of non-binary BCH codes [11]. However, we will focus on binary BCH codes from now on.

2.2. Binary BCH Codes

For any positive integers where m ≥ 3 and t < 2m − 1, there exists a binary BCH code with code
word length, n = 2m

− 1; number of parity bits, (n − k) ≤ mt; and minimum distance dmin ≥ 2t + 1.
Therefore, this code can correct t errors [11].

For a t-error correction BCH code, its generator polynomial is given by g(X) = m1(X) ×m3(X) ×
. . . ×m2t − 1(X), where mi(X) is the minimal polynomial of αi, (i = 1, 3, . . . , 2t − 1) and α is an element
of GF(2m) of order n. GF refers to Galois fields (or finite fields). If m1(X) is a primitive polynomial of
degree m over GF (2), the code is called a primitive binary BCH code. Then, α is a primitive element
and its order is n = 2m

− 1. The minimal polynomials mi(X) and/or the generator polynomials for
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binary primitive BCH codes can be found in the literature [11]. More information about algebra for
coding theory can be found, for example, in the literature [1,11,15].

There are different algorithms to calculate the error-location polynomial (the key step of the
decoding): Berlekamp–Massey (mainly used to implement software decoders), Euclidean (mostly
employed in hardware implementations), etc. [11,16]. These methods are sequential algorithms with
iterative steps. Therefore, they require several clock cycles to perform the decoding process.

A combinational decoder (sometimes referred to as a parallel decoder) is proposed in the
literature [17]. Because of its importance in this work, it is briefly explained in Section 2.4. It
is first necessary to understand how to obtain the generator and parity check matrices from the
equivalent polynomials.

2.3. Matrices and Polynomials

As an example, let us consider the binary BCH code with m = 3 and t = 1. It is a (7, 4) BCH SEC
code. It is equivalent to the cyclic Hamming code. Its generator polynomial is g(X) = X3 + X + 1 [11].
As stated in Section 2.1, h(X) = (X7 + 1)/g(X) = X4 + X2 + X + 1.

Combinational encoders and decoders may require the equivalent generator and parity check
matrices. The binary representation of the generator polynomial is 1011. Arranging and shifting this
word in the matrix, we obtain the following:

G =


1011000
0101100
0010110
0001011

. (3)

As it can be observed, it is not in a systematic form. Obtaining the remainder by dividing Xn − 1,
Xn − 2, . . . , Xn − k by the generator polynomial, we get the matrix in a systematic form [16]:

Gs =


1000101
0100111
0010110
0001011

. (4)

The same procedure can be followed to obtain the parity check matrix:

H =


1011100
0101110
0010111

 → Hs =


1001011
0101110
0010111

. (5)

This method is applied to BCH DEC codes in the literature [17], as presented in the following.

2.4. Combinational Circuits for BCH Codes

The work presented in the literature [17] proposes combinational encoder and decoder circuits for
BCH DEC codes for SRAM protection. As stated before, BCH DEC codes have not found favorable
application in SRAMs because of the non-alignment of their block sizes to typical memory word lengths,
and particularly because of the large multi-cycle latency of traditional iterative decoding algorithms.
The authors propose a solution based on the generator and parity check matrices. Shortened codes
can be easily obtained from the matrices of the primitive codes. The encoder circuit can be simply
designed from the generator matrix. Syndrome computation (the first step of the decoding process) is
generated using the parity check matrix.
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The key element in this proposal is the error pattern decoder, equivalent to the lookup table shown
in Figure 1. Combinational logic is employed to map the syndromes for correctable error patterns. This
mapping is precomputed by multiplying all correctable error patterns with the parity check matrix, H.

Once the estimated error vector is determined, an erroneous bit is corrected by complementing it;
hence, the error corrector circuit (final step of the decoding process) is simply a stack of XOR gates.

The authors of this work implemented BCH DEC codes for 16, 32, and 64 bits, and synthesized
them using a 90-nm standard cell library. They reported, for example, decoding latencies ranging from
1.4 ns (for 16 bits) to 2.2 ns (for 64 bits).

3. Low Redundancy and Reduced Overhead (LRRO) Double Error Correction Codes

The Hamming weight for a row of a parity check matrix determines the number of terms to be
XORed in order to calculate the parity and syndrome bits. Therefore, in hardware implementation, the
heaviest row defines the logic depth of the XOR tree, which implements the encoder circuit and the
syndrome computation in the decoder circuit. It influences the delay introduced by the ECC.

