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Abstract: Human activity recognition is one of the most challenging and active areas of research in
the computer vision domain. However, designing automatic systems that are robust to significant
variability due to object combinations and the high complexity of human motions are more
challenging. In this paper, we propose to model the inter-frame rigid evolution of skeleton parts as the
trajectory in the Lie group SE(3)× . . .× SE(3). The motion of the object is similarly modeled as an
additional trajectory in the same manifold. The classification is performed based on a rate-invariant
comparison of the resulting trajectories mapped to a vector space, the Lie algebra. Experimental
results on three action and activity datasets show that the proposed method outperforms various
state-of-the-art human activity recognition approaches.

Keywords: activity recognition; rate invariance; Lie group

1. Introduction

Human activity recognition has attracted many research groups in recent years due to its
wide range of promising applications in different domains, like surveillance, video games, physical
rehabilitation, etc. In order to develop systems for understanding human behavior, visual data
form one of the most important cues compared to verbal or vocal communication data. Moreover,
the introduction of low cost depth cameras with real-time capabilities, like the Microsoft Kinect,
which provide in addition to the classical red-green-blue (RGB) image, a depth image, makes it possible
to estimate in real time a 3D humanoid skeleton thanks to the work of Shotton et al. [1]. This type of
data brings several advantages as it makes the background easy to remove and allows extracting and
tracking the human body, thus capturing the human motion in each frame. Additionally, the 3D depth
data are independent of the human appearance (texture), providing a more complete human silhouette
relative to the silhouette information used in the past. Thus, new datasets with RGB-depth (RGBD)
data have been collected, and many efforts have been made on human action recognition. However,
human activity understanding is a more challenging problem due to the diversity and complexity
of human behaviors, and less effort has been made by previous approaches. The interaction with
objects creates an additional challenge for human activity recognition. Actually, during a human–object
interaction scene, the hands may hold objects that are hardly detected or recognized due to heavy
occlusions and appearance variations. The high level information of the objects is needed to recognize
the human–object interaction. Taking a glance at the past skeleton-based human activity recognition
approaches, we can distinguish two categories: the first family of approaches considers the skeleton
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data as body parts, and the second family considers them as a set of joints, as categorized by [2].
The scope of the paper is related to the first family of approaches that first consider the human
skeleton as a connected set of rigid segments and either model the temporal evolution of individual
body parts [3] or focus on connected pairs of body parts and model the temporal evolution of joint
angles [4,5]. More recently, Vemulapalli et al. [2] proposed to model a skeleton by all the possible rigid
transformations between its segments. In other words, for each skeleton, hundreds of rotations and
translations (let us assume L) are computed between all the skeleton segments to yield L points on the
special euclidean group SE(3). The evolution of the skeleton along frames generates a trajectory in
SE(3)L. The trajectories are later on mapped to the Lie algebra (the tangent space on the identity point
of the special euclidean group). The main limitation of this approach is the distortions caused by this
mapping especially for points far from the identity element. The authors proposed an improvement of
this method by the rolling-based approach in order to minimize the distortions in the tangent space
(Lie algebra) in [6]. In this paper, we propose to investigate transformations of each skeleton part along
frames in the Lie group and not within the same frame as [2,6]. Compared to [2] and [6], the proposed
model represents three main advantages:

• For a skeleton with n joints, we manage a trajectory in SE(3)n−1 compared to a trajectory in a
much bigger space SE(3)n×(n−1) as modeled in [2,6]. This makes the proposed approach faster
than that of [2,6].

• The mapping into the tangent space on the identity element does not cause distortions in the
proposed approach as the transformations are considered for the same body segment across frames,
and thus, the resulting points on the special euclidean group are close to the identity element.

• We model the object within the human–object interaction and present results on datasets including
human–object interaction, which was not the handled in [2,6].

The main contributions of this work are:

• We perform a spatio-temporal modeling of skeleton sequences as trajectories on the special
euclidean group.

• The rigid transformations of the object are modeled as an additional trajectory in the same
manifold, while in [7], only the joint-based approaches were proposed.

• An elastic metric of the trajectories is proposed to model the time independently of the
execution rate.

• Exhaustive experiments and comparative studies are presented on three benchmarks: a benchmark
for action without objects (MSR-Action dataset), a benchmark for actions with object interaction
(SYSU3D Human-Object Interaction dataset), and a benchmark with a mixture of action and
human–object interaction (MSR Daily Activity dataset).

