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Abstract: In contrast to images taken on land scenes, images taken over water are more prone
to degradation due to the influence of the haze. However, existing image dehazing methods are
mainly developed for land-scene images and perform poorly when applied to overwater images.
To address this problem, we collect the first overwater image dehazing dataset and propose a
Generative Adversial Network (GAN)-based method called OverWater Image Dehazing GAN
(OWI-DehazeGAN). Due to the difficulties of collecting paired hazy and clean images, the dataset
contains unpaired hazy and clean images taken over water. The proposed OWI-DehazeGAN
is composed of an encoder–decoder framework, supervised by a forward-backward translation
consistency loss for self-supervision and a perceptual loss for content preservation. In addition to
qualitative evaluation, we design an image quality assessment neural network to rank the dehazed
images. Experimental results on both real and synthetic test data demonstrate that the proposed
method performs superiorly against several state-of-the-art land dehazing methods. Compared with
the state-of-the-art, our method gains a significant improvement by 1.94% for SSIM, 7.13% for PSNR
and 4.00% for CIEDE2000 on the synthetic test dataset.

Keywords: image dehazing; overwater image; generative adversarial network

1. Introduction

Images of overwater scenes play an important role in human image galleries. However, these
images are prone to degradation due to thick mist that are often appearing over lakes, rivers, and seas.
Although numerous image dehazing methods have been developed [1–5], our experiments show that
these methods perform far from satisfying since they are originally designed for land scene images,
of which the data distribution differs significantly.

Hazy images are usually modeled as I(x) = J(x)t(x) + A(1− t(x)), where I(x) and J(x) are the
observed hazy image and the scene, respectively [6,7]. The symbol x denotes a pixel index, and A
is the global atmospheric light. t(·) denotes the transmission map, which describes the portion of
light that is not scattered and reaches the camera sensors. When the haze is homogeneous, t(·) can be
defined as: t(x) = e−βd(x), where β is the scattering coefficient and d(x) is the distance between objects
and the camera.

Existing methods fall into two categories according to the type of features they used: methods
based on hand-crafted features [1,2,8–12] or methods based on convolutional neural network (CNN)
features [3–5,13–16]. The former generally focuses on estimating the global atmospheric light intensity
A(·) and the transmission map t(·), and hence their performance are susceptible to estimation errors
of A(·) or t(·). To alleviate these limitations, the latter, which is based on CNNs [17] or Generative
Adversial Networks (GANs) [18], aims to directly estimate clean images in a data-driven scheme.
Although promising dehazing results have been achieved, existing CNN- or GAN- based methods
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perform not well on overwater images as shown in Figure 1b,c. This is because they are designed
for dehazing land scene images, which results from the difference among data distributions of land
images and overwater images. Another issue is that existing image dehazing datasets [12,19–22] are
dominated by land scenes, which have significant data distribution differences compared to that of
overwater images.

(a) (b) (c) (d)

Figure 1. Overwater image dehazing example. The proposed method generates more clear images
compared to state-of-the-art methods. (a) Hazy input, (b) Cai [13], (c) Yang [4], (d) ours.

In this paper, we address both the above-mentioned issues. First, we construct a new dataset,
named HazyWater, especially for dehazing overwater images. Since collecting paired hazy and clear
images is difficult and expensive, the HazyWater dataset is composed of unpaired hazy and clean
overwater images. Although the unpaired character challenges most of the existing methods, we show
that satisfying performance could be achieved by the proposed dehazing method in the experiment
section. Second, we propose an OverWater Image Dehazing GAN (OWI-DehazeGAN) inspired by
CycleGAN [23] to directly recover clean images. OWI-DehazeGAN employs the forward-backward
translation consistency loss as self-supervision to tackle the unpairness of training data. We also
introduce a perceptual loss to enhance the recovered image quality.

Our contributions are summarized as follows:

• We create the first overwater image dehazing dataset. Most of the existing image dehazing
methods (including CNN-based methods) perform not well on overwater images, and we hope
this dataset is able to facilitate the research in this field.

• We propose an OWI-DehazeGAN to dehaze overwater images, which is based on but performs
superior to Cycle-GAN. The proposed network is able to utilize unpaired training data and
preserve image details simultaneously.

• We propose an image quality assessment network to rank the dehazed images of dehazed methods,
which facilitates the comparison of different dehazing methods. Extensive experimental results
evaluated by this network as well as the peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and CIEDE2000 metrics demonstrate the effectiveness of the proposed OWI-DehazeGAN.

2. Related Work

2.1. Methods Based on Hand-Crafted Features

Many efforts have been devoted to image dehazing in the past decades based on hand-crafted
features [1,2,8–12]. Tan et al. [8] proposed a contrast maximizing approach using Markov random
fields (MRF) based on the observation that clean images have higher contrast than hazy ones.
In Reference [9] Tarel et al. propose a fast dehazing method by combining atmospheric veil inference,
image restoration and smoothing tone mapping. Later, He et al. [10] estimated the transmission map
by utilizing dark-channel prior (DCP). Meng et al. [11] explores the inherent boundary constraint
on the transmission function. In order to recover depth information, Zhu et al. [1] proposed a color
attenuation prior (CAP) by creating a linear model on local priors. Different from previous methods
that use various patch-based priors, Berman et al. [2] presented a new image dehazing algorithm based
on non-local prior so that a haze-free image is able to be well approximated by a few distinct colors.



