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Abstract: The high voltage temperature humidity bias test (HV-THB) has become increasingly popular
for evaluating the performances of power semiconductor devices. Given the new challenges of the
power semiconductor industry, several applications and devices need to be designed to withstand
harsh environments during working operations, with a remarkable focus on high-humidity conditions.
The HV-THB test allows one to activate and study different failure mechanisms which were not
highlighted by the standard low voltage THB test, enabling new designs in several energy conversion
fields, such as energy harvesting, industry and automotive applications. After a brief introduction
of current test standards, this work goes through the current methodologies and state-of-the-art
of the HV-THB test. The following sections are then dedicated to the knowledge about the failure
mechanisms and the models for accelerated testing. Eventually, there is a section devoted to the main
passivation materials in order to understand their effects on the HV-THB capabilities of the devices.

Keywords: reliability; humidity; temperature; voltage; HV-THB; H3TRB; passivation; power;
modules; testing

1. Introduction

The last few years have seen a remarkable drive toward the use of alternative energy sources,
and the transition from fossil fuels to electric energy in several fields. For these reasons, the efficiency
and reliability of power semiconductor applications have become critical focuses of the industry, along
with the increasing of performances [1]. Therefore, researchers and designers in the field of power
electronics are challenged to find new solutions and adapt current designs to achieve the expected
transition into an electric world, while allowing all new technologies to meet and go beyond current
safety and reliability requirements [2]. The only way to achieve this target is to intercept possible
failures not only by following current regulations, but also going a step forward and testing devices
and systems with increased stress, in order to broaden the spectrum of application for each piece
of technology.

The presence of humidity is one of the most critical factors for the reliability of power semiconductor
devices and circuits [3], and each component has its own sensitivity to this stressor, especially when
high-voltage designs are considered [4,5], so that proper design rules must be implemented to avoid
failure. Common power semiconductor devices are generally deployed in either plastic packages,
where usually one or two devices are encapsulated in molding compound, or power modules, in which
several power devices with a given topology are integrated into a single case filled with gel. In plastic
packages, the penetration of moisture is very slow when compared to modules [6], since plastic
packages offer a higher level of protection with respect to gel. That happens in the case of power
module packages, easily allowing moisture penetration toward active areas of the devices [7].
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When power devices are biased in humidity conditions, the co-presence of high-electric fields and
moisture can trigger failure mechanisms which are different with respect to cases where each stressor is
applied singularly, alongside with the temperature of the environment in which the device is operated.
The high voltage temperature humidity bias (HV-THB) test is a device test which can be applied to
power devices both in plastic packages and power modules [6,8–10]. In this kind of accelerated test,
the devices undergo triple stress due to the simultaneous application of high-voltage reverse bias,
high-humidity and temperature for a pre-determined period of time.

In this review, we will focus on HV-THB testing, comparing the methodologies, acceleration
models, failure modes and passivation materials, in order to give an overview of state-of-the-art
voltage-humidity testing for power semiconductor devices.

Current Normatives

As highlighted in the previous paragraph, the most tested vehicles are power modules and
plastic packages. In the case of plastic packages, the current normative for discrete active electronic
components is the AEC-Q101 [11] by the Automotive Electronics Council, entitled “Failure mechanism
based stress test qualification for discrete semiconductors in automotive applications,” defining the
minimum stress test requirements and conditions for automotive applications. This normative defines
several tests in both static and dynamic environmental and electric conditions, including the humidity
bias testing, named the high humidity high temperature reverse bias, or H3TRB. The test requires the
devices to pass 1000 h test with an ambient temperature (Ta) of 85 ◦C and relative humidity (R.H.)
of 85%, while reverse biased at 80% of rated blocking voltage (Vnom) up to a maximum of 100 V
DC. Moreover, the devices must be electrically tested at least before and after H3TRB as a minimum
requirement. In real qualification tests, devices under test (DUTs) are evaluated at defined times—for
instance, 0 h, 168 h, 500 h and 1000 h—in order to record the evolutions of the electrical parameters in
a more detailed way. It is important to notice that the current standard does not require continuous
monitoring of any electrical parameters. In the case of power modules, the reference normative is the
ECPE AQG 324, “Qualification of Power Modules for Use in Power Electronics Converter Units in
Motor Vehicles” [12]; the H3TRB test is described in section QL-07. The static conditions of 85 ◦C and
85% R.H. are the same as those seen in AEC-Q101, while the maximum Vnom has a lower limit of 80 V.
It should be noticed that this 80 ÷ 100 V limitation was set in order to satisfy the maximum temperature
increase and maximum power dissipation required respectively by the IEC 60068-2-67 [13] and IEC
60749-5 [14], on which the latter regulations were based, in order to avoid unwanted self-heating that
would drive away moisture [15] or the additional failure modes which are instead investigated by the
HV-THB version of the test.

