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Abstract: In this study, we examined the effects of the annealing atmosphere on the electrical
performance and stability of high-mobility indium-gallium-tin oxide (IGTO) thin-film transistors (TFTs).
The annealing process was performed at a temperature of 180 ◦C under N2, O2, or air atmosphere after
the deposition of IGTO thin films by direct current magnetron sputtering. The field-effect mobility (µFE)
of the N2- and O2-annealed IGTO TFTs was 26.6 cm2/V·s and 25.0 cm2/V·s, respectively; these values
were higher than that of the air-annealed IGTO TFT (µFE = 23.5 cm2/V·s). Furthermore, the stability
of the N2- and O2-annealed IGTO TFTs under the application of a positive bias stress (PBS) was
greater than that of the air-annealed device. However, the N2-annealed IGTO TFT exhibited a larger
threshold voltage shift under negative bias illumination stress (NBIS) compared with the O2- and
air-annealed IGTO TFTs. The obtained results indicate that O2 gas is the most suitable environment
for the heat treatment of IGTO TFTs to maximize their electrical properties and stability. The low
electrical stability of the air-annealed IGTO TFT under PBS and the N2-annealed IGTO TFT under
NBIS are primarily attributed to the high density of hydroxyl groups and oxygen vacancies in the
channel layers, respectively.

Keywords: indium-gallium-tin oxide; thin-film transistor; annealing atmosphere; field-effect mobility;
electrical stability

1. Introduction

Since the inceptive report on indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs)
published by Nomura et al. in 2004, IGZO TFTs have attracted significant research interest, owing
to their excellent electrical properties, high uniformity, and low fabrication costs. IGZO TFTs are
widely used as the backplanes of large-area flat-panel displays, including active matrix organic
light-emitting diode (OLED) displays [1–5]. However, the field-effect mobility (µFE) of IGZO TFTs
is approximately 10 cm2/V·s, which is insufficient to meet the requirements of ultra-high-resolution
and high-frame-rate next-generation displays. Over the past decade, various oxide TFTs with higher
field-effect mobilities than those of IGZO TFTs have been extensively studied for next-generation
display applications. Among these transistors, indium-gallium-tin oxide (IGTO) TFTs are promising
as high-mobility oxide TFTs because of their excellent performance, even under low-temperature
annealing conditions (<200 ◦C). The IGTO alloy comprises Sn cations instead of the Zn cations in
IGZO, where the similar electronic configuration of the Sn4+ and In3+ ions enhances the formation of
percolation conduction paths and increases the electron mobility of the former [6–8].

The oxygen-related species present in oxide thin-film transistors (TFTs), such as oxygen vacancies
(VO) or hydroxyl (OH) groups, have a significant impact on the stability and electrical characteristics
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of the TFTs [9,10]. Thus far, extensive studies have been conducted to investigate the effects of various
process conditions on the concentration of oxygen-related species in the oxide channel layer [11–17].
The post-deposition annealing atmosphere has a particularly strong influence on the number of oxygen
species within the channel layer and also affects the electrical properties and stability of oxide TFTs
with various channel materials [18–24]. However, in most prior studies, the results obtained under
various heat-treatment environments differed depending on the selected channel material and process
conditions, suggesting the need to determine the most suitable annealing atmosphere for IGTO TFTs in
order to enhance the electrical characteristics of the IGTO TFTs. However, to date, the influence of
the annealing environment on the electrical properties of IGTO TFTs has not been examined. In this
study, we investigate the effects of various annealing environments on the electrical performance and
stability of IGTO TFTs. For this purpose, post-deposition annealing is performed at a temperature of
180 ◦C under N2, O2, and air atmosphere. From the obtained results, it is concluded that O2 gas is the
most suitable post-deposition atmosphere for IGTO TFT fabrication.

2. Experimental

Experiments were conducted using bottom-gate top-source/drain electrode IGTO TFTs, where p+-Si
wafers served as both the substrates and gate electrodes. A 100 nm thick SiO2 layer was thermally
grown on top of a Si wafer as the gate insulator, and a 20 nm thick IGTO thin film was deposited on
top of a SiO2/p+-Si substrate via direct current (DC) magnetron sputtering of a 3-inch IGTO target.
Sputtering was performed using a DC power of 150 W, an Ar/O2 ratio of 35/15 (sccm/sccm), and a
deposition pressure of 3 mTorr; the substrate was at room temperature (RT). The source and drain
electrodes were produced from a DC magnetron-sputtered 100 nm thick indium tin oxide layer.
The channel and source/drain electrode layers were patterned using photolithography and lift-off

techniques. Finally, the IGTO TFTs were thermally annealed at a temperature of 180 ◦C and a pressure
of 1 atm for 2 h under N2, O2, and air atmosphere.