The paper is organized as follow: We provide a brief review of the existing literature in Section 2
and discuss the spatio-temporal modeling in Section 3. Section 4 presents the rate invariance modeling
and classification. We present our experimental results in Section 5 and conclude the paper in Section 6.

2. State-of-the-Art

Currently, the recognition of human activities has become more popular in the computer vision
committee, and this interest is translated by many applications into more activities such as surveillance,
video games, physical rehabilitation, etc. In this case, we can distinguish three emerging branches
in the research on the recognition of activities: (1) depth-based representation, (2) skeleton-based
representation, and (3) RGB-D-based development. In this section, we will go back to the existing work
of recognizing human activities captured by depth cameras and describe in more detail the literature
on the specific shared structures of learning for the recognition of activities.
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2.1. Depth-Based Representation

In [8,9], descriptors previously designed for the deep RGB channel were generalized to describe
the geometry of the shape and construct a depth-based representation. The limitation of the approach
proposed in [8] is the sensitivity to the point of view as the sampling scheme depends on the view.
Along similar lines, Oreifej and Liu [3] used the histogram of oriented gradients (HOG) to capture the
distribution of the normal orientation of the surface in 4D space. Yang et al. [10] proposed to concatenate
the normal vectors into a spatio-temporal sub-volume of depth together to capture more informative
geometric clues. In the work of Lu et al. [11], to represent complex human activities involving
human–object interactions without taking into account holistic human postures, discriminating local
patterns were used, and also, the authors proposed to study the relationship between the sampled
pixels in the actor and background regions. A common limitation of depth-based approaches is the view
sensitivity and time consumption due to the heavy signature compared to skeleton-based approaches.

2.2. Skeleton-Based Representation

Human movements can be effectively captured by the positional dynamics of each skeletal
joint [12–15], or the relationship between joint pairs [4,16], or even their combination [17–19]. In [8],
a tool for monitoring the human skeleton (3D posture) in real time from an image at a single depth
was developed. The existing skeleton-based human action recognition can be broadly grouped
into two main categories: joint-based approaches and body part-based approaches. Joint-based
approaches consider the human skeleton as a set of points, whereas body part-based approaches
consider the human skeleton as a connected set of rigid segments between connected pairs of body
parts. In [14], human skeletons were represented using the 3D joint locations, and a temporal hierarchy
of co-variance descriptors was proposed to model joint trajectories. F.Lv and R.Nevatia in [15] proposed
to use the hidden Markov models (HMMs) to represent the position of the joints. Devanne et al. [20]
represented the 3D position evolution as a trajectory of movement. The problem of action recognition
was then formulated as the problem of calculating the similarity between the shape of trajectories
in a Riemannian manifold. Along similar lines, in these works [21,22] presented a Riemannian
analysis of distance trajectories for real-time action recognition. In [23], the relative positions of
pairwise articulations were used to represent the human skeleton, and the temporal evolution of this
representation was modeled using a hierarchy of Fourier coefficients. X.Yang et al. in [16] proposed an
effective method using the relative articular positions, temporal displacement of joints, and offset of
the joints with respect to the initial frame.

The second category of skeleton-based approaches investigates the body parts. In [2], the human
skeleton was represented by points in the Lie group SE(3)×. . .×SE(3), by explicitly modeling the 3D
geometric relationships between various body parts within a frame using rotations and translations,
then the human action was modeled as curves in this Lie group. The temporal evolution was
handled by dynamic time warping (DTW). On the other hand, in [24], the human skeleton was
hierarchically divided into smaller parts, and each part was represented using some bio-inspired
features. Linear dynamic systems were used to model the temporal evolution of this part. Generally
speaking, the joint-based method owns a faster calculation speed, while body the part-based method
owns higher accuracy [25].

2.3. RGB-D-Based Development

The depth image is robust to lighting changes. However, it loses some useful information, such as
texture context, which is essential to distinguish certain activities involving human-object interactions.
Recently, several works showed that to improve the recognition of activities with object interactions,
it is also necessary to merge RGB sequences with depth images [26–33]. For example, in the work of
Zhao et al. [33], combined descriptors based on points of interest, extracted from RGB sequences and
depth sequences, were brought together to perform the recognition. Liu and Shao [26] used a deep
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architecture to simultaneously merge RGB information and depth images; in [19], a set of random
forests was used to merge spatio-temporal and human key articulations; Shahroudy et al. [27], used a
structured density method by merging RGB information and skeleton indices, and in [29], the authors
simply concatenated skeletal features and silhouette-based features to perform classification.