For both power modules and plastic packages, the DUTs must be electrically characterized before
and after each test iteration until the 1000 h requirement is satisfied, and they need to be DC biased in
blocking conditions for the whole duration of the test.

Table 1 shows a summary of the most important differences between current HV-THB parameters
versus standard H3TRB, the details of which will be discussed in the following section.

Table 1. Generic stress parameters of standard versus high-voltage Temperature Humidity Bias (THB)
test. The HV-THB is not limited in voltage, while the standard H3TRB has a maximum reverse bias
voltage of 100 V.

Parameter Standard THB (or H3TRB) High Voltage THB

Temperature 85 ◦C 85 ◦C
Relative Humidity 85% 85%

Reverse Bias 80% of rated Vnom Up to 90% Vnom
Bias Limitation Max. 80 ÷ 100 V Unlimited

Leakage Monitoring Not required Continuous
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2. Comparison of Test Methodologies

2.1. Test Setup and Procedures

Performing a high voltage test in high humidity conditions requires a dedicated setup, in most
cases capable of continuous active monitoring of the DUTs [5,6,8,16–18], and with high voltage design
rules requirements. A general schematic of the HV-THB test setup is shown in Figure 1 [8]. The DUTs
are positioned on a high voltage biasing board or a dedicated rack inside a climatic chamber, allowing
both environmental and electrical isolation with respect to the external environment. A high-voltage
power supply unit (PSU) applies the voltage bias to the devices in the chamber and is controlled by a
monitoring and control unit, usually a dedicated computer with ad hoc control software. Moreover,
a measurement board with a dedicated active or passive circuit reads the leakage current values flowing
through each device. Where possible, the control software can be also linked to the test chamber,
in order to continuously monitor both humidity and temperature levels, which must be kept under
control during the whole duration of the test. Moreover, an overcurrent limit is usually set to prevent
extended damage in case of DUT failure [19], and active leakage monitoring can also be configured in
order to remove device bias in cases of high leakage drift beyond a previously set value, so that critical
failure is avoided and fine failure analysis can be carried out on the samples [8].
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Figure 1. Schematics of a generic HV-THB test architecture. Figure reproduced with permission
from [8].

The testing procedure is generally performed as follows: the DUTs are tested with a curvetracer
in order to obtain their reverse I-V characteristics, and are then positioned in the climatic chamber
and integrated in the test circuitry. In order to avoid condensation, the chamber is ramped up to
85 ◦C and 85% R.H., and only after reaching stable conditions is the voltage applied. The devices
are then monitored continuously, and the test is halted in order to perform intermediate reverse I–V
characteristics to evaluate the status of the DUTs at desired checkpoints (0 h, 168 h, 500 h, etc.) up to
their nominal blocking voltage Vnom or below their breakdown voltage (BV). At these checkpoints,
the devices are left outside the testing chamber [6,8] or baked [20] in order to drive out moisture before
testing at room temperature.

2.2. Leakage Current Monitoring

Leakage monitoring is a key feature when performing HV-THB, especially in the first hours of
testing. In this period, the leakage curves usually show a peculiar transitory behavior that must be
taken into account to properly set the test limits. This behavior is depicted in Figure 2. The leakage
curve has an initial steep increasing trend, later evolving into an asymptotic decreasing behavior,
which is probably caused by charge relocation inside the DUT and is not related to the typology of the
device—for instance, there are metal oxide semiconductor field effect transistors (MOSFETs), insulated
gate bipolar transistors (IGBTs), power diodes, etc. [7–9,19,21]. This behavior is always present, but no
literature specifically addresses a model for this phenomenon.
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Figure 2. Typical leakage monitoring curves for a single 650 V power diode in the first 24 h of HV-THB
testing at 85 ◦C and 85% R.H.—reverse biased at 80% Vnom (a). Evolution of HV-THB testing for a set
of 4 power modules with 24 IGBTs and 12 diodes each, tested at 85 ◦C and 85% R.H. with a reverse
bias at 4500 V (b). (a) Reproduced with permission from [8] and (b) reproduced with permission and
adapted from [21].