Figure 1 shows a schematic of the fabricated IGTO TFTs. All TFTs designed in this work had a
channel width/length (W/L) of 75/100 (µm/µm). The effects of post-deposition annealing on the optical,
structural, and chemical properties of the fabricated IGTO thin films were investigated by ultraviolet
visible–near infrared (UV–vis–NIR) spectroscopy (V-670, JASCO, Tokyo, Japan), X-ray diffraction (XRD,
D8-Advance, Bruker-AXS, Wisconsin, USA) and X-ray photoelectron spectroscopy (XPS, K-alpha+,
Thermo Fisher Scientific-KR, Seoul, Korea). Electrical characterization of the produced TFTs was
conducted using a semiconductor parameter analyzer (4156C, Agilent Technologies, Santa Clara, USA)
at RT, in the dark, under vacuum to avoid possible effects of the ambient environment on the properties
of the IGTO TFT.
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3. Results and Discussion

Figure 2 shows the transfer characteristics of the N2-, O2-, and air-annealed IGTO TFTs plotted
on a semi-logarithmic scale, where ID, VGS, and VDS are the drain current, gate-to-source voltage, and
drain-to-source voltage, respectively. Measurements were conducted by sweeping VGS from−30 to 30 V at
VDS = 0.5 V for all TFTs. Table 1 lists the electrical parameters of the three fabricated TFTs. The field-effect
mobility (µFE) was calculated from the maximum transconductance at a VDS of 0.5 V, and the threshold
voltage (VTH) was obtained from the VGS value, assuming that ID = W/L × 10−9 (A). The subthreshold
swing (SS) was determined as the dVGS/dlogID value in the range of 10−10 < ID < 10−9 A.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 11 

 

3. Results and Discussion 

Figure 2 shows the transfer characteristics of the N2-, O2-, and air-annealed IGTO TFTs plotted 
on a semi-logarithmic scale, where ID, VGS, and VDS are the drain current, gate-to-source voltage, and 
drain-to-source voltage, respectively. Measurements were conducted by sweeping VGS from −30 to 30 
V at VDS = 0.5 V for all TFTs. Table 1 lists the electrical parameters of the three fabricated TFTs. The 
field-effect mobility (μFE) was calculated from the maximum transconductance at a VDS of 0.5 V, and 
the threshold voltage (VTH) was obtained from the VGS value, assuming that ID = W/L × 10−9 (A). The 
subthreshold swing (SS) was determined as the dVGS/dlogID value in the range of 10−10 < ID < 10−9 A. 

-30 -20 -10 0 10 20 3010-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3

 

VGS [V]

 N2-annealed 
 O2-annealed
 Air-annealed

 I D
 [A

]
VDS = 0.5 V
W/L = 75/100 μm

 
Figure 2. Transfer characteristics of N2-, O2-, and air-annealed IGTO TFTs plotted on a semi-
logarithmic scale. The measurements were conducted by sweeping VGS from −30 to 30 V at VDS = 0.5 
V for all TFTs. 
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Figure 2. Transfer characteristics of N2-, O2-, and air-annealed IGTO TFTs plotted on a semi-logarithmic
scale. The measurements were conducted by sweeping VGS from −30 to 30 V at VDS = 0.5 V for all TFTs.

Table 1. Electrical parameters of N2-, O2-, and air-annealed IGTO TFTs.

