
electronics

Article

Optimizing Computer Networks Communication
with the Band Collocation Problem: A Variable
Neighborhood Search Approach

Isaac Lozano-Osorio , Jesus Sanchez-Oro * , Miguel Ángel Rodriguez-Garcia and
Abraham Duarte

Department Computer Sciences, Universidad Rey Juan Carlos, 28933 Mostoles, Spain;
isaac.lozano@urjc.es@urjc.es (I.L.-O.); miguel.rodriguez@urjc.es (M.Á.R.-G.); abraham.duarte@urjc.es (A.D.)
* Correspondence: jesus.sanchezoro@urjc.es

Received: 21 October 2020; Accepted: 3 November 2020; Published: 5 November 2020
����������
�������

Abstract: The Band Collocation Problem appears in the context of problems for optimizing
telecommunication networks with the aim of solving some concerns related to the original Bandpass
Problem and to present a more realistic approximation to be solved. This problem is interesting
to optimize the cost of networks with several devices connected, such as networks with several
embedded systems transmitting information among them. Despite the real-world applications
of this problem, it has been mostly ignored from a heuristic point of view, with the Simulated
Annealing algorithm being the best method found in the literature. In this work, three Variable
Neighborhood Search (VNS) variants are presented, as well as three neighborhood structures and a
novel optimization based on Least Recently Used cache, which allows the algorithm to perform an
efficient evaluation of the objective function. The extensive experimental results section shows the
superiority of the proposal with respect to the best previous method found in the state-of-the-art,
emerging VNS as the most competitive method to deal with the Band Collocation Problem.

Keywords: metaheuristics; band collocation; embedded systems; variable neighborhood
search; optimization

1. Introduction

The evolution of optical communications in the last years has attracted the attention of the
scientific community. Additionally, the quick expansion of the Internet of Things where the embedded
systems in every kind of device must be connected has made traditional algorithms for solving
problems derived from the transportation of digital data obsolete. These problems are now a real
challenge for the most modern algorithms mainly due to the vast increase of network sizes. Most of
these problems can be classified into two different types: finding the optimal route for the signal and
reducing the costs of the equipment required to deploy and maintain the network [1]. This paper
is focused on solving one of the most extended problems of the second type, the Band Collocation
Problem [2].

The Band Collocation Problem cannot be defined without introducing the Bandpass Problem (BP).
The BP was originally presented in Bell and Babayev [3]. One of the main objectives to take into account
in the design of efficient networks is to minimize the cost of the equipment required to maintain it
without deteriorating its quality. In order to do so, it is necessary to optimize the traffic flow to reduce
the hardware involved in the process.

A network is conformed by a set of T target stations, with |T| = n, that are connected with
fiber-optic cables. Then, a source station s0 transmits data to these target stations, which can be

Electronics 2020, 9, 1860; doi:10.3390/electronics9111860 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2608-8464
https://orcid.org/0000-0003-1702-4941
https://orcid.org/0000-0001-6244-6532
https://orcid.org/0000-0002-4532-3124
http://dx.doi.org/10.3390/electronics9111860
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/11/1860?type=check_update&version=3

Electronics 2020, 9, 1860 2 of 15

transported by different wavelengths Λ = {λ1, . . . , λm}, using a technology named dense wavelength
division multiplexing (DWDM) in a single fiber optic cable [4]. It is worth mentioning that not all
the target stations need to receive the data from all the wavelengths. A device named Add/Drop
Multiplexer (ADM) is responsible for requesting the appropriate data from the fiber-optic cables at
each station. The ADM uses a special card that controls the wavelengths required in each station.
Some cards are able to receive all the data in consecutive wavelengths, so it is interesting to join
in adjacent wavelengths all the data required by a single station. This structure conformed with
consecutive wavelengths is named a Bandpass, and the number of consecutive wavelengths in a
Bandpass is named as Bandpass number. Then, the objective of the BP is to select the optimal
wavelength permutation that requires the minimum number of cards to be used in ADM for a given
Bandpass number.

The BP was deeply analyzed in [5], while the dataset of instances for this problem was originally
presented in [6]. The problem was proven to be NP-hard in [7] using a reduction for the Hamilton
Problem for any Bandpass number. A game for understanding the permutations performed in the
BP was also presented [8], which implements a mathematical model for solving it. Some specific
configuration for networks can be solvable in linear time, such as those with just three columns [9].
Although the BP has attracted the focus of several works, see [10–12], the best results in the literature
are obtained by [13,14].