The review and analysis of current RGB-D action datasets revealed some limitations including size,
applicability, availability of ground truth labels, and evaluation protocols. There is also the problem of
dataset saturation, a phenomenon whereby the algorithms reported achieved a near-perfect performance.

3. Spatio-Temporal Modeling

3.1. Proposed Approach

In this work, we propose a framework for human activity recognition using the body part-based
skeleton for action recognition and object detection and object tracking for human–object interaction
recognition. Figure 1 summarizes the proposed approach: First, skeleton and object sequences are
represented as trajectories in the Lie group, and these trajectories are then mapped into the Lie algebra,
then to a Riemannian manifold to be compared in a rate-invariant way. In addition to distances to
training trajectories, the output of the last layer of the neural network used for object detection is also
used, in some scenarios, to build the final feature vector. The classification is therefore performed
using the Hoeffding tree (“very fast decision trees (VFDT)”).

Figure 1. Overview of the proposed approach. VFDT, very fast decision trees.

Inspired by the work proposed in [2], which focused on the rigid transformations between
different parts of the body within the same frame, we propose to model the evolution of the same part
of the body (a segment) across frames by using the rotation and the translation necessary to transform
the segment at frame t to the correspondent segment at frame t + 1. This geometric representation
of the rotation and translation of the rigid body in 3D space is part of the special euclidean group
SE(3) [34]. The evolution between two successive frames can be therefore modeled as a point in
SE(3)×. . .×SE(3) n− 1 times, where n− 1 represents the number of body segments for a skeleton
with n joints. A sequence of N frames is therefore represented by N − 1 points in SE(3)×. . .×SE(3)
(n − 1 times) and can be modeled as a trajectory the in SE(3)×. . .×SE(3) (n − 1 times) manifold.
When an object is considered, an existing neural network is used for object detection in the first frame
(RGB of the object in sequence i; frame j denoted by OBJ − RGB(i)(j)), then the object is tracked
during the sequence (depth of the object in sequence i; frame j denoted by OBJ − Depth(i)(j)) using
the iterative closest point (ICP) algorithm. The rigid deformations of the object across frames creates
an additional trajectory in SE(3) that is considered with the previous trajectory generated by the
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skeleton motion, to yield a final trajectory in SE(3)×. . .×SE(3) (n times). The next step is to map this
trajectory to the corresponding Lie algebra se(3)×. . .×se(3), which is the tangent space at the identity
element. The resulting trajectories lie in a euclidean space (Lie algebra) and incorporate the geometric
deformations between body segments across frames. In order to compare their shapes independently
of the execution rate, they are mapped to the shape space of continuous curves via the square root
velocity manifold representation [35]. The classification is performed later using the Hoeffding tree
(VFDT) [36] based on the elastic metric in the shape space.

3.2. Skeleton Motion Modeling

Firstly, we present the spatio-temporal modeling of the sequences. For this, we describe the
geometric relation between the part of the body (denoted by part) at frame ft and the same part in
succession frame ft+1. To do this, we use the rotation and translation required to move the current part
to the position and orientation of the same part in the next frame, and we use the procruste function.
This geometric transformation such as rotation and translation between two rigid body parts is a
member of the special Euclidean group SE(3) [34] and defined by the following four by four matrix of
the form:

P(R, ~d) =

[
R ~d
0 1

]
∈ SE(3) (1)

where ~d ∈R3 and R ∈R3×3 is a rotation matrix, which is a point on the special orthogonal group SO(3).
This geometrical transformation between two parts of the rigid body with two successive frames

is represented by a point in SE(3). Obviously, all parts of the body are presented by a point of the
Lie group SE(3)×. . .×SE(3), where × denotes the direct product between Lie groups. Therefore,
the temporal transformation of the body parts can be modeled by a trajectory in the SE(3)×. . .×SE(3)
Lie group, as depicted in Figure 2.

Figure 2. Action as a curve in the Lie group.