Electronics 2020, 9, 1877 3 of 19

While the afore-mentioned methods have achieved promising results, they perform far from
satisfying when applied to overwater images. For example, MRF [8] tends to produce over-saturated
images. The enhanced images of FVR [9] often contain distorted colors and severe halos. DCP [10]
does not work well when it comes to the sky regions, as the scene objects are similar to the atmospheric
light. This is mainly because the major region of overwater images are water and sky, which have a
different data distribution from that of land scene images.

2.2. Methods Based on CNN Features

Deep convolutional neural networks have shown promising success in various computer vision
tasks [24,25]. Many CNN-based image dehazing methods have been proposed. Cai et al. [13]
propose an end-to-end DehazeNet with non-linear regression layers to estimate medium transmission.
Instead of estimating the transmission map or the atmospheric light firstly, AOD-Net [16] predicts the
haze-free images directly using a light-weight CNN. Proximal Dehaze-Net [4] combines the advantages
of traditional prior-based dehazing methods and deep learning methods by incorporating haze-related
prior learning into the deep network.

Since Goodfellow [18] proposed the GAN method in 2014, there have been many effective variants
tailored to different computer vision tasks [23,26,27]. Motivated by the success of GANs in style
transfer [28], super-resolution [29], text to image [30], and image inpainting [31], many GAN-based
methods have been proposed for image dehazing. In Reference [5], a Densely Connected Pyramid
Dehazing Network (DCPDN) is proposed to jointly learn the transmission map, atmospheric light
and dehazing result all together. Yang et al. [32] propose to loose the paired training constraint by
introducing a disentanglement and reconstruction mechanism. Li et al. [14] designed a solution based
on a cGAN network [26] to directly estimate the clean image. Ren et al. [3] adopt an ensemble strategy
to take advantage of the information in white balance, contrast-enhancing, and gamma correction
images. Overall, these methods are trained on paired data, which is unsuitable for the proposed
overwater image dehazing task, where only unpaired training data is available.

2.3. Image Dehazing Dataset

Image dehazing tasks profit from the continuous efforts for large-scale data. Several
datasets [12,19–22] have been introduced for image dehazing. Fattal et al. [12] provide 12 high-quality
synthetic images for outdoor image dehazing. For evaluating the performance of automatic driving
systems in various hazy conditions, FRIDA [33] introduces a dataset that includes synthetic images.
MSCNN [15] and AOD-Net [16] utilize the indoor NYU2 Depth Database [34] and the Middlebury
Stereo database [35] to synthesize hazy images using the known depth information. O-HAZE [20]
is an outdoor scenes dataset, which is composed of pairs of real hazy and corresponding clean data.
I-HAZE [20] is a dataset that contains 35 image pairs of hazy and corresponding ground-truth indoor
images. Foggy Cityscapes dataset [21] is a synthetic version of the Cityscapes dataset using incomplete
depth information. Li [22] launched a new large-scale benchmark which is made up of synthetic and
real-world hazy images, called Realistic Single Image Dehazing (RESIDE). However, most datasets
are synthetic and not tailored to the problem of overwater image dehazing. Different from the above
datasets, we collect a dataset that contains real data especially used for dehazing overwater images.

3. Proposed Method

In this section, we first introduce the overall structure of the proposed OWI-DehazeGAN, and then
detail each of its components. At the end of this section, we present the proposed image quality
ranking network, which is later used to rank the outputs of different dehazing methods in the
experiment section.

Figure 2 shows the main architecture of the proposed OWI-DehazeGAN. Unlike traditional GANs,
OWI-DehazeGAN consists of two generators (G and F) and two discriminators (Dx and Dy) in order
to be trainable with unpaired training data. Specifically, generator G predicts clean images Y from
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hazy images X, and F vice versa. Dx and Dy distinguish hazy images and clean images, respectively.
Below we provide more details about each component.

Figure 2. The main architecture of the proposed OverWater Image (OWI)-Dehazing network. G and
F denote generators, where G : X → Y generates clean images from hazy images and F : Y → X
vice versa. Dx and Dy denote discriminators. Adversarial loss, cycle consistency loss and perceptual
loss are employed to train the network.

3.1. Generator

We adopt the same structure for the two generators G and F. Both generators are divided into
three parts: encoding, transformation, and decoding. The architecture and details of the generator are
shown Figure 3a and Table 1, respectively.

(a) Generator

(b) Discriminator

Figure 3. Architecture of our generator and discriminator. The generator consists of encoding,
transformation, and decoding three parts.
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Table 1. Main parameters of our generator. ‘#In’ denotes the number of input channel, and ‘#Out’
represents the number of output channel. ‘Upsample’ denotes the resize convolution.