In the same way, the Hamming weight of the whole parity check matrix determines the number
of logic gates required in the encoder circuit and the syndrome computation in the decoder circuit.
This number has an important influence on both the silicon area occupied and the power consumed by
those circuits.

Finally, the complexity of the ECC is mainly determined by its error coverage, and affects all
overheads (delay, silicon area, and power consumption). Nevertheless, as the error coverage is
determined by the design, nothing can be done about this parameter.

Therefore, to reduce the overhead introduced by the encoder and decoder circuits, we must focus
on the Hamming weights of the heaviest row and the whole matrix. Frequently, ECC designers can
achieve these objectives by increasing the number of parity bits. Depending on the application, it could
be an interesting alternative (e.g., [18]). However, this is not a good idea when protecting memories, as
all redundant bits must be stored per individual word in the whole memory, leading to a much higher
silicon area being occupied and more power being consumed by the memory circuitry.

Is it possible to find ECCs with the same redundancy as BCH codes, but reducing the overhead
introduced? For thid, we employed a searching methodology based on the errors to be corrected and/or
detected [19]. Although this methodology was initially employed to design flexible unequal error
control (FUEC) codes, it has been successfully used to design different families of codes (e.g., [18,20,21]).
First, let us briefly describe this methodology. Later, we describe the procedure needed in order to
obtain matrices for the existing BCH DEC codes. Next, we present the new LRRO DEC codes. Finally,
some important considerations have been included at the end of this section.

3.1. Searching Parity Check Matrices

Searching a parity check matrix that achieves the required error coverage may end up being very
complex. We used a methodology based on searching matrices that can correct and/or detect a given set
of error vectors. This methodology was first presented in the literature [19] to design flexible unequal
error control (FUEC) codes. Although a detailed explanation of the methodology is out of the scope of
this paper, it is briefly summarized in Figure 2, and is described in the following.

After determining the values of n and k for the code to be designed, the error patterns to be
corrected must be selected. These error patterns can be represented using error vectors, according to
the definition given in Section 2.1. Then, the parity check matrix, H, that satisfies (6) is searched, where
E+ represents the set of error vectors to be corrected.

H · eT
i , H · eT

j ;∀ei, e j ∈ E+

∣∣∣∣ei , e j, (6)
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that is, each correctable error must have a different syndrome. In this case, E+ must include the vectors
for the single and double errors. Single errors are represented with vectors ( . . . 1 . . . ), and double
errors with vectors ( . . . 1 . . . 1 . . . ), where the dots represent zero or more zeroes.
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To find the matrix, the recursive backtracking algorithm shown in Figure 2b is used. It checks
partial matrices and adds a new column only if the previous matrix satisfies the requirements. The
added columns must be non-zero, so there are 2n − k

− 1 combinations for each column. In order to
find matrices with a low Hamming weight, columns with a lower number of ones are checked first.

Once the H matrix is selected, it is easy to determine the logic equations in order to calculate each
parity and syndrome bit, as well as the syndrome lookup table. They are required for encoder and
decoder implementation.

In addition, we can improve the matrix generation so as to reduce the number of 1 s in those
rows with a higher number of 1 s of the parity check matrix, as well as reducing the total number
of 1 s in the whole matrix. As said before, these reductions will lead to faster, smaller, and less
power-consuming circuits.

A detailed explanation of this algorithm, as well as a code design example, can be found in the
literature [19].

3.2. BCH DEC Codes for 8, 16, 32, and 64 Bits

As stated above, in most cases, the block sizes of the primitive BCH codes do not align with the
sizes employed in memories. Hence, if we want to use BCH DEC codes with data lengths of 8, 16, 32,
or 64 bits, they must be shortened from primitive BCH DEC codes of longer data lengths. As described
in Section 2.1, code shortening allows for the design of codes with any block size using longer block
size codes. The primitive BCH DEC codes required for our purpose are (31, 21), (63, 51), and (127, 113).
From the (31, 21) code, we can obtain (18, 8) and (26, 16) BCH DEC codes. From the (63, 51) code, a (44,
32) code can be designed. The (127, 113) code allows for the construction of a (78, 64) BCH DEC code.