The original BP formulation has become obsolete due to the continuous evolution of
communication networks. Therefore, it is necessary to revise the original model to adapt it to the new
advances. Notice that it is not a correction but an adaptation of the new technologies. In particular,
the cards in the ADM can now filter all data, not only the one requested for the station, from consecutive
wavelengths [15]. However, in the original problem, only the data requested for the station can be
filtered. In new ADMs, more than one card can be used now, and the Bandpass number may be a
power of two. Furthermore, the original BP does not evaluate the cost of the cards since it considers
just a single type of card, while in the real application several different cards can be used. Thus, the cost
must be taken into account for evaluating the quality of a solution.

The inclusion of all these new features result in a new problem called the Band Collocation
Problem (BCP). In this problem, an ADM located at a target station can filter data even if it is transmitted
to a different target station. The Bandpass number can vary in the same model, always being a power
of two. Finally, the cost of each Bandpass number is different.

The network is represented with a n × m binary matrix A = (aij), with 1 ≤ i ≤ n and 1 ≤
j ≤ m, where n and m are the number of target stations (columns) and the number of wavelengths
(rows), respectively. If data fragment i must be transmitted to target station j, the element aij is set
to 1; otherwise, aij = 0. Each band card is usually denoted with Bq, with length 2q and cost cq,
where q = 0, 1, . . . , blog2 mc.

A solution of the BCP is usually represented as a permutation of the rows,
ϕ = (ϕ(1), ϕ(2), . . . , ϕ(m)), where each ϕ(i) indicates which wavelength is located at row i.
Then, the aim of this optimization problem is to find the permutation of rows that minimizes the sum
of costs of all Bq-Band cards used in the complete network. In mathematical terms:

BCP(ϕ) =
qmax

∑
q=0

imax

∑
i=1

n

∑
j=1

cq · yq
ϕ(i)j

where qmax = blog2 mc, imax = m− Bq + 1, and yq
ij is a binary variable that is set to 1 if row i is the first

row of a Bq-Band in column j; otherwise, yq
ij = 0. Notice that each data fragment in every target station

must be covered by exactly one band. We refer the reader to [2] for a formal definition of the problem
and a mathematical formulation.

Figure 1 shows the representation of two different solutions for the BCP for a network with a
single source station s0, three target stations(named s1, s2, and s3), and five wavelengths (named λ1,

Electronics 2020, 9, 1860 3 of 15

λ2, λ3, λ4, and λ5). In each target station, the data fragment that is requested is colored in black.
In particular, s1 requires data from wavelengths λ3 and λ5; s2 requires data from λ2 and λ5; and s3

from λ1 and λ4. The costs for the cards are c0 = 1000 for B0, c1 = 1900 for B1, and c2 = 3610 for B2.

(a) Initial configuration of the network.

(b) Optimal solution for the network.

Figure 1. Initial and optimal configuration for a given set of 5 wavelengths and 3 target stations.

Figure 1a depicts the initial configuration ϕ1 of the network, where the wavelengths have been
included in lexicographical order (i.e., from λ1 to λ5). The wavelengths that have been grouped in the
same card are highlighted with a thick grey border (with length 20 = 1). Then, the initial cost of the
network is evaluated as BCP(ϕ1) = c0 + c0 + c0 + c0 + c0 + c0 = 6000.

If we now analyze Figure 1b, the wavelengths have been set in a different ordering
ϕ2 = {λ1, λ4, λ2, λ5, λ3}. Due to this permutation, it is now possible to group more than one
wavelength in the same card, resulting in a total cost of BCP(ϕ2) = c1 + c1 + c1 = 5700 (i.e., with three
band cards of size 21 = 2). Therefore, the ordering ϕ2 results in a better solution than the initial
configuration ϕ1.

Since the BCP has been recently proposed, it has not been widely studied yet. The first approach
for solving the BCP is a fast heuristic algorithm [16], while the first exact algorithm is a binary integer
programming model, which is solved with GAMS and CPLEX [17]. On the contrary, the first heuristic
approach for the BCP is a classical Genetic Algorithm [18]. Then, the same authors developed several
bioinspired algorithms for further improving the results obtained [2], but the results obtained were not
satisfactory. In particular, a new Genetic Algorithm (GA), a Simulated Annealing (SA), an Artificial
Bee Colony (ABC) algorithm are proposed. Additionally, a 0–1 integer model for the BCP is presented
for solving small instances to verify the quality of the heuristic proposal. The detailed comparison
provided by the author shows that the best method in the literature for the BCP is Simulated Annealing.