The Lie group identity element I4 is defined by a four by four matrix. Mathematically, the tangent
space to SE(3) at the identity element is symbolized by se(3), and it is considered to be the Lie algebra
of SE(3). This tangent space is a six-dimensional space constructed by matrices of the form:

B =

[
U ~w
0 0

]
=


0 −u3 u2 w1

u3 0 −u1 w2

−u2 u1 0 w3

0 0 0 0

 ∈ se(3) (2)

where~w ∈R3 and U ∈R3×3 the skew-symmetric matrix. Thus, it can be presented as a six-dimensional vector:

vec(B) =
[
u1, u2, u3, w1, w2, w3

]
(3)
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The exponential map for SE(3) is defined as expSE(3) : se(3)→ SE(3) and the inverse exponential
map, defined as logSE(3) : SE(3) → se(3). Both are used to navigate between the manifold and the
tangent space, respectively, given by:

expSE(3)(B) = eB, logSE(3)(P) = log(P) (4)

where e and log denote the matrix exponential and logarithm, respectively.
The geometric transformation between all the parts of two successive frames ft and ft+1 can be

represented as:
δ(t) = (Pft(1), ft+1(1)(t), Pft(2), ft+1(2)(t) . . . , Pft(M), ft+1(M)(t)) ∈ SE(3) × . . . × SE(3), where M is

the number of body parts. Using this representation, a skeletal sequence describes an action as a
curve in SE(3) × . . . × SE(3). One can not directly classify the action curves in the curved space
SE(3)× . . .× SE(3), according to [2]. In addition, temporal modeling approaches are not directly
applicable to this space. For that, we will map the trajectory in SE(3)× . . .× SE(3) to its Lie algebra
se(3)× . . .× se(3), the tangent space at the identity element I4. With this method, we will map all
the trajectories from the Lie group to the same tangent space to the identity, and we argue that the
mapped curves are quite faithful to the original curves because they are close to the identity element
of the Lie group as they represent the transformations of the same body parts across successive frames.
The resulting curve in the Lie algebra corresponding to δ(t) is given by:

σ(t) = (vec(log(Pft(1), ft+1(1)(t))), vec(log(Pft(2), ft+1(2)(t)))

. . . , vec(log(Pft(M), ft+1(M)(t)))) ∈ se(3)× . . .× se(3)
(5)

The dimension of the characteristic vector at any time t of σ(t) is equal to 6M. For this,
the temporal representation of the action sequence is a vector of dimension 6×M× N, where M is the
number of parts (M = 19 parts), and N represents the number of frames in the sequence.

3.3. Object Modeling

3.3.1. Object Detection

In order to deal with human–object interactions, one key step is to recognize the object from
an RGB image. For this, we propose to use an object recognition algorithm based on the neural
network [37]. The you only look once (YOLO) model processes images in real time at 45 frames
per second. A smaller version of the network, Fast YOLO, processes 155 frames per second while
still achieving double the mAPof other real-time detectors. Compared to state-of-the-art detection
systems, YOLO makes more localization errors, but is less likely to predict false positives on the
background. YOLO system detection is a regression problem. It divides the image into an even grid
S × S and simultaneously predicts bounding boxes B, confidence in those boxes, and class probabilities
C. These predictions are encoded as an S × S × (B × 5 + C) tensor. YOLO imposes strong spatial
constraints on the box prediction delineation since each cell in the grid predicts only two boxes and
can only have one class. This spatial constraint limits the number of nearby objects that the model
can predict. Figure 3 shows the steps of detecting objects in an RGB image.



Electronics 2020, 9, 1888 7 of 16

Figure 3. The YOLO detection system. (1) resizes the input image to 448 × 448; (2) runs a single
convolutional network on the image; and (3) thresholds the resulting detections by the model’s confidence.

3.3.2. Object Trajectory

Once having been detected in 2D, the object is tracked in 3D using the ICP algorithm. The resulting
successive transformations are modeled as a trajectory in SE(3). This trajectory is then mapped to the
Lie algebra se(3) and is fused with the trajectory in se(3)× . . .× se(3) (n− 1 times) generated by the
body parts. The trajectories modeling the activity lie in se(3)× . . .× se(3) (n times) and have to be
compared independently of the execution rate. Therefore, they are considered as time parameterized
curves, and an elastic metric will be used to provide a time re-parameterization-invariant metric.
The additional trajectory (generated by the object) is used only when comparing the proposed approach
to RGB-D-based approaches. In this case, the output of the last layer of the object detection neural
network applied on the first frame is also used (when the color channel is considered) to build the final
feature vector.