In order to address this behavior, it is not possible to stick to the usual strategy of setting a rigid
percentage limit to discriminate between test pass and fail. The general approach is to leave the DUTs
to follow their evolutions, and after reaching the maxima of their respective curves, constantly read the
minimum values of the curves and set those as the references for classical rigid limits in the form of:

Imonitored < α·Ire f erence, (1)

where α > 1 is a chosen positive constant defining the maximum limit with respect to the reference
value [8,16]. It is important to notice that sometimes, during the asymptotic phase of the test, some
devices could exhibit an unstable behavior (Figure 3). It can be seen that the DUTs overcome the fixed
limit and subsequently go back to their asymptotic regime [10,16,22]. In this case, there is no clear
agreement coming from the authors on whether to consider this behavior a pass or a fail, but its effect
is something that needs to be considered when designing the final circuit.
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A similar recovery behavior has been observed also during the HV-THB testing of SiC MOSFETs.
In this case a DUT showed a temporary reduction in blocking voltage capability at 6000 h of testing,
and later fully recovered its blocking voltage at the 9000 h checkpoint measurement [22].

Another point that should be examined regarding leakage current monitoring is the sampling time
during the test. Considering the general evolution of a HV-THB monitoring curve, it is hard to define a
standardized value for the sampling interval, which depends on the behavior of the technology under
examination. For this reason, since a single sampling value cannot be defined, future standards will
need to take this into account when defining the guidelines of the HV-THB testing in order to set a
minimum monitoring frequency. For instance, authors report sampling rates ranging from 1 s [18] to
5 min [17].

Moreover, the presence of higher frequency peaks on the monitored signal [10] implies that
the choice of a longer sampling time has to be considered only if the presence of these peaks is not
meaningful with respect to the trend of the curve for the technology under examination, since these
peaks could not be detected and averaged out by the longer sampling time. For this reason, it is also
important to have stable temperature and humidity conditions inside the chamber, in order to remove
secondary effects such as the periodic oscillation of the curves, which may be related to the thermostat
and hygrostat cycle times inside the test chamber.

2.3. Intermediate Testing and Electrical Degradation

As already specified in Section 2.1, intermediate measurements are performed in order to evaluate
device degradation at each checkpoint of the HV-THB testing. The observable degradation of
characteristics generally occurs in two ways, as represented in Figure 4.
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The first type of degradation is a decrease in breakdown voltage (Figure 4a), where the knee
of the characteristic moves toward lower voltages, but without increasing the leakage values below
the BV voltage. The second kind of degradation is the gradual increase of leakage on the whole
characteristic (Figure 4b), but without significantly impacting the BV value. Both these electrical
degradation mechanisms can happen at the same time, and have direct effects on the leakage current
measured by the monitoring system.

It is important to highlight that the observable degradation of the characteristics, involving
either an increase of leakage current or a decrease of BV, is mostly due to the wear out of passivation
stacks in the junction termination regions, where voltage–humidity-related phenomena are generally
localized [6–9]. These phenomena will be described in the following sections.
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2.4. Accelerated Test Models

In order to define a model for the accelerated stress of the HV-THB, as proposed by several
authors [7,9,17,20], it can be useful to list previously defined models in order to see which are the most
suitable for the calculation of the acceleration factor.

First, we have the DiGiacomo model, a physical model developed to describe the behavior of
metallic migration in encapsulated packages. This latter is defined in Equation (2) [23]:

t f =
Qc

β·Jtip
(2)

In this equation, tf is the time to failure for dendritic growth between the two biasing electrodes,
Qc represents the critical amount of migrating metal ions required to achieve dendrite formation across
the space between the electrodes, β is the degree of oxidation or fraction of active surface (which is
metal dependent) and Jtip is the current density at the dendrite tip [24]. This model, which is based on
Butler–Volmer’s equation relating electrode potential to current density [25], is indeed well defined
from a physical point of view and gives good insights into the nature of the phenomenon, but it is not
applicable to HV-THB testing because it needs to be related to the stressors of the test: temperature,
humidity and voltage. For this reason, several models can be integrated in order to extrapolate the
acceleration factor.