In this paper, we propose a novel approach based on the Variable Neighborhood Search (VNS)
methodology [19,20] to deal with BCP. First of all, we introduce an extremely efficient strategy (in both,
computing time and memory requirements) to evaluate the objective function. Then, we propose
three different greedy constructive procedures to start the search from promising regions in the search
space. Additionally, we define three different neighborhood structures and three local search methods

Electronics 2020, 9, 1860 4 of 15

(each one based on a different neighborhood). Finally, all these strategies are embedded within three
VNS variants (e.g., Basic VNS, Variable Neighborhood Descent, and General VNS).

The main contributions of this work are:

• A new dynamic programming algorithm for evaluating the objective function value is proposed.
This new method leverages the Least Recently Used cache structure to drastically reduce the
complexity of the objective function evaluation, thus reducing the computational effort.

• Three Variable Neighborhood Search variants are proposed for analyzing the impact of
intensification and diversification in the context of the Band Collocation Problem.

• Three constructive procedures are presented, each one of them using different properties of the
solution structure to generate initial solutions.

• Three neighborhoods are defined, which allow us to explore the solution space through
different approaches.

The remaining of the paper is structured as follows: Section 2 describes the optimization proposed
to increase the performance in the evaluation of the objective function. Section 3 presents the
algorithmic proposal of this work. Section 4 is devoted to select the best configuration for the proposed
algorithm and analyzes the results obtained when comparing it with the best previous method found
in the state-of-the-art. Finally, Section 5 draws some conclusions derived from the research.

2. Evaluation of the Objective Function

Given a solution of the BCP, representing a permutation of wavelengths, the selection of
the optimal combination of cards to minimize the cost associated to that permutation is a highly
computationally demanding task. Specifically, it is necessary to test every possible combination
of cards and select the one with the minimum cost. Indeed, it is mandatory to evaluate all card
combinations since, otherwise, we can miss high quality solutions or even the optimum.

In order to reduce the computational effort, the author of [21] proposes a Dynamic Programming
(DP) algorithm that memorizes the already explored solutions to reduce the computing time for finding
the minimum cost. In particular, they consider each column as a subproblem, solving it with the
DP method, memorizing during the search the solutions found. The complexity of the method is
O(m · n log m).

In this work, we propose an improvement to this evaluation by increasing the number of elements
memorized during the DP for reducing the total computing time. This behavior leads the procedure to
require a large amount of memory (more than 32 GB RAM). In general, these hardware requirements
are not available. Therefore, we propose a new memory structure, by using the Least Recently
Used (LRU) algorithm, which allow overhead high performance buffer management replacement [22].
This optimization strategy is able to keep in memory just the strictly necessary data, drastically reducing
the required memory. It is totally scalable, adapting the memory requirements to the available memory
in the computer.

The algorithm stores the memorized information (in the Dynamic Programming procedure) in
a table (implemented with a hash map). Each table entry additionally stores information about the
immediately less and more used element in the table with respect to itself. Therefore, when the table is
complete and a new element must be stored, the algorithm replaces the least used element, updating
it. If the table is rather small, the cache will be frequently updated, affecting the performance of the
evaluation of the objective function (i.e., the larger the table, the faster the algorithm). Figure 2 shows a
graphical example of the LRU cache structure.

The structure depicted in the upper side of the figure represents the table where keys are stored.
Similarly, in the lower side a double linked list is depicted, which stores the values in ascending order
with respect to the last time it was accessed. In particular, in this example the keys key1, key3, and key4

are linked with the corresponding entries, i.e., (key1, val3), (key3, val1), and (key4, val2). For the sake of
clarity, we have highlighted in grey these pairs of keys and values. Notice that, using the appropriate
data structures, the complexity of inserting and deleting a new element in the table is O(1).

Electronics 2020, 9, 1860 5 of 15

Figure 2. Graphical illustration of the Least Recently Used (LRU) cache optimization structure.

3. Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic [23], which was originally proposed
as a general framework for solving hard optimization problems. The main contribution of this
methodology is to consider several neighborhoods during the search and to perform systematic
changes in the neighborhood structures. Although it was originally presented as a simple metaheuristic,
VNS has drastically evolved, resulting in several extensions and variants: Basic VNS, Reduced VNS,
Variable Neighborhood Descent, General VNS, Skewed VNS, Variable Neighborhood Decomposition
Search, or Variable Formulation Search, among others. See [19,20,24] for a deep analysis of each
variant. In this work, we propose a comparison among the most extended variants of VNS: Basic
Variable Neighborhood Search (BVNS), Variable Neighborhood Descent (VND), and General Variable
Neighborhood Search (GVNS).

3.1. Basic VNS

This variant combines deterministic and random changes of neighborhood structures in order to
find a balance between diversification and intensification as presented in Algorithm 1.

Algorithm 1 BVNS(A, kmax)

1: ϕ← Construct(A)

2: ϕ← Improve(ϕ)

3: k← 1
4: while k ≤ kmax do
5: ϕ′ ← Shake(ϕ, k)
6: ϕ′′ ← Improve(ϕ′)

7: k← NeighborhoodChange(ϕ, ϕ′′, k)
8: end while
9: return ϕ

The algorithm receives as input parameters the matrix A and the largest neighborhood to be
explored, kmax. In step 1, an initial solution ϕ is generated by considering one of the constructive
procedures presented in Section 3.4. Then, the solution is locally improved with one of the local
search methods described in Section 3.5 (step 2). Starting from the first predefined neighborhood
(step 3), BVNS iterates until reaching the maximum considered neighborhood kmax (steps 4–8).
For each iteration, the incumbent solution is perturbed with the shake method (step 5). This method
is designed to escape from local optima by randomly exchanging the position of k wavelengths,
generating a solution ϕ′ in the neighborhood under exploration. The local search method is then
responsible for finding a local optimum ϕ′′ in the current neighborhood with respect to the perturbed
solution ϕ′. Finally, the neighborhood change method selects the next neighborhood to be explored
(step 7). In particular, if ϕ′′ outperforms ϕ in terms of the objective function value, then it is updated
(i.e., ϕ← ϕ′′), and the search starts again from the first neighborhood (i.e., k ← 1). Otherwise,

Electronics 2020, 9, 1860 6 of 15

the search continues in the next neighborhood (i.e., k← k + 1). The algorithm stops when reaching the
largest considered neighborhood kmax, returning the best solution found during the search (step 9).

3.2. Variable Neighborhood Descent

This variant performs the changes in the neighborhood structure in a totally deterministic manner.
Specifically, the diversification part of VNS is completely removed, focusing in the intensification
phase. Algorithm 2 shows the pseudocode of the VND algorithm.

Algorithm 2 VND(ϕ,N = {N1, N2, . . . , Nkmax})
1: k← 1
2: while k ≤ kmax do
3: ϕ′ ← arg minϕk∈Nk(ϕ) BCP(ϕk)

4: k← NeighborhoodChange(ϕ, ϕ′, k)
5: end while
6: return ϕ

The algorithm receives an input solution ϕ and a set of neighborhoods N to be explored.
The proposed VND follows the sequential Basic VND scheme described in [25]. Starting from the
first neighborhood (step 1), the algorithm explores N following a sequential ordering. In particular,
for each neighborhood Nk, VND finds a local optimum with respect to the neighborhood under
exploration (step 3). Then, the neighborhood change method (step 4) resorts to the first predefined
neighborhood if and improvement is found (k = 1), otherwise continuing with the next neighborhood
(k = k + 1). The method ends when no improvement is found in any of the considered neighborhoods,
returning the best solution found.

Notice that the final solution is a local minimum with respect to all the considered neighborhoodsN .
Then, reaching a global optimum is more probable than when considering a single neighborhood structure.

3.3. General VNS

This variant combines BVNS and VND with the aim of balancing intensification and diversification
for providing even better solutions. Specifically, the General VNS replaces the local search phase of
BVNS with a complete VND algorithm. This modification allows GVNS to find better solutions in the
improvement phase, thus increasing the probability of reaching a global optimum.