Layer Name #In #Out Kernel Strides

Conv 1 3 32 7× 7 1
Conv 2 32 64 3× 3 2
Conv 3 64 128 3× 3 2
Res Block 1 128 138 3× 3 1
. . . . . . . . . . . . . . .
Res Block 9 128 128 3× 3 1
Upsample 1 256 64 3× 3 2
Upsample 2 128 32 3× 3 2
Conv 4 32 3 7× 7 1
Tanh - - - -

Encoding: The encoding module extracts image features by three convolution layers, which serve
as down-sampling layers to decrease the resolution of the original input. Each convolution layer is
followed by an instance normalization [36] and Leaky Relu [37]. Since image dehazing can be treated
as a domain adaptation problem that views each image as a domain, instance normalization is more
suitable for image dehazing than batch normalization [38]. Leaky Relu is an improved activation
method for Relu [39] which has all the benefits of Relu and solves the dead Relu problem.

Transformation: The transformation module translates information from one domain to another
via nine ResNet blocks [40]. ResNet block in our network contains two 3× 3 convolution layers with
the same number of filters. Due to the results of image dehazing, the need to retain the characteristics
of the original image, such as the shape and color, the ResNet block is well-suited to accomplish
these transformations.

Decoding: The decoding module includes the up-sampling operations and nonlinear mappings.
There are several choices for upsampling, such as deconvolution [41], sub-pixel convolution [42] and
resize convolution [43]. In order to reduce checkerboard artifacts [43] caused by deconvolution or
sub-pixel convolution, we use the resize convolution for decoding. It increases the resolution of the
feature map using nearest-neighbor interpolation followed by convolution. Inspired by the success of
U-Net [44], we introduce two symmetric skip connections to deliver information between encoding
and decoding modules. Finally, images are recovered through convolution and tanh activation.

3.2. Discriminator

We use two discriminators Dx and Dy to distinguish the input hazy images and clean images,
respectively. The discriminator is implemented in a fully convolutional fashion. We use four
convolution blocks in discriminator. The first block consists of convolution and Leaky Relu, the last
block only contains convolution and the remaining blocks are composed of convolution, instance
normalization and Leaky Relu. In order to maintain the stability of GAN training process, we do not
utilize the sigmoid activation in the last block. The architecture and details of the discriminator are
shown in Figure 3b and Table 2.

Table 2. Main parameters of our discriminator. ‘#In’ denotes the number of input channel, and ‘#Out’
represents the number of output channel.

Layer Name #In #Out Kernel Strides

Conv 1 3 32 4× 4 2
Conv 2 32 64 4× 4 2
Conv 3 64 128 4× 4 2
Conv 4 128 256 4× 4 2
Conv 5 256 1 4× 4 1
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3.3. Loss Function

We utilize three kinds of losses to train the proposed network, including Adversarial Loss, Cycle
Consistency Loss, and Perceptual Loss. The Adversarial Loss and the Cycle Consistency Loss enable
the proposed network trainable with unpaired data, and the Perceptual Loss preserves image details.

3.3.1. Adversarial Loss

As done in CycleGAN, we use adversarial loss and cycle consistency loss for unpaired training
data. x ∈ X, y ∈ Y are hazy image and clean image unpaired data, respectively. For the generator G
and discriminator Dy, the adversarial loss is formulated as:

LGAN(G, Dy, x, y) = log(Dy(y)) + log(1− Dy(G(x))). (1)

Correspondingly, the constraint on generator F and its discriminator Dx is

LGAN(F, Dx, x, y) = log(Dx(x)) + log(1− Dx(F(y))). (2)

However, the above losses are prone to unstable training and generating low quality images.
To avoid the vanishing gradients problem and achieve high quality images, we use a least squares
loss [27] instead of the negative log likelihood objective [18]. Therefore, Equations (1) and (2) are
modified as:

Ladv(G, Dy, x, y) =
1
2
∗ [(Dy(G(x))− 1)2 + (Dy(y)− 1)2 + Dy(G(x))2] (3)

Ladv(F, Dx, x, y) =
1
2
∗ [(Dx(F(y))− 1)2 + (Dx(x)− 1)2 + Dx(F(y))2]. (4)

The final adversarial loss is denoted as:

Ladv(G, F, Dx, Dy) = Ladv(G, Dy, x, y) + Ladv(F, Dx, x, y). (5)

3.3.2. Cycle Consistency Loss

CycleGAN introduces a cycle consistency loss to solve the problem that an adversarial loss alone
cannot guarantee that the output distribution matches the target distribution. For each image x ,
F(G(x)) is able to bring G(x) back to the original image. Similarly, G(F(y)) is able to bring F(y) back
to the original image y. F(G(x)) is the cyclic image of input x, and G(F(y)) is the cyclic image of
the original image y. To train generators G and F at the same time, the consistency loss includes
two constraints: F(G(x)) ≈ x , G(F(y)) ≈ y. Cycle consistency loss is defined to calculate L1-norm
between the input and cyclic image for unpaired image dehazing:

Lcyc(G, F) = ||F(G(x))− x||1 + ||G(F(y))− y||1. (6)

3.3.3. Perceptual Loss

Inspired by the success of perceptual loss in style transfer [45], we introduce perceptual loss to
restrict the reconstruction of image details. Instead of measuring per-pixel difference between the
images, perceptual loss is concerned with the distinction between feature maps, which comprises
various aspects of content and perceptual quality. The perceptual loss is defined as:

Lper(G, F) =||θ(x)− θ(F(G(x)))||22 + ||θ(y)− θ(G(F(y)))||22. (7)

Here, θ represents the feature maps generated from the relu4_2 on pertained VGG-16 [46] network.
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3.3.4. Objective Function

Our final loss is defined as the weighted sum of previous losses:

L(G, F, Dx, Dy) =Ladv(G, F, Dx, Dy) + λ1Lcyc(G, F) + λ2Lper(G, F), (8)

where coefficients λ1 and λ2 represent the weights of cycle consistency loss and perceptual loss,
respectively. We found that giving an over-weight to perceptual loss causes the instability of training
process, which could make the GAN model non-convergent, thus the weight of perceptual loss is
much less than the weight of cyclic consistency loss. In training process, we minimize the generators
G, F and maximize the discriminators Dx, Dy.

The final objective function is:

< G∗, F∗ >= arg min
G,F

max
Dx ,Dy

L(G, F, Dx, Dy). (9)

We summarize the training procedure in Algorithm 1.

Algorithm 1 OWI-DehazeGAN training procedure pseudocode.

Input: The hazy training dataset X; The clean training dataset Y; Training epoch number epoch.
Output: The well-trained generators G and F; The well-trained discriminators Dx and Dy.

1: for epoch = 1; epoch ≤ epochmax; epoch ++ do
2: Draw mini-batches of samples {x(1), · · · , x(m)} from X;
3: Draw mini-batches of samples {y(1), · · · , y(m)} from Y;
4: for each mini-batch do
5: Compute the discriminator loss on real images;
6: Compute the discriminator loss on fake images;
7: Update the discriminators Dx and Dy;
8: end for
9: for each mini-batch do

10: Compute X → G(x)→ F(G(x)) and Y → F(Y)→ G(F(Y)) generator loss in Equation (6);
11: Compute the perceptual loss in Equation (7);
12: Update the generators G and F;
13: end for
14: end for

3.4. Dehazed Image Quality Assessment

In order to verify the effectiveness of the proposed OWI-DehazeGAN, we design a dehazed image
quality assessment model based on natural image statistics and the VGG network. Natural image
refers to the image directly obtained from the natural scene by using optical photographic instruments
such as cameras. Natural images are different from the distorted image. Natural images are directly
captured from natural scenes, so they have some natural properties. By making statistics on these
properties, natural scene statistics (NSS [47]) of images can be obtained. Due to the differences between
natural images and distorted images in NSS, NSS has been widely used in image quality assessment,
especially no-reference image quality assessment.

In this paper, the NSS we use is mean substracted contrast normalization (MSCN [48]) coefficients,
which is used to normalize a hazy image. After normalization pixel intensities of haze-free by MSCN
coefficient follow a Gaussian Distribution while pixel intensities of hazy images do not. The deviation
of the distribution from an ideal bell curve is therefore a measure of the amount of distortion in the
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image. To calculate the MSCN Coefficients, the image intensity I(i, j) at pixel (i, j) is transformed to
the luminance Î(i, j). Î(i, j) is defined as:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
, (10)

where µ(i, j) and σ(i, j) represent the local mean field and local variance field obtained by calculating
the image using a gaussian window with a specific size. Local Mean Field µ is the Gaussian Blur of the
input image. Local Variance Field σ is the Gaussian Blur of the square of the difference of original image
and µ. C is a constant, in case the denominator is zero. The calculation of MSCN coefficient is shown
in Figure 4. When dehazed image is normalized by MSCN coefficient, only uniform appearance and
edge information are retained. Human eyes are very sensitive to edge information, so the normalized
image is consistent with human vision.

(a) I(i, j) (b) µ(i, j) (c) σ(i, j) (d) Î(i, j)

Figure 4. Examples of mean substracted contrast normalization (MSCN) coefficient.

The proposed image quality assessment (IQA) model for dehazed images is divided into three
parts: luminance normalization, feature extraction and regression of evaluation score. The dehazed
images are firstly normalized by the MSCN coefficient, which provides a good normalization of
image luminance and does not have a strong dependence on the intensity of texture. Then, taking the
normalized image into the convolution layers of VGG-16 to extract features, and finally predicting
an image quality score between 0 and 9 through two fully connection layers. The units of two fully
connection layers are 512 and 1, respectively. The architecture of the IQA model is shown in Figure 5.