The first step is to consider the Arrhenius equation, linking temperature and reaction rate,
described in Equation (3):

t f = A1· exp
(EA

k·T

)
(3)

where tf is the median time to failure, A1 is a fitting parameter, k is the Boltzmann’s constant, T is
the absolute temperature and EA is the activation energy for the chemical reaction. The Arrhenius
equation only considers the effect of temperature, so the model must be extended in order to include
multiple stressors. A first approach to this extension could be achieved with the Eyring equation [24,26],
but with the drawback of increasing the complexity of the equation.

For this reason, the Hornung model is preferred [27], and its equation was developed to describe
dendritic growth based on the Arrhenius model [24] by adding the effect of voltage to the term A1

from Equation (3):

t f =
α·d
V
· exp

(EA
k·T

)
(4)

In this equation, α is a fitting parameter, d represents the spacing between the electrodes and V is
the applied voltage [24,27].

Furthermore, it is possible to consider the effect of humidity by considering Peck’s model [28]. This
model extends the Arrhenius equation by including relative humidity to the Arrhenius model [28–31]:

t f = A3·RH−x exp
(EA

k·T

)
(5)

where A3 and x are fitting coefficients, and RH is the relative humidity. In this way, by combining
Hornung’s and Peck’s models (Equations (4) and (5)), it is possible to derive an acceleration factor for
the stressors of the THB test [7,32–34]:

a f (RH, T, V) =
(RHa

RHu

)x
· exp

(EA
k
·

[ 1
Tu
−

1
Ta

])
·

(Va

Vu

)y
(6)

where the indices a and u refer respectively to the accelerated and usage conditions. However, this
approach does not include the interaction between the stressors. For reference purposes, additional
details regarding each model (Equations (2)–(6)) can be found in the work by Zorn et al. from 2014 [7].
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Voltage can indeed be a strong acceleration factor; in fact, let us consider the example from [20].
Here a standard 80 V THB test is compared to a HV-THB test with a bias of 65% Vnom (780 V) applied
to 1200 V IGBT module devices. In this case, the substitution of the latter values into Equation (6)
gives an acceleration factor of 150, meaning that the standard 80 V value from AECQ101 applies a
significantly lower amount of stress at fixed 85 ◦C/85% R.H. conditions. Moreover, due to the nature of
the test, long runners make it hard to estimate the effective acceleration of the test and the validity
of the model, especially at voltages below 60% Vnom. In order to overcome this issue and estimate
the effect of acceleration, one option [7] is to measure the reduction of the breakdown voltage. For
instance, as reported in Figure 5, it has been shown that by passing from a 65% to 90% Vnom reverse
bias, the experiments show an acceleration factor of 2.1 [9], which is not a huge increase but significant
for a test that can last for several thousands of hours.
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3. An Overview of the Failure Modes

In Section 1, it was anticipated that different package technologies could behave differently with
respect to humidity intake. For instance, it has been shown that power modules and small plastic
packages (e.g., standard TO-247) have significantly different moisture uptakes. In fact, for a standard
MTP power module, a weight increase of 1.9 g has been measured after 24 h at 85 ◦C/85% R.H, mostly
absorbed by the silicon gel, while it is not possible to measure a significant change in weight for a
TO-247 package exposed to the same conditions [6]. The presence of humidity together with the
applied bias can activate a chain of chemical reactions, leading to corrosion and consequently device
degradation and failure.

3.1. The Corrosion Cell

The corrosion process starts with the hydrolysis of water adsorbed by the surface between the
biased electrodes, forming a so called “corrosion cell.” This happens on the anode’s surface, with the
formation of hydrogen, according to the following oxidation reaction:

2 H2O→ O2(g) + 4H+ + 4 e− (7)

Differently, the cathode side presents a reduction reaction with the formation of hydroxide ions
and hydrogen gas [20,35–38]
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2H2O + 2e− → H2(g) + 2(OH)−

2H2O + O2 + 4e− → 4(OH)−
(8)

In this way, the anode side process yields a locally acidic solution, and the cathode side a basic
one. Thus, a pH gradient is formed between the electrodes.