Annealing Atmosphere VTH (V) SS (V/Decade) µFE (cm2
·V−1·S−1)

N2 –6.0 0.47 26.6
O2 –3.2 0.40 25.0
Air –2.0 0.48 23.5

The results presented in Figure 2 and Table 1 indicate that the highest µFE (26.6 cm2/V·s) and
lowest VTH (= −6.0 V) were achieved with the N2-annealed IGTO TFT. In contrast, the lowest µFE

(= 23.5 cm2/V·s) and highest VTH (= −2.0 V) were obtained with the air-annealed IGTO TFT. Finally,
the corresponding values for the O2-annealed IGTO TFT were µFE = 25.0 cm2/V·s and VTH = −3.2 V,
which lie between the corresponding values obtained for the N2- and air-annealed IGTO TFTs.
The O2-annealed IGTO TFT afforded the lowest SS of 0.48 V/dec. as compared with those of the IGTO
TFTs annealed in other environments. The obtained results clearly show that the post-deposition
annealing atmosphere significantly affects the electrical performance of the IGTO TFTs.

Figure 3a–c shows the time dependence of the transfer characteristics of the N2-, O2-,
and air-annealed IGTO TFTs obtained under a constant overdrive voltage stress of VOV = 20 V,
where VOV = VGS − VTH. The insets in Figure 3a–c show the shift of transfer characteristics on
a magnified scale during the positive bias stress (PBS). Figure 3d displays the VTH shifts (∆VTH)
determined for the three IGTO TFTs at various stress times. Analysis of the transfer characteristics
of the respective TFTs showed a shift of VTH in the positive direction with an increase in the stress
time, and the largest ∆VTH was observed for the air annealed IGTO TFT. However, the ∆VTH was
significantly lower for the N2- and O2-annealed IGTO TFTs than for the air-annealed IGTO TFT after
subjection to PBS for the same duration.
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Figure 3. Time-dependence of transfer characteristics of (a) N2-, (b) O2-, and (c) air-annealed IGTO 
TFTs, determined under a constant overdrive voltage stress of VOV = 20 V. The insets in (a–c) show the 
shift of transfer characteristics on a magnified scale. (d) ΔVTH values obtained for the N2-, O2-, and air-

Figure 3. Time-dependence of transfer characteristics of (a) N2-, (b) O2-, and (c) air-annealed IGTO
TFTs, determined under a constant overdrive voltage stress of VOV = 20 V. The insets in (a–c) show
the shift of transfer characteristics on a magnified scale. (d) ∆VTH values obtained for the N2-, O2-,
and air-annealed IGTO TFTs after subjection to PBS various times. (e) Subthreshold swing (SS) values
obtained for the N2-, O2-, and air-annealed IGTO TFTs at every PBS time.

Figure 3e displays the SS variation determined for the three IGTO TFTs at various stress times.
The SS value remains nearly unchanged during the PBS. Therefore, we did not consider additional
defect generation in the active region during the PBS [25,26].
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Figure 4a–e displays the time-dependence of the transfer characteristics, ∆Vth, and SS values of the
N2-, O2-, and air-annealed IGTO TFTs obtained after the application of a constant bias stress VOV = −15 V
under illumination by a light-emitting diode (LED) backplane unit with a brightness of 3000 lx.
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Figure 4. Time-dependence of transfer characteristics of (a) N2-, (b) O2-, and (c) air-annealed IGTO
TFTs after the application of a constant bias stress VOV = –15 V under illumination by a LED backplane
unit with a brightness of 3000 lx. (d) ∆ VTH values obtained for the N2, O2, and air annealed IGTO TFTs
after subjection to negative bias illumination stress (NBIS) various times. (e) The SS values obtained for
the N2-, O2-, and air annealed IGTO TFTs at every NBIS time.
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The transfer curves of all IGTO TFTs shifted in the negative direction with an increase in the stress
time. The largest VTH shift was observed for the N2-annealed IGTO TFT; however, for the O2- and air
annealed IGTO TFTs, ∆VTH was lower than that of the N2-annealed IGTO TFT after subjection to the
negative bias illumination stress (NBIS). The SS value remained nearly unchanged during the NBIS.

Figures 3 and 4 demonstrate that the post-deposition annealing environment affectrf not only the
electrical properties of the IGTO TFTs, but also their stability under PBS and NBIS [27–29]. To elucidate
the physical mechanism responsible for the processes illustrated in Figures 3 and 4, the IGTO thin
films annealed under different atmospheres were characterized by XRD, UV–vis–NIR spectroscopy,
and XPS.