6464

22
4

224

conv1

64 64

11
2

conv2

256 256 256

56

conv3

512 512 512

28

conv4

512 512 512
14

conv5
1

51
2

fc6

1 1

fc7

Figure 5. Architecture of the proposed image quality assessment (IQA) model for dehazed images.

The loss function of this IQA model is MAE. The loss is defined as:

lossIQA =
1
N

n

∑
i=1
|yi − y∗i |, (11)

where N represents the number of images in the training set, yi and y∗i denote target data and output
data, respectively. The optimization goal of the IQA model in the training phase is to minimize the
average absolute error loss. Learning the mapping between dehazed images and corresponding Mean
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Opinion Scores (MOS [49]) is achieved by minimizing the loss between the predicted score y∗i and the
corresponding ground truth yi.

4. Experiment

In this section, we first present our HazyWater dataset. Then we quantitatively evaluate the
OWI-DehazeGAN on a synthetic dataset and real-world hazy data, with comparisons to several
state-of-the-art methods. Experimental details are also explained in this section.

4.1. Dataset

We collect a real unpaired image dataset called HazyWater Dataset for the image dehazing in
overwater scenes. All the data were gathered from Google. The training set consists of 4531 unpaired
images, which are 2090 hazy images and 2441 clean images. These training images were all resized
to 640× 480. Figure 6 illustrates some examples of our dataset. There were three main differences
between the proposed dataset and the existing datasets: (1) the HazyWater dataset is a large-scale
natural real dataset with hazy images and unpaired haze-free images, while the previous datasets are
only composed of synthetic data; (2) the HazyWater dataset is tailored to the task of overwater image
dehazing, rather than focusing on indoor or outdoor scenes; (3) the proposed dataset is much more
challenging because the regions of sky and water surface make up a large part of the image.

In order to evaluate different image dehazing methods in overwater scene subjectively,
we intorduced a natural overwater testing, which contains 127 challenging hazy images collected
from overwater scenes. To quantitatively compare different image-dehazing methods, we selected
90 (30 images × 3 medium extinction coefficients β) overwater hazy images with corresponding
ground-truth from the RESIDE OTS dataset [22]. RESIDE OTS dataset is a large scale synthetic
dataset in outdoor scene with a handful of overwater images. We apply SSIM [50], PSNR [51]
and CIEDE2000 [52] to the dehazed results on synthetic images. Based on the HazyWater Dataset,
we compared our proposed method against several state-of-the-art dehazing methods in real and
synthetic data, including: DCP [10], FVR [9], BCCR [11], CAP [1], DehazeNet [13], MSCNN [15],
AOD-Net [16], dehaze-cGAN [14], Proximal Dehaze-Net [4], CycleGAN [23].

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6. Examples of HazyWater dataset (best viewed in color). (a–f) Hazy images. (g–l) Clean imags.

4.2. Experimental Settings

The input images of generators and discriminators were set to 256× 256 during training. We used
an Adam [53] solver to optimize gradient with a learning rate of 2 × 10−4. The batch size was
1. The weight of cyclic consistency loss λ1 and perceptual loss λ2 were 10 and 0.0001, respectively.
The coefficient α of Leaky Relu was 0.2. The update proportion was 1 for generators G, F and
discriminators Dx, Dy. The proposed OWI-DehazeGAN was implemented in TensorFlow with a
Nvidia GTX 1080 Ti GPU.
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4.3. Qualitative Results on Real Images

Figures 7 and 8 show several dehazing results of the proposed algorithm against the
state-of-the-art methods. DCP [10] tends to overestimate the thickness of the haze and produce
dark results (Figures 7b and 8b). The dehazed images by FVR [9] and BCCR [11] have significant
color distortions and miss most details as shown in Figures 7c,d and 8c,d. The best performer in the
hand-crafted prior based methods was CAP [1], which generally reconstructs details of haze-free
images. The deep learning-based approach achieved comparable results, such as DehazeNet [13],
MSCNN [15] and dehaze-cGAN [14]. However, these results indicate that existing methods cannot
handle overwater hazy images very well. For example, the dehazed results (Figures 7f,g and 8f,g) by
MSCNN and DehazeNet have a similar problem that tends to magnify the phenomenon of color cast
and have some remaining haze. The illumination of the Proximal Dehaze-Net [4] and AOD-Net [16]
results is dark, as shown in Figures 7h,j and 8h,j, which are not consistent with human visual perception.
From Figure 7k, CycleGAN generates a lot of pseudo-colors in heavy fog conditions, which is quite
different from the original colors. Meanwhile, the results of CycleGAN generate extensive checkerboard
artifacts in the sky regions. In contrast, the dehazed results by our method shown in Figures 7l and 8l
are visually pleasing in heavy hazy or light mist condition.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7. Real light hazy images and corresponding dehazing results from several state-of-the-art
methods (best viewed in color). (a) Hazy Image. (b) DCP. (c) FVR. (d) BCCR. (e) CAP. (f) DehazeNet.
(g) MSCNN. (h) AOD-Net. (i) dehaze-cGAN (j) Proximal. (k) CycleGAN. (l) Ours.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8. Real heavy hazy images and corresponding dehazing results from several state-of-the-art
methods (best viewed in color). (a) Hazy Image. (b) Dark-channel prior (DCP). (c) FVR. (d) BCCR. (e)
Color attenuation prior (CAP). (f) DehazeNet. (g) MSCNN. (h) AOD-Net. (i) dehaze-cGAN (j) Proximal.
(k) CycleGAN. (l) Ours.