3.2. Aluminum Corrosion

Aluminum is very reactive and Al(OH)3 forms at its surface when in presence of water, yielding a
high oxidation resistance at pH values between 4 and 9 [39–42]. Outside this range, the aluminum
hydroxide can react as an acid or a base depending on the properties of the solution (i.e., pH and
equilibrium potential). In the case of an acid solution, Al(OH)3 is oxidized as follows:

Al(OH)3 + 3H� Al3+ + 3H2O (9)

These ions are very unstable in solution, so the probability of them reaching the cathode by
migration is very low. Oppositely, on the cathode side, the Al(OH)3 can form aluminates following
the reaction:

Al(OH)3 + OH− � [Al(OH)3]
− (10)

Differently from Al3+ ions, these aluminates are very stable and can migrate in the solution, form a
precipitate on the anode side or even form complex salt ions on their migration path.

In addition, an alternate source of gaseous H2 with respect to water hydrolysis can be the following:

Al + 3H2O→ Al(OH)3 +
3
2

H2 (11)

This gaseous hydrogen, and the product of Equation (8), can lead to blistering and delamination
of the upper passivation layers [6,43]. The whole reaction is represented schematically in Figure 6 [9],
where the process is described schematically in Figure 6a, while a real example of aluminum corrosion
is shown in Figure 6b.
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Figure 6. Schematic process of aluminum corrosion and accumulation (a). An example of an eroded
metallization edge on the junction termination of a diode chip after HV-THB testing (b). Figure
reproduced with permission from [9].

3.3. Electrochemical Migration (ECM)

Section 3.2 has shown how aluminum has a peculiar migration behavior when a corrosion cell
is built, but not all metals have the same behavior with respect to transport under an electric field.
For instance, for Cu and silver, which are common materials involved in powered device manufacturing,
failure due to ECM can be observed since the native metal oxides of these materials can be easily
decomposed, and due to local acid conditions, metal ions are produced by corrosion at the anode,
following the reaction [20,44]:

M→Mn+ + ne− (12)
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The metal ions produced at the anode are then accelerated by the electric field toward the cathode.
It is here that they can recombine back to neutral atoms and deposit on the cathode:

Mn+ + ne− →M (13)

This behavior is described schematically in Figure 7 [9]: here the Cu and Ag metal ions progressively
build a dendrite structure following the direction of the electric field, starting from the anode side.
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3.4. Device Failure Analysis

As a combination of the three mechanisms highlighted in Sections 3.1–3.3, the entity of failure
and degradation can manifest in several ways, which generally involve charge accumulation; a mix of
polyimide blistering and lifting; and metal or nitride corrosion.

An example of polyimide blistering is shown in Figure 8 for an HV-THB power diode at 80%
Vnom [6]. The top view shows the presence of darker spots, where outgassing and lifting of the inner
layers give rise to the presence of “blisters” or “bubbles” on the upper polyimide layer.
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Figure 8. Top view of a decapsulated MTP module showing polyimide blistering (darker spots) after
HV-THB testing. Device degradation is concentrated on the surface of the junction termination. Figure
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In the internal layers of the passivation, underneath the polyimide bubble, other layers showed
significant degradation. In Figure 9a, the aluminum field plate of a power diode HV-THB tested at
80% Vnom is revealed with a focused ion beam (FIB) cross-section. The top polyimide layer was lifted,
leaving a gap from the underlying metal field plate showing high degradation both in shape and
composition. The change in composition was confirmed by energy-dispersive X-ray spectroscopy (EDX)
at two points (Figure 9b), showing (1) no degradation and (2) compositional and shape degradation.
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Figure 9. FIB cross-section of a degraded aluminum field plate for an HV-THB tested diode after
200 h of testing at 80% Vnom (a). The capping layer (polyimide) was lifted, revealing a gap and the
underlying metal field plate, showing 2 different phases (b). The change in composition was confirmed
by energy-dispersive X-ray spectroscopy (EDX) analysis at 2 points, showing: (1) no degradation and
(2) compositional and shape degradation. Figure reproduced with permission from [6].

Moreover, it has been shown that even simple charge accumulation at the interfaces of the
passivation stacks of HV-THB tested IGBTs [45] can lead to the electrical degradation of characteristics,
as shown previously in Figure 4a. In this case, even if no morphological degradation is observed on
the surface of the device, a significant reduction in BV voltage is reported, with negligible effect on
the leakage current of the device. In this specific situation, localizing the point of degradation on the
device is very hard and can only be achieved by getting accurate FIB cross-sections of the DUTs [6,8].