4. Rate Invariance Modeling and Classification

We start by outlining a mathematical framework for helping in analyzing the temporal evolution of
human activity when viewed as trajectories on the shape space of parametrized curves. This framework
respects the underlying geometry of the shape of the trajectories, seen as curves, and helps maintain the
desired invariance, especially re-parameterization of the trajectory curve that represents the execution
rate. The next step is to calculate the distance between a given trajectory (to classify) to all training
ones; let k trajectories be in the training set, resulting in a k-dimensional feature vector.

4.1. Elastic Metric for Trajectories

This representation has been used previously in biometric and soft-biometric application [38–43].
In our case, we will analyze the shape of the trajectories by the square root velocity function (SRVF)
q : I → Rn defined as:

q(t) =
σ(t)√
||σ(t)||

(6)

q(t) is a special function introduced in [35] that captures the form of σ(t) while offering easy
calculations, and the L2 norm represents the metric that allows us to compare the shape of two
trajectories. The set of all trajectories, denoted as C, is thus defined as follows:

C = {q : I → Rn|||q|| = 1} ⊂ L2(I,Rn) (7)

||.|| is the norm. With the norm on its tangent space, C becomes a Riemannian manifold named
the pre-shape space. Each element represents a trajectory in Rn. We define the distance between two
elements q1 and q2 by the length of the geodesic path between q1 and q2 on the variety C. The geodesic
path between any two points q1, q2 ∈ C is given by the great circle, ψ : [0, 1]→ C, where:
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ψ(τ) =
1

sin(θ)
× (sin((1− τ)θ)× q1 + sin(θτ)× q2) (8)

The geodesic length is θ = dC(q1, q2) = cos−1(< q1, q2 >). Let us define the equivalent class of q
as: [q] = {

√
γ̇(t)× q(γ(t)), γ ∈ Γ}. The set of such equivalence classes, denoted by S .

= {[q]|q ∈ C},
is called the shape space of open curves in Rn. As shown in [35], S inherits a Riemannian metric from
the larger space C due to the quotient structure. To obtain geodesics and geodesic distances between
elements of S , one needs to solve the optimization problem:

γ∗ = argminγ∈Γdc(q1,
√

γ̇× (q2 ◦ γ)). (9)

The optimization over Γ is done using the dynamic programming algorithm. Let q∗2(t) =√
˙γ∗(t)× q2(γ

∗(t))) be the optimal element of [q2], associated with the optimal re-parameterization γ∗

of the second curve, then the geodesic distance between [q1] and [q2] in S is ds([q1], [q2])
.
= dc(q1, q∗2),

and the geodesic is given by Equation (8), with q2 replaced by q∗2 .

4.2. Feature Vector Building and Classification

We propose four variants of our method based on the channels used. The first one (geometric
G) uses only the skeleton data. The second one (G + D) uses the skeleton and the depth channel.
The third variant (G + C) uses the skeleton and the color channels. The last variant uses all channels
(G + D + C). We present first the feature vector for the geometric G approach. Let n be the number
of joints in a skeleton, the spatio-temporal modeling presented in Section 3, and k the number of
trajectories in the training set with labels l1, . . . , lk. For a given sequence in the test set, the first step
is to represent it as a trajectory in SE(3)n−1 as described in Section 3. Then, the elastic framework is
applied in order to compute the elastic distance from the given trajectory to each of the k training
ones. As illustrated in the previous section, the use of the elastic metric in trajectories’ comparison
ensures a rate-invariant distance. The resulting vector of k distances represents the feature vector of
the geometric approach (G). An additional trajectory in SE(3) must be considered when the depth
data are used in the (G + D) approach. The feature vector has the same size; however, the trajectories
are considered in SE(3)n rather than SE(3)n−1. When the color channel is considered, the output of
the last layer in the deep network used for object detection is concatenated to the k distance in order to
build the feature vector denoted by FeatureV. The steps of feature vector building and classification
are illustrated in Algorithm 1.