Electronics 2020, 9, 1877 11 of 19

4.4. Qualitative and Quantitative Results on Synthetic Images

We further conducted some experiments based on synthetic hazy images. Although the proposed
method is trained on real unpaired data, we note that it can be applied for synthetic images as
well. Figure 9 shows some dehazed images generated by various methods. Figure 9a shows the
groundtruth as reference. As shown in Figure 9b–d, the results of DCP [10], FVR [9] and BCCR [11]
have some color or detail distortion. The dehazed results by CAP [1] (Figure 9e), DehazeNet [13]
(Figure 9f), MSCNN [15] (Figure 9g), AOD-Net [16] (Figure 9h), dehaze-cGAN [14] (Figure 9i) and
Proximal Dehaze-Net [4] (Figure 9j) are closer to groundtruth Figure 9a than the results based on
priors. However, there was still some remaining haze as shown in Figure 9e–h. The result generated by
CycleGAN in Figure 9k shows that there exists serious color cast and losses of some color information.
The dehazed result generated by our approach in Figure 9l, by contrast, is visually close to the
groundtruth image.

An advantage of testing on synthetic data is able to objectively evaluate experimental results via
SSIM, PSNR and CIEDE2000. SSIM, PSNR and CIEDE2000 provide a pixel-wise measure between
clean images and dehazed images. A higher SSIM score indicates that the generated results are more
consistent with human perception. PSNR forecasts the effectiveness of image dehazing, and CIEDE2000
presents that smaller scores indicate better color preservation. In Figure 9, the SSIM and PSNR values
also indicate that our method surpasses other methods. From Table 3, our method get higher PSNR,
higher SSIM and lowerCIEDE2000 on the synthetic dataset. Compared with the state-of-the-art,
our method gained a significant improvement by 1.94% for SSIM, 7.13% for PSNR and 4.00% for
CIEDE2000, and significantly better than CycleGAN. In addition, the generator F of our proposed
method can be used to generate paired image dehazing data, as shown in Figure 10. In general,
the dehazed results by the proposed algorithm had higher visual quality and fewer color distortions.

(a) GT (b)
0.743/16.01

(c)
0.780/15.32

(d)
0.747/17.26

(e)
0.771/17.97

(f)
0.777/19.822

(g)
0.834/20.11

(h)
0.817/17.76

(i)
0.888/23.16

(j)
0.868/19.93

(k)
0.444/18.09

(l) Ours
0.926/27.56

Figure 9. Comparison in terms of SSIM/PSNR for different image dehazing methods. (a) Ground Truth.
(b) DCP. (c) FVR. (d) BCCR. (e) CAP. (f) DehazeNet. (g) MSCNN. (h) AOD-Net. (i) dehaze-cGAN.
(j) Proximal. (k) CycleGAN. (l) Ours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Examples of paired data generated by our network. (a–d) Clean images. (e–h) Generated
hazy images corresponding to (a–d).

Table 3. Average PSNR, SSIM, and CIEDE2000 values of dehazed results on the new synthetic dataset.
The best result, the second result, and the third place result are represented by red, blue, and green,
respectively. The average values of PSNR , SSIM and CIEDE2000 results calculated directly between
the each hazy and its corresponding clean image.

FVR DCP BCCR CAP DehazeNet MSCNN AOD-Net Proximal dehaze-cGAN CycleGAN Ours

SSIM 0.817 0.717 0.680 0.825 0.867 0.850 0.835 0.820 0.876 0.584 0.893
PSNR 16.56 14.57 13.92 19.50 23.27 20.55 19.33 17.79 22.77 18.31 24.93
CIEDE2000 11.71 14.92 15.35 9.37 6.23 7.81 9.11 10.14 6.51 11.5 5.98

4.5. Dehazed Image Ranking

The proposed IQA model for dehazed images was pre-trained on TID2013 [49] and then fine-tuned
using the IVC Dehazing Dataset [19]. The TID2013 includes different types of image distortion, while
IVC Dehazing Dataset is designed to evaluate the quality of dehazed images. Predicted scores were
used to qualitatively rank photos as shown in Figure 11. Ranking scores and the rankings are presented
below each image, where ‘1’ denotes the best visual perception and ‘10’ for the worst. Figure 11 shows
that the quality of overwater dehazed images generated by OWI-DehazeGAN is better than other
methods. For a comprehensive comparison, we also report the dehazed image quality measured by
four typical image quality assessment methods in Table 4. The best result is shown in red font. Table 4
shows that the proposed method achieves the best performance in terms of almost all metrics.