4. Materials and Accelerated Testing Performances

As seen in the previous sections, HV-THB applies a strong stress to the DUTs, and as highlighted
by several studies [2,6,10,21,35,46–50] the optimization of power semiconductor devices against
humidity-voltage phenomena is strictly related to the intertwined roles of both the passivation stack
and the structure of the junction termination, where field peaks are generally localized and can trigger
humidity related degradation processes [6,49–51].

This section presents current developments in silicon and silicon carbide power semiconductor
devices and their relative performances under HV-THB. In addition, it is important to highlight that
humidity and reliability studies regarding other wide bandgap semiconductor power devices such as
GaN and GaAs are currently ongoing, and can be already found in the literature; see, for instance, [52,53].
Nonetheless, such studies will not be included in this review, since the latter are still at an early stage
and do not yet present extensive results regarding HV-THB.

4.1. Passivation and Termination Materials

Moisture related degradation is strictly dependent on the materials of the passivation structure.
Several solutions are possible, but in some cases a complex multi-material passivation stack becomes
necessary to achieve superior roughness, as will be explained in the following sections. Table 2 shows
key characteristics of a series of passivation materials for the manufacturing of power semiconductor
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devices. In Table 2, it is important to notice the differences in relative dielectric constant and critical
electric field among the listed materials, in particular, for 4H-SiC, Si3N4, SiO2, AlN and HfO2, since these
materials will be objects of discussion in the following sections.

Passivation coatings in silicon devices are generally divided into two categories: primary and
secondary passivation layers. Primary layers are generally in contact with the bulk single crystal
silicon, while secondary layers are generally separated from the bulk by at least one dielectric layer [54].
Both layers are important with respect to humidity related issues, since local immobile and mobile
charges at their interfaces can have great impacts on device reliability. Historically, SiO2 was generally
the standard primary passivation material, grown by thermal oxidation in a dry or wet oxidizing
atmosphere [54–60], which was generally followed by an annealing step to improve layer stability and
overall electrical properties of the device [54,60–64].

Table 2. Dielectric constant, band-gap and critical electric field for several dielectric materials with Si
and 4H-SiC as references. Table adapted from [65].

Material Relative Dielectric
Constant Band-Gap (eV) Critical Electric

Field (MV/cm)
Thermal Conductivity

(W/cmK)

Al2O3 8 8.8 >5 0.02 #

AlN 9.14 6.03 1.2 ÷ 1.8 11.7
CaF2 6.81 12.3 14.44 0.1
HfO2 ~30 6 8.5 0.015 #

LiF 9 11.6 12.24 0.15 ##

Si3N4 7.4 5.3 10 0.3
SiO2 3.9 9 10 0.015 #

TiO2 24 ÷ 57 3.05 2.7 0.07 #

ZrO2 15 5.8 15 ÷ 20 0.02
Si 11.7 1.12 0.3 1.5

4H-SiC 9.66 3.23 3 ÷ 5 3.7
# Thermal conductivity data for sputtered material; otherwise for bulk; ## thermal conductivity at 77K.

The deposition of secondary passivation layers can have significant impacts on the electrical
characteristics of the underlying layers. Thus, the deposition of a further layer becomes critical in
order to obtain the desired electrical and reliability performances, since the application sequence of the
passivation layers in power semiconductor devices is generally primary (generally SiO2), secondary
(SiO2, Si3N4, etc.), upper organic passivation layer (polyimide, etc.) and a final capping silicone gel or
epoxy in the case of power modules, or molding compound in the case of plastic packages [54].

4.2. Silicon Nitride as a Passivation Material

Silicon nitride Si3N4 is generally involved in the fabrication of high-reliable devices, due to its
multiple advantages. In fact, silicon nitride can act both as a getter and alkali barrier [54], and at the
same time have great resistance with respect to humidity. Silicon nitride layers are usually formed
by the reaction of either SiH4 or SiCl4 in an NH3 atmosphere at 800–900 ◦C, or at lower temperatures
by plasma enhanced chemical vapor deposition (PECVD) or even by atomic layer deposition (ALD).
Several works show significant HV-THB performance improvements when silicon nitride layers are
included in the passivation stack. [6,8,10]. In such cases the nitride layer has been deposited by
plasma PECVD [6,10], and even variations to the stoichiometry of the deposited layer can lead to
consequent variations in the performances of the devices [10]. Moreover, in the presence of high
electric fields, silicon nitride itself can undergo a corrosion process [21,66] leading to the penetration of
humidity, and eventually to the critical failure of the device. It has been shown that the addition of a
further semi-insulating layer on the passivation structure of the device, and the optimization of the
polyimide material [6,10,21], allow one to achieve improved HV-THB capabilities without activating
other failure modes.
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4.3. Silicon Carbide Devices