The resulting feature vector is fed to the Hoeffding tree (VFDT) algorithm. The Hoeffding tree [36]
or very fast decision tree (VFDT) is built incrementally over time by splitting nodes (into two) using
a small amount of the incoming data stream. The number of samples considered by the learning
to expand a node depends on a statistical method called the Hoeffding bound or additive Chernoff
bound. The Hoeffding tree is constructed by making recursive splits of leaves from a blank root and
subsequently getting internal decision nodes, such that a tree structure is formed. The splits are decided
by heuristic evaluation functions that evaluate the merit of the split-test based on attribute values.
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Algorithm 1 Action sequences’ classification.

1: Input:
2: k+1 sequences: S1, . . . , Sk k training sequences of size w1, . . . , wk, respectively, and Sk+1 test

sequence of size wk+1.
3: r: number of body parts (r = n − 1).
4: Output:
5: Label of sequence Sk+1
6: Begin
7: for i = 1 to k + 1 do

8: OBJ-RGB(i)(1) = YOLO(Si(1))
9: OBJ − Depth(i)(1) = RGB2Depth(OBJ − RGB(i)(1))

10: for j = 1 to wi − 1 do

11: (Ri,j, di,j) = ICP (OBJ-Depth(i)(j), OBJ-Depth(i)(j+1))
12: for l = 1 to r do

13: Pi,j,l = (Ri,j,l , di,j,l) = procruste(parti,j,l , parti,j+1,l)
14: σ(i, j, l) = vec(logSE(3)(Pi,j,l))
15: end for
16: end for
17: end for
18: qk+1 = σ(k+1)√

‖(σ(k+1,)))‖
19: for i = 1 to k do

20: qi =
σ(i)√
‖(σ(i)))‖

21: γ∗ = argminγ∈Γdc(q1,
√

γ̇(q2 ◦ γ)).
22: q∗i =

√
γ̇∗.qi(γ

∗))
23: di = d(Si, Sk + 1) = cos−1(< q∗i , qk+1 >)
24: end for
25: FeatureV = concatenate(d1, .., dk, OBJ − RGB(k + 1)(1))
26: label (Sk + 1) = VFDT (FeatureV)

End

5. Experimentation and Results

In order to validate our method, an evaluation was conducted on three databases that represent
different challenges, namely Microsoft Research (MSR) Action3D dataset [8], MSR-Daily Activity
3D [23], and the SYSU 3D Human-Object Interaction Set [44].

5.1. MSR Action 3D

5.1.1. Data Description and Protocol

The MSR-Action 3D dataset is a set of RGBD data captured by a Kinect. This dataset includes
20 actions performed by 10 different subjects facing the camera. Each action is performed two or three
times, resulting in a total of 557 action sequences. 3D joint positions are extracted from the depth
sequence using the real-time skeleton tracking algorithm proposed in [45]. All actions are performed
without interaction with the objects. Two main challenges are identified: the strong similarity between
the different groups of actions and the changes in the speed of execution of the actions. For each
sequence, the dataset provides information about depth, color, and skeleton. As indicated in [8],
ten sequences are not used in the experiments because the skeletons are missing or too erroneous.
For our experiments, we use 547 sequences. In this dataset, we followed the same protocol of the cross
topic of [8], in which half of the subjects are used for training and the other half for testing. Subjects 1,
3, 5, 7, and 9 are used for training and Subjects 2, 4, 6, 8, and 10 for testing. In [8], the sequences were
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divided into three subsets AS1, AS2, and AS3, each containing eight actions. Sets AS1 and AS2 are
intended to group actions with similar movements, while AS3 is intended to group complex actions.

5.1.2. Experimental Result and Comparison

No action, in this dataset, includes an interaction with the object. Thus, the skeleton-based
approach (G) is performed. Table 1 reports the recognition performance on MSR-Action3D compared
to several state-of-the-art approaches: joint positions (JPs) [14]: concatenation of the 3D coordinates
of all the joints v1,. . . ,vN ; pairwise relative positions of the joints (RJPs) [16]: concatenation of all the
vectors; joint angles (JAs) [5]: concatenation of the quaternions corresponding to all joint angles (we also
tried Euler angles and Euler axis-angle representations for the joint angles, but quaternions gave the
best results); individual body part locations (BPLs) [46]: each individual body part is represented as a
point in SE(3) using its rotation and translation relative to the global x-axis.

In the last row of Table 1, the average recognition rate for the three subsets AS1, AS2, and AS3 is
reported. The recognition rates of our approach on AS1, AS2, and AS3 were 94.66%, 85.08%, and 96.76%,
respectively. The accuracy on subset AS2 was lower than the two other subsets. This behavior
is similar to the state-of-the-art approaches as revealed in Table 1. The average accuracy of the
proposed representations was 92.16%, which is superior to the performance of previous state-of-the-art
approaches provided in Table 1.