Table 4. Comparison of dehazed image quality using four image quality assessment methods. The top
three results are in red, blue, and green font, respectively.

FADE [48] ↓ SSEQ [54] ↓ BLINDS-2 [55] ↓ NIMA [56] ↑

Ours 1.95 36.24 31.50 6.47
CAP 3.03 40.97 51.00 5.95

MSCNN 2.38 45.56 50.50 6.23
DehazeNet 3.11 42.49 49.50 6.12

Proximal-Dehaze 1.69 43.69 54.50 6.06
DCP 1.45 43.32 51.50 5.36

BCCR 1.17 45.76 48.50 6.08
FVR 2.67 41.71 48.00 4.86

AOD-Net 2.30 38.62 54.50 6.15
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(a) 3.94 / 1 (b) 3.60 / 2 (c) 3.52 / 3 (d) 3.51 / 4 (e) 3.50 / 5

(f) 3.24 / 6 (g) 3.21 / 7 (h) 3.14 / 8 (i) 3.03 / 9 (j) 2.96 / 10

Figure 11. Comparison via the proposed IQA model. Ranking scores and the rankings are shown
below each image. (a) Ours. (b) CAP. (c) MSCNN. (d) DehazeNet. (e) Proximal. (f) DCP. (g) Input.
(h) BCCR. (i) FVR. (j) AOD-Net.

4.6. Run Time

We also conducted the running speed experiment to evaluate the efficiency of each method.
For fairness, we ran all methods on the same platform (Intel Core i7-7800X CPU@3.50 GHz, 32 GB
memory). In the experiment, 90 synthetic images were used for testing, each of which were resized to
512 × 512 pixels. DCP [10], FVR [9] and CAP [1] are run without GPU acceleration. DehazeNet [13],
MSCNN [15], AOD-Net [16], dehaze-cGAN [14] and our model run with a GPU card (NVIDIA GeForce
GTX 1080 Ti). Table 5 shows more implementation details and the average run time. AOD-Net [16]
ran fastest thanks to its lightweight structure. Our method ran slightly slower than AOD-Net (0.07 s
behind) but ran 0.34 s faster than the third best method. Overall, the proposed method performed
comparably against state-of-the-art methods in terms of the running speed.

Table 5. Average run time (in seconds) on synthetic data. The top three results are highlighted in red,
blue, and green font, respectively.

Methods Time (512 × 512) Run Environment

DCP 15.55 Matlab
FVR 3.87 Matlab
CAP 0.94 Matlab
DehazeNet 1.02 Matlab
MSCNN 1.97 Matlab
AOD-Net 0.23 PyTorch
dehaze-cGAN 0.64 Torch7
Ours 0.30 TensorFlow

5. Analysis and Discussion

In this section, we further explore and analyze the effect of each component of the proposed
method. Firstly, we explore the robustness of the proposed method in image color cast removal. Then,
we discuss the advantage of resizing convolution comparing to other up-sampleing methods. We also
analyze the effect of perceptual loss for image the dehazing task. Finally, we show the limitation of the
proposed algorithm.

5.1. Robustness to Color Cast

In the task of image dehazing, if the global atmospheric light is estimated incorrectly, it is easy
to cause image color cast. The proposed OWI-DehazeGAN is robust to color cast removal. Existing
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methods, such as DehazeNet and MSCNN, will amplify this disadvantage and reduce image quality.
An effective measure to solve the image color cast problem is color balance. The purpose of color
balance is to make sure that the intrinsic color of the objects in the scene does not change under
different illumination conditions. Our method plays an important role in color balance which can
remove the color cast. As shown in Figure 12, our method performed well when the image encounters
color cast. Compared to DCP, DehazeNet and MSCNN, our method effectively corrects the color cast
phenomenon and produces a better visual image. Although our method cannot produce completely
haze-free results with the best visual quality, while properly retaining a certain haze is beneficial to
perceiving image depth.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Examples of color cast. (a,f) Two hazy images. (b,g) Generated by DCP. (c,h) Generated
by DehazeNet. (d,i) Generated by MSCNN. (e,j) Our results. Compared with DCP, DehazeNet and
MSCNN, our method effectively corrects the color cast phenomenon and produces a visual better image.

5.2. Effect of Resize Convolution

In the decoding process of the generator, we use resize convolutions to increase the resolution
of the feature maps, rather than deconvolution or sub-pixel convolution. To better understand how
the resize convolution contributes to our proposed method, we train three end-to-end networks with
different upsample mode: (i) deconvolution, (ii) sub-pixel convolution, and (iii) resize convolution.