As an example, let us consider the primitive (31, 21) BCH DEC code. Its generator polynomial,
obtained by multiplying two primitive polynomials [11], is as follows:

g(X) = (X5 + X2 + 1)·(X5 + X4 + X3 + X2 + 1) = (X10 + X9 + X8 + X6 + X5 + X3 + 1). (7)
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Following the steps described in Section 2.3 to get the matrices in a systematic form, and shortening
the code as described in the literature [17], the parity check matrix for the (26, 16) BCH DEC code can
be obtained as follows:

HBCH 26,16 =



10000000001101010111100100
01000000000110101011110010
00100000000011010101111001
00010000001100111101011000
00001000000110011110101100
00000100001110011000110010
00000010001010011011111101
00000001000101001101111110
00000000101111110001011011
00000000011010101111001001



. (8)

In the same way, the matrices for all of the aforementioned codes have been obtained. These
matrices and their resulting encoding and decoding circuits will be compared with our proposal in
Section 4.

3.3. LRRO DEC Codes for 8, 16, 32, and 64 Bits

In this paper, we propose new low redundancy and reduced overhead (LRRO) codes for double
error correction, equivalent (in terms of redundancy and error coverage) to the BCH DEC codes
described in Section 3.2. That is, as primitive BCH codes offer the minimum possible redundancy,
the new codes have been designed to maintain the same redundancy and coverage as the BCH DEC
codes mentioned previously, but attempt to reduce the overhead induced by such codes. In Section 3.4,
some comments about the redundancy of non-primitive BCH codes, as well as a new code, have
been included.

Using the methodology described in Section 3.1, and taking the values n = 18 and k = 8, we have
found an (18, 8) LRRO DEC code. This is its parity check matrix:

HLRRO 18,8 =



100000000011100000
010000000011010000
001000000010100000
000100000010011100
000010000001101010
000001000001010110
000000100000111001
000000010000000101
000000001000001011
000000000100000111



. (9)

In the same way, varying the values of n and k, matrices for the new (26, 16), (44, 32), and (78, 64)
LRRO DEC codes have been found. They are shown in (10), (11), and (12), respectively:
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HLRRO 26,16 =



10000000001110000110010100
01000000001101100000111000
00100000001010110001100001
00010000001001011010001100
00001000000110101011001000
00000100000101010101000011
00000010000011001100100110
00000001000000111100010001
00000000100000000011110011
00000000010000000000001111



, (10)

HLRRO 44,32 =



10000000000011100001100101000110101000000010
01000000000011011000001110100000100010000101
00100000000010101100011000001000011000000011
00010000000010010110100011001101000101000000
00001000000001101010110010001000000100011100
00000100000001010101010000100100011100101000
00000010000000110011001001010010000011100001
00000001000000001111000100010001000010010011
00000000100000000000111100110011000001001011
00000000010000000000000011110000110000101111
00000000001000000000000000001111110000010101
00000000000100000000000000000000001111111110



, (11)

HLRRO 78,64 =



100000000000001110000110010100011010100000000010001100000000000110111000011010
010000000000001101100000111010000010001000100001011001010001001000100100100100
001000000000001010110001100000100001100000100000000010010100011000011100111001
000100000000001001011010001100110100010100001001000110001000000001100001110000
000010000000000110101011001000100000010001010110010001100000010000000100111010
000001000000000101010101000010010001110010111000000000000000100010100101000111
000000100000000011001100100101001000001110010000001000000001001101010001010011
000000010000000000111100010001000100001001000100000100100000100101101010101101
000000001000000000000011110011001100000100001100100011000000000000011010001111
000000000100000000000000001111000011000010000010100000100011100010010111110011
000000000010000000000000000000111111000001000001100000001101011110000010101111
000000000001000000000000000000000000111111000000010000011011110000101010011000
000000000000100000000000000000000000000000111111110000000110110001011001000111
000000000000010000000000000000000000000000000000001111111110001111000111000100



. (12)

It must be considered that these are just some examples of word sizes frequently employed in
digital systems. Codes for different sizes (e.g., 128) can also be found using this methodology.