Figure 5 shows the XRD patterns of the N2-, O2-, and air annealed 20 nm thick IGTO thin
films deposited on glass substrates. The obtained diffraction patterns contained only halo peaks at
approximately 23◦ and 45◦, originating from the glass substrates [30]; this suggests that the IGTO thin
films comprised an amorphous phase, regardless of the annealing environment.
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deposited on the glass substrates.

Figure 6a shows the optical transmittance spectra of the N2-, O2-, and air annealed 20 nm-thick
IGTO thin films on the glass substrates, which were recorded in the wavelength range of 300–1400 nm.
The optical transmittance of the glass substrate was subtracted from the obtained spectra to determine
the actual optical transmittance of the deposited IGTO thin films. Figure 6b shows the Tauc plot
constructed from the spectra presented in Figure 6a. The optical bandgap (Eg) of the IGTO thin films
was approximately 3.88 eV regardless of the annealing environment, which indicates that the annealing
environment had no effect on the Eg value.

Figure 7a–c displays the XPS O 1s spectra of the N2-, O2-, and air annealed IGTO thin films,
respectively, recorded for the middle of the thin films. The obtained XPS profiles were deconvoluted
into three sub-peaks originating from the lattice oxygen (OI), VO (OII), and impurity-related oxygen
(OIII), respectively, using the Gaussian function. The binding energies of these components were fixed
at 529.8 ± 0.1 eV, 530.7 ± 0.1 eV, and 531.8 ± 0.1 eV, respectively [7,31]. Figure 7d shows the relative
areas of the OI, OII, and OIII peaks, which were obtained for the IGTO thin films, annealed under
different atmospheres. The XPS data presented in Figure 7 indicate that the relative area of the OIII

component of the air-annealed IGTO thin film was much larger than that of the N2- and O2-annealed
films. In previous studies on oxide thin films and TFTs, OIII was primarily attributed to the oxygen
bonds in OH functional groups, which generate acceptor-like states near the conduction band (CB)
edge and enhance electron trapping during PBS application because of their polar nature in oxide
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semiconductors, such as IGZO and IGTO [32–35]. Therefore, the small value of µFE, large value of SS,
and poor PBS stability of the air-annealed IGTO TFT can be attributed to the high concentration of OH
groups within the channel layer that originated from the H2O species present in air. Because an n-type
TFT with a higher density of acceptor-like states near the CB edge requires a larger VGS to switch
on and fill up the states, the highest VTH value obtained for the air-annealed IGTO TFT can also be
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Further, the largest OII relative area was obtained for the N2-annealed IGTO thin film (Figure 7).
Note that VO generates shallow and deep donor states within the oxide channel layer. The shallow
donor states supply electrons to the CB; thus, the electron concentration increases with an increase
in the number of VO sites within the channel layer. Furthermore, the higher electron concentration
promotes the formation of percolation conduction paths in oxide semiconductors, such as IGZO and
IGTO, making it very difficult to turn off the transistor [36–38]. Therefore, the low value of VTH and
the high values of µFE and SS obtained for the N2-annealed IGTO TFT can be attributed to the large VO

concentration within the channel layer caused by the desorption of oxygen atoms during N2 annealing.
The poor NBIS stability of the N2-annealed IGTO TFT is likely caused by the high density of VO within
the IGTO channel, because VO generates VO

2+ species, which subsequently diffuse toward the gate
insulator/channel interface under NBIS [39].

4. Conclusions

The effects of various post-deposition annealing environments on the electrical characteristics and
stability of high-mobility IGTO TFTs were evaluated herein. The post-deposition annealing process
was conducted at 180 ◦C under N2, O2, or air atmosphere. The lowest µFE and highest SS and VTH

were obtained with the air annealed IGTO TFT, along with the lowest PBS stability. This phenomenon
is attributed primarily to the large number of OH groups within the IGTO channel layer that originated
from the H2O molecules in air. The µFE and PBS stability of the N2- and O2-annealed IGTO TFTs
are higher than those of the air-annealed IGTO TFT. However, the NBIS stability of the N2-annealed
IGTO TFTs is lower, accompanied by a larger negative shift of the VTH values compared with the
corresponding parameters for the O2-annealed IGTO TFTs because of the large VO concentration
within the channel layer, caused by the desorption of oxygen atoms during N2 annealing. The obtained
results suggest that O2 gas is the most suitable annealing environment for optimizing the electrical
properties and stability of IGTO TFTs.
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