SiC technologies are bound to become the standard in the coming years; therefore, this section has
been devoted to current advances in the study of their performances when evaluated under HV-THB
test. In particular, actual HV-THB testing of SiC power devices is in its early stages, and few studies
are currently available, but these results are already meaningful with respect to HV-THB capabilities
and other classes of reliability tests of silicon carbide power devices.

One line of research related to possible voltage-humidity issues is the investigation of charge
accumulation, an important topic in the case of SiC devices. For instance, in the case of 4H SiC
power diodes, a breakdown voltage instability due to charge accumulation has been observed [50].
Two different charge accumulation phenomena have been described, both connected to metal
contaminants. The first one induced by temperature and bias, and the second one due to humidity [50].
A second study from the same author [51] investigated the effects of several passivation stacks with
the aim of reducing charge accumulation in the termination area of 4H-SiC power diodes. In this
study, a customized capacity measurement method [67] was used to identify, among the proposed
ones, the structures which suppress positive charge accumulation, leading to BV instability in the
termination [68].

In addition, another aspect related to the testing of HV-THB SiC devices is the presence of very
low leakage current values, as in the case of SiC MOSFETs. As shown in Figure 10, monitoring can be
challenging since leakage values are extremely low and many devices must be monitored at the same
time [2,18].
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Figure 10. Leakage current monitoring during THB test on four 1200 V SiC-MOSFETS in plastic package.
The right axis shows both temperature and relative humidity, having constant values throughout the
whole duration of, respectively, Tamb = 85 ◦C and R.H. = 85%. Current reading is so low that it is
mostly determined by noise and offset correction. Figure reproduced with permission from [2].

Passivation stacks for SiC devices show promising results with the use of AlN and HfO2 due to
their high dielectric constants and higher critical electric fields [49,65]. The device simulations reported
in Figure 11 show a comparison of three different passivation materials applied to a SiC device.
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In this simulation work, a good reduction of the electric field peak was achieved with an HfO2

layer applied to the termination region. In this way enhanced shrinking of SiC power devices becomes
viable not only for their thermal performances, which are ensured by the physical properties of silicon
carbide, but also with respect to THB performances, since local peaks in critical junction termination
points can be reduced significantly.

In conclusion, several studies reveal that SiC devices show superior robustness [2] and outstanding
humidity capabilities with respect to silicon devices [18,69]. Whenever reported, device failures are
supposedly triggered by chip imperfections or by the preparation process, shifting the focus of reliability
improvement, in these cases, more to the packaging and manufacturing process than the device itself.

5. Conclusions

Several aspects of the high voltage temperature humidity bias (HV-THB) test have been
investigated. Firstly, current regulations and standards have been described and compared to
the HV-THB characteristics, and the main features of the test setup have been outlined, while discussing
the main issues related to the testing of the DUTs, followed by the descriptions of the acceleration
models of the three main stressors: temperature, humidity and voltage. Secondly, the main failure
modes triggered by the interaction of humidity and high voltage have been described, and examples
of the physical degradation have been given.

Indeed, the literature shows that HV-THB testing is a valuable source of information for the
evaluation of reliability performances of power semiconductor devices when high bias and humidity
are applied simultaneously at a fixed temperature. Moreover, HV-THB will remain a remarkable
reliability test, even for new generations of wide band-gap power semiconductor devices.

In particular, it has been highlighted how several authors already use this test for the evaluation
of multiple class of SiC power MOSFETs, IGBTs and diodes, and how the use of these new materials
will enable further studies and applications.
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It is important to notice that improvements will come only by further optimization of materials
and architectures of both passivation and junction termination structures, in order to control local
electric fields and moisture absorption, and unlock the maximum potential of these new materials by
improving their reliability in harsh environment applications.
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