From the parity check matrices, it is easy to obtain the logic equations for the encoder circuits
and the syndrome computation in the decoder circuits. An example can be found in the literature [19].
Later, it is necessary to relate each syndrome with the corresponding error vector, implementing a
lookup table for each code. In fact, these are the truth tables of a group of logic functions where the
inputs are the syndrome bits, and the outputs are the bits of the estimated error vectors.

Each logic function is a sum of minterms representing the syndromes that affect each bit. A good
explanation of how to generate the lookup table and the logic equations for the bits of the estimated
error vector can be found in the literature [18].

3.4. Redundancy and Non-Primitive BCH Codes

As stated before, although shortened (or non-primitive) BCH codes maintain the error coverage
of the primitive codes, they may lose other properties. For example, do they maintain the minimum
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redundancy property for a given data block size? The answer is no for a general case, although it
depends on the number of columns shortened. Using our methodology, we did not find LRRO DEC
codes with a lower redundancy than the equivalent BCH DEC codes for 16, 32, and 64 bits. This does
not mean that such codes do not exist, as a complete search is unfeasible nowadays; but if they exist,
they are not easy to find. Using our methodology, if a code exists, it is frequently found after a short
searching time.

However, when the (31, 21) BCH DEC code is shortened to get the (18, 8) code, 13 columns are
discarded—more than a half of the data columns. In this case, we found a (16, 8) LRRO DEC code,
whose parity check matrix is as follows:

HLRRO 16,8 =



1000000011100001
0100000011011000
0010000010101100
0001000010010110
0000100001101010
0000010001010101
0000001000110011
0000000100001111


. (13)

This code has a better redundancy than the equivalent BCH code. This is important when
protecting memories, as the redundant bits are included in all of the words in the whole memory.

In any case, this code is not included in the comparisons performed in the next section. A deeper
study of codes with lower redundancy than the equivalent BCH codes, as well as the implementation
and synthesis of the code shown in (13), are out of the scope of this paper, and will form part of a
future work.

4. Evaluation and Comparison

4.1. Theoretical Study

The real values for the overhead induced by the encoder and decoder circuits of an ECC depend
on each implementation: the technology, the synthesis process, etc. From a practical point of view,
a logic synthesis is required to obtain these values. However, it is possible to do a more generic,
theoretical study. As stated above, the Hamming weight of the heaviest row and the Hamming weight
of the whole parity check matrix are important parameters that influence the overhead.

Figure 3 shows the Hamming weights of the heaviest row (i.e., the maximum number of 1 s in a
row) of all matrices for the codes considered. As can be observed, all LRRO codes reduce this number
with respect to the equivalent BCH codes, and the difference increases as k increases.
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Figure 4 shows the Hamming weights of the whole matrix (i.e., the total number of 1 s of each
parity check matrix) for the codes considered. Again, all LRRO codes reduce this number with respect
to the equivalent BCH codes, and the difference increases with k.
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The results shown here indicate that the proposed LRRO codes improve, in all cases, the attributes
of their parity check matrices, when compared with the equivalent BCH codes, maintaining the same
redundancy and error coverage. From a theoretical point of view, these improvements should result
in encoder and decoder circuits with a lower overhead. The question now is to confirm these good
results when the circuits are implemented. This analysis is performed in the following.

4.2. Implementation and Logic Synthesis

All LRRO DEC codes presented in this paper, as well as the considered BCH DEC codes, have been
implemented and simulated to check if they achieve the expected error coverage. We implemented
a simulation-based error injection tool [21] with which we could analyze the error coverage of the
different ECCs. This tool can inject diverse error models. Particularly, single and multiple random
errors were injected. These errors emulate bit-flips in memory cells.

The basic scheme of our error injector is shown in Figure 5. This tool can verify whether the
injected error provokes an incorrect or a correct decoding. To do this, the simulation-based error
injector tool compares the input and output words.
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As expected, all of the studied codes corrected 100% of single and double errors.
On the other hand, the encoder and decoder circuits for all ECCs were implemented in Very

High speed integrated circuit Hardware Description Language (VHDL). For example, Figure 6 shows
an excerpt of the VHDL implementation of the (26, 16) LRRO DEC code. Then, using CADENCE
software [22], we carried out a logic synthesis for 45-nm technology using the NanGate FreePDK45
Open Cell Library [23,24]. Standard cells were based on Scalable Complementary Metal Oxide
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Semiconductor (SCMOS) design rules. The power voltage and temperature conditions were 1.1 V and
25 ◦C, respectively.
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Figure 6. Excerpt of the VHDL implementation for the (26, 16) low redundancy and reduced overhead
(LRRO) double error correction (DEC) code: (a) encoder and (b) decoder.