Table 2 compares the proposed approach with various approaches to recognizing human actions
on skeletons using the protocol of [8]. Here, we see that our approach is competitive with the
state-of-the-art with a recognition rate equal to 92.16%.

Table 1. Recognition performance on the MSR-Action3D for different feature spaces using the protocol
of [8]. JP, joint position; RJP, relative position of the joint; JA, joint angle; BPL, body part location.

Dataset JP [14] RJP [16] JA [5] BPL [46] Proposed

AS1 91.65 92.15 85.80 83.87 94.66
AS2 75.36 79.24 65.47 75.23 85.08
AS3 94.64 93.31 94.22 91.54 96.76

Average 87.22 88.23 81.83 83.54 92.16

Table 2. Comparison with the state-of-the-art results.

MSR-Action3D Dataset (Protocol of [8])

Histograms of 3D joints [47] 78.97
EigenJoints [16] 82.30
Joint angle similarities [5] 83.53
Spatial and temporal part sets [48] 90.22
Co-variance descriptors [14] 90.53
Random forests [19] 90.90
Body parts (BP)+SRVF [20] 92.10
Intra-frame modeling [2] 92.49
Proposed approach: skeleton 92.16

5.2. MSR Daily Activity 3D

5.2.1. Data Description and Protocol

The MSR Daily Activity 3D dataset [23] is a set of RGB-D sequences of human sequences acquired
with the Kinect. It contains 16 types of activities: drink, eat, read book, call cellphone, write on a paper,
use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay down on sofa, walk,
play guitar, stand up, sit down. Each of them was performed twice by 10 subjects [23]. The dataset
contains 320 videos = 16 × 10 × 2 (10 actors and two essays/actor). There are 20 body joints recorded,
whose positions are quite noisy due to two poses: “sitting on sofa” and “standing close to sofa”.
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The experimental protocol is the same as in [23], which divides the dataset into three subsets, AS1,
AS2, and AS3, as shown in Table 3.

Table 3. Subsets of actions, AS1, AS2, and AS3 in the MSR Daily Activity 3D dataset [23].

AS1 AS2 AS3

eat drink use laptop
read book call cellphone cheer up

write on a paper use vacuum cleaner play guitar
use laptop sit still stand up
toss paper play game sit down

walk lie down on sofa

5.2.2. Experimental Result and Comparison

Table 4 reports the results of our algorithm on the MSR Daily activity dataset. The average
recognition rate using only the skeleton data is 87.55%. When the dynamics of the object is considered,
we have an average recognition rate equal to 88%. Combining the feature vector resulting from the
geometry of the skeleton and object to the appearance of the object yields good improvement of the
recognition rate. Actually, using the geometry of the skeleton (G) and the appearance of the object (C),
the average recognition rate is 94.44%. The performance is also improved by using in addition the
geometry of the object (D) to reach a 95% recognition rate, which is very competitive compared with
recent state-of-the-art approaches.

Table 4. Recognition performance on the MSR-DailyActivity3D dataset for different feature spaces: (D)
depth; (C) color (or RGB); (G) geometry or skeleton.

Methods Accuracy %

(G) Dynamic Temporal Warping [49] 54
(G) 3D Joints and Local occupancy patterns (LOP) [50] 78
(G) Histogram of Oriented 4D Normals (HON4D) [3] 80.00
(G) Spar-Sity learning to Fuse atomic Features (SSFF) [27] 81.9
(G) Deep Model-Restricted Graph-based Genetic Programming (RGGP ) [26] 85.6
(G) Action-let Ensemble [50] 85.75
(G) Super Normal [10] 86.25
(G) Bilinear [51] 86.88
(G) Depth Cuboid Similarity Feature (DCSF) + Joint [52] 88.2
(G) Local Flux Feature (LFF) + Improved Fisher Vector (IFV) [28] 91.1
(G) Group Sparsity [12] 95
(G) Range Sample [11] 95.6
(G) Heterogeneous Feature Machines (HFM) [53] 84.38
(G) Model of Probabilistic Canonical Correlation Analyzers (MPCCA) [54] 90.62
(G) Multi-Task Discriminant Analysi (MTDA) [55] 90.62
(G + D + C) JOULE [44] 95