Figure 13 shows the results of the deconvolution, sub-pixel convolution, and resize convolution as
the upsampling mode in our network. In comparison, the results of resize convolution are best viewed
from the perspective of the human perception and retain more detailed information. It can be seen
from Figure 13b, that there are many artifacts in the regions of sky and water surface. From Figure 13f
which is the zoom-in views in Figure 13b, we observe plenty checkerboard pattern of artifacts caused
by deconvolution. Although the sub-pixel convolution (Figure 13c) can alleviate the “checkerboard
artifacts” to some extent, the result of sub-pixel convolution is rough and unsatisfying. Comparing
with the first two approaches, resize convolution recovers most scene details and maintain the original
colors. Furthermore, it is obvious that the result of resize convolution is the best from the comparison
of the zoom-in views. From Table 6, the introduced resize convolution gains higher PSNR, SSIM scores
and a lower CIEDE2000 score than deconvolution and sub-pixel convolution, which indicate that
resize convolution can generate visually perceptible images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Effectiveness of the proposed network with resize convolution. (a,e) Input hazy images.
(b,f) Dehazed images using deconvolution. (c,g) The dehazed images using sub-pixel convolution.
(d,h) Denote dehazed results using resize convolution (ours). (e–h) The zoom-in views of (a–d),
separately.

Table 6. Average scores in terms of PSNR, SSIM, and CIEDE2000 for deconvolution, sub-pixel
convolution, and resize convolution on the synthetic test set from HazyWater Dataset.

Average Metrics SSIM PSNR CIEDE2000

Deconvolution 0.758 20.34 9.12
Sub-pixel Convolution 0.643 20.21 10.86
Resize Convolution 0.819 22.19 7.41

5.3. Effect of Perceptual Loss

In this section, we analyze how the introduced perceptual loss helps estimate high-quality
haze-free images. To show the effectiveness of our loss function, we also train an overwater image
dehazing network without perceptual loss. We show an example of result with and without perceptual
loss as shown in Figure 14, the generated direction for images in the first row is X → G(X) →
F(G(X)), the second row is the opposite of the first row (Y → F(Y)→ G(F(Y))). We observed from
Figure 14c,d,g,h that the estimated haze-free images and cyclic images lack fine details and the regions
of the sky do not match with the input hazy image, which leads to the dehazed results containing
halo artifacts when the perceptual loss is not used. Through the comparison of Figure 14b,d we can
also find that the perceptual loss is favorable for the reconstruction of the sky regions, which is very
necessary for the overwater image dehazing. Meanwhile, comparing Figure 14c,h, we can know that
the perceptual loss has a little inhibition to the colour cast.

From Table 7, we observe that results generated by our network with perceptual loss gain
higher PSNR, SSIM and lower CIEDE2000 score. Higher SSIM and PSNR scores suggest that the
proposed method with perceptual loss has a better image dehazing effect and is consistent with human
perception. Lower CIEDE2000 means less color difference between dehazed image and groundtruth.
The above experiments show that the proposed loss is effective for overwater image dehazing.
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(a) Hazy (b) Hazed
(w/o Lper)

(c) Cyclic
(w/o Lper)

(d) Dehaze
(w/ Lper)

(e) Cyclic
(w/ Lper)

(f) Clean (g) Hazed
(w/o Lper)

(h) Cyclic
(w/o Lper)

(i) Hazed
(w/ Lper)

(j) Cyclic
(w/ Lper)

Figure 14. Comparison of dehazing with and without perceptual loss. (a–e) The generation direction
of X → Y → X. (f–j) The direction of formation is Y → X → Y. “(w/o Lper)” denotes the network
without perceptual loss, and “(w/ Lper)” denotes the network with perceptual loss.

Table 7. Effect of perceptual loss in terms of SSIM, PSNR, and CIEDE2000. CycleGAN loss refers to the
formulation of adversarial loss and cycle consistency loss, VGG loss refers to substitute perceptual loss.

Average Metrics SSIM PSNR CIEDE2000

CycleGAN loss 0.819 22.19 7.41
CycleGAN loss + VGG loss 0.893 24.93 5.98

5.4. Limitation

Although the proposed algorithm is effective in most cases, a limitation of our method is that it
cannot well handle degraded overwater images with very heavy haze, which are close to pure white.
As shown in Figure 15, our network fail to adopt to this situation because the extremely heavy haze
causes the illumination of water and sky regions to be close to atmospheric light.

(a) (b) (c) (d) (e)

Figure 15. Example of failure cases. (a) Input image. (b) CAP. (c) DehazeNet. (d) MSCNN. (e) Ours.

6. Conclusions

In this paper, we formulate an overwater image dehazing task, create the first overwater image
dehazing dataset, and propose the OWI-DehazeGAN to dehaze overwater images. Compared to
previous CNN-based methods which require paired training data, the proposed OWI-DehazeGAN
is able to be trained unpaired images. Our method directly predicts clean images from hazy input
bypassing to estimate transmission maps and global atmospheric lights. We utilize the perceptual
loss and resize convolution to preserve detailed textures and to alleviate the checkerboard artifacts.
Extensive experimental results demonstrate that the presented method produces superior results than
most state-of-the-art dehazing methods.
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