Although less generic than the theoretical study presented previously, logic synthesis allows
for obtaining more realistic information about the overhead induced by different ECCs for a given
technology. The values considered for comparison are the propagation delay of the circuits, the silicon
area occupied, and the power consumption.

Figure 7 shows the delay induced by the encoder circuits. As can be observed, the proposed
LRRO codes greatly reduce this delay for all block sizes.Electronics 2020, 9, x FOR PEER REVIEW 11 of 14 
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Figure 8 depicts the propagation delay of the decoder circuits. In this case, the reduction achieved
by the LRRO codes is less important than for the encoders. Anyway, all of the LRRO decoders reduce
the delay with respect to the equivalent BCH circuits, for all block sizes.
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When protecting memories using an ECC, encoding and decoding delays may influence the clock
cycle and the working frequency of the processor. Therefore, the reduction achieved by LRRO codes
makes them a better option than BCH codes.

The silicon areas occupied by the encoder and decoder circuits (in Figures 9 and 10, respectively)
show the same trends observed with the propagation delay. All LRRO circuits use less area than the
equivalent BCH circuits, and the reduction is proportionally more important in the encoder circuits.
Because of the high integration density of the nanometric manufacturing processes, the silicon area is
not a problem nowadays, in most cases. However, LRRO codes are superior to the equivalent BCH
codes in this comparison.
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Finally, the power consumed by the encoder circuits is shown in Figure 11, while Figure 12
presents the power consumed by the decoder circuits. Again, the same trends can be observed. All
LRRO circuits consume less power than the equivalent BCH circuits. The reduction is proportionally
higher in the encoder circuits, but conversely to previous comparisons, the reductions observed in the
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decoder circuits are also high. The static power, more related to the silicon area, represents a small
fraction of the total power consumed. In this case, the dynamic power consumption has been greatly
reduced, leading the total power consumed to the results shown.
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Nowadays, a low power consumption is a must in most digital systems. Therefore, the reductions
achieved by the LRRO codes make them a clearly better option compared with BCH codes.

To sum up, the low redundancy and reduced overhead DEC codes presented in this paper are a
better option than the equivalent BCH DEC codes, as they maintain the same redundancy and error
coverage, while inducing a reduced overhead. Comparing the codes for the 8-, 16-, 32-, and 64-bit data
lengths against BCH, LRRO circuits achieve the following:

• Lower delay: at least 30% reduction in the encoder, up to 8.7% in the decoder circuits.
• Less silicon areas: reductions up to 29% in the encoder and 3.0% in the decoder circuits.
• Lower power consumption: about 40% in the encoder and up to 26.9% in the decoder.

5. Conclusions

The Bose–Chaudhuri–Hocquenghem (BCH) codes are one of the best-known error control codes.
They are extensively employed in several fields, but they have not found favorable application in
memories. The non-alignment of their block sizes to typical memory word lengths and the large
multi-cycle latency of traditional iterative decoding algorithms are the main reasons for this.

This paper presents low redundancy and reduced overhead (LRRO) double error correction (DEC)
codes as an alternative to the BCH DEC codes for protecting registers and memories, i.e., for hardware
implementations and block sizes that are in powers of 2 (8, 16, 32, 64, etc.). The objective is to maintain
the redundancy and the error coverage of BCH DEC codes, while reducing the overhead induced by
the encoder and decoder circuits.
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We have demonstrated that all overhead comparisons are favorable to LRRO DEC codes. The
theoretical study shows that all LRRO codes have a lower Hamming weight in the heaviest row of
their parity check matrices, as well as a lower Hamming weight for the whole matrix, compared with
the equivalent BCH DEC codes. Moreover, the logic synthesis illustrates that for all word lengths, the
LRRO DEC circuits have a lower propagation delay, employ less silicon areas, and consume less power
than the corresponding BCH DEC codes.

Therefore, we propose the LRRO DEC codes as an interesting alternative to BCH DEC codes for
protecting registers and memories against single and double errors.

Finding ECCs with a lower redundancy, thereby maintaining affordable overheads, is part of our
ongoing and future work.
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