Our Method:(G) Skeleton 87.55
Our Method:(G + D) Skeleton + Obj(D) 88
Our Method:(G + C) Skeleton + Obj(RGB) 94.44
Our Method:(G + D + C) Skeleton + Obj(RGB) + Obj(D) 95

5.3. SYSU 3D Human-Object Interaction Set

5.3.1. Data Description and Protocol

In this dataset [44], twelve different activities focusing on interactions with objects were performed
by 40 persons. For each activity, each participant manipulates one of the six different objects: phone,
chair, bag, wallet, mop, and besom. Therefore, there are in total 480 video clips collected in this set.
For each video clip, the data acquisition is done by a Kinect camera, and we have the corresponding
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RGB images, the depth sequence, and the skeleton. We tested all the methods compared with the
second setting (Setting 2) [44]. The video footage made by half of the participants was used to learn the
parameter model and the rest for the tests. We report the average precision and the standard deviation
of the results on 30 random divisions For each parameter.

5.3.2. Experimental Result and Comparison

Table 5 provides the results of the different variants of the proposed approach compared to the
state-of-the-art. When only the geometry of the skeleton data is considered, the recognition rate
is 73.48%. This result is competitive compared to previous geometric approaches (based only on
skeleton data). If we take into account the dynamics of the object, the recognition rate is equal to
74.51%. When the appearance of the object is considered in addition to the geometry of the skeleton,
the recognition rate reaches 86.76 %, which represents the best recognition rate compared to the recent
state-of-the-art approaches. The full version of the proposed approach, which makes use of all RGB-D
and skeleton information, provides a recognition rate of 87.40%.

For further analysis of the obtained results, we illustrate in Figures 4 and 5 the confusion matrices
on the SYSU dataset using the skeleton data (G) and the RGB-D (G + D + C) channels, respectively.
The appearance of the object improves the performance of all actions, but the improvement is more
considerable for sweeping and mopping actions: the skeleton data performs good for several actions,
but seems not sufficient to distinguish other actions such as sweeping, with recognition rates of 35%
and 54.9%, respectively. The skeleton motion during these two actions is similar to the motion while
drinking, moving the chair, or pouring. The appearance of the object improves the performance for
the sweeping and mopping actions. As shown in Figure 5, the recognition of sweeping improved
by 36% by using the geometry and the appearance of the object in addition to the skeleton motion.
The performance of mopping reaches 78.3% for the mopping action.

1 

 

 

图 4 

 

Figure 4. SYSU 3D Human-Object Interaction dataset confusion matrix based on skeleton data (G).
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图 5 
Figure 5. SYSU 3D Human-Object Interaction dataset confusion matrix based on skeleton, depth, and
color data (G + D + C).

Table 5. Comparison on the SYSU 3D dataset. (D) depth; (C) color (or RGB); (G) geometry or skeleton.

Methods Accuracy %

(G) Local Accumulative Frame Feature (LAFF) [56] 54.2
(G) Dynamic skeletons [44] 75.5 ± 3.08
(G) LSTM-trust gate [57] 76.5
(G + D + C) LAFF [56] 80
(G + D + C) JOULE [44] 84.9 ± 2.29

Our Method:(G) Skeleton 73.48 ± 5.91
Our Method:(G + D) Skeleton + Obj (D) 74.51 ± 5.47
Our Method:(G + C) Skeleton + Obj (RGB) 86.76 ± 4.82
Our Method:(G + D + C) Skeleton + Obj (RGB) + Obj (D) 87.40 ± 5.04

6. Conclusions and Future Direction

In this paper, we represent the inter-frame evolution of skeleton body parts in Lie group
SE(3) × . . . × SE(3). When an object is involved in the action, a neural network is used to detect
the object at the first frame, then the evolution across frames is tracked, then similarly modeled as
an additional trajectory in Lie group SE(3). The resulting trajectories are then mapped onto the Lie
algebra, where they are compared using a re-parameterization-invariant framework in order to handle
rate variations. The distances to training trajectories are concatenated with the output of the last
layer of the neural network used for object detection, then are fed to the very fast decision tree to
perform action recognition. We experimentally show that the proposed approach performs better than
many previous approaches for human activity recognition. As future work, we expect widespread
applicability in domains such as physical therapy and rehabilitation.
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