The main drawback of GVNS lies in the computing time required by the VND phase,
which can eventually lead to a very computationally demanding algorithm. However, the efficient
implementation of the objective function evaluation described in Section 2 counteracts that
disadvantage of GVNS (see Section 4 for a thorough analysis of the performance).

For the sake of brevity, we do not provide the pseudocode for this variant since it consists of
replacing step 6 from Algorithm 1 with the following sentence:

ϕ′′ ← VND(ϕ′,N)

with VND the variant described in Algorithm 2. Furthermore, the input parameter of GVNS is the set
of neighborhoods N instead of the maximum neighborhood to be explored kmax.

3.4. Constructive Procedure

In the context of VNS, the initial solution can be generated at random, but several recent works
have concluded that using an initial high quality solution leads the algorithm to converge faster than
when starting from a random initial solution (see [26–31], for some successful results).

This work presents three different greedy constructive procedures that are able to find a high
quality solution in negligible computing times. Section 4 will discuss the results obtained with each

Electronics 2020, 9, 1860 7 of 15

constructive procedure to select the most adequate one for the complete VNS framework. The three
constructive procedures follows the same greedy scheme but varying the greedy function used to
select the next wavelength to be included in the solution.

The first constructive procedure, named G1, is based on the idea that wavelengths that are required
in similar target stations should be located consecutively. In particular, the method starts from an
empty solution and generates a solution starting from a given wavelength. Once the first wavelength
has been selected, the next wavelength to be considered would be the one with the maximum number
of target stations in common with the previous one. Let ϕ be a partial solution of the BCP, ϕ(i) be the
wavelength located in row i, and j be the target station. We then define the score δ1

ϕ(i)j as:

δ1
ϕ(i)j =

{
1 if aϕ(i)j = aϕ(i−1)j = 1

0 otherwise

More formally, the greedy function value g1(λi) for a given wavelength λi is calculated as:

g1(λi) =
n

∑
j=1

δ1
ϕ(i)j

where aij = 1 if and only if the wavelength i must be transmitted to target station j. Then, the next
wavelength λ?

1 to be included in the solution ϕ under construction is evaluated as:

λ?
1 ← arg max

λi∈Λ\ϕ

g1(λi)

The method iterates until all the wavelengths have been included in the solution. Since the first
wavelength selected is a key part in the constructive procedure, it generates a solution starting in
each available λi (i.e., m solutions are constructed), returning the best solution in terms of objective
function value.

The second constructive method, G0, modifies the definition of the score. In this case, the score
δ0

ϕ(i)j evaluates the number of target stations for which the wavelength λi under consideration is not
necessary. More formally:

δ0
ϕ(i)j =

{
1 if aϕ(i)j = aϕ(i−1)j = 0

0 otherwise

Analogously, the definition of g0(λi) and λ?
0 are computed in a similar way than g1(λi) and λ?

1
but replacing δ1

ϕ(i)j with δ0
ϕ(i)j.

Finally, the last constructive method, G01 considers both, the number of target stations that two
wavelengths have in common and those for which the wavelength is not required, resulting in the
score δ01

ϕ(i)j. In mathematical terms:

δ01
ϕ(i)j =

{
1 if aϕ(i)j = aϕ(i−1)j

0 otherwise

Similarly, g01(λi) and λ?
01 are computed. Notice that the proposed constructive procedures are

extremely fast since they do not need to evaluate the objective function during the construction, but a
single evaluation after constructing the solution.

3.5. Neighborhood Structures

A neighborhood N for a given solution ϕ is defined as the set of solutions that can be reached
from ϕ by performing a single movement. Therefore, before defining a neighborhood structure it is
necessary to introduce the movements that are considered in this work.

Electronics 2020, 9, 1860 8 of 15

The first movement consists in exchanging the position of two given wavelengths i and i′,
with 1 ≤ i < i′ ≤ m. Given a solution ϕ = {λa, . . . , λi, . . . , λi′ , . . . , λb}, the move Swap(ϕ, i, i′) results
in a new solution ϕ′ = {λa, . . . , λi′ , . . . , λi, . . . , λb} where the wavelengths i and i′ have exchanged
original positions.

The second movement is based on insertions. In this case, inserting a wavelength i
in a position i′, with 1 ≤ i, i′ ≤ m extracts i from its original position in solution ϕ,
and inserts it in the position of wavelength i′, displacing the wavelengths located in the range
given by the position of wavelength i and position of wavelength i′. More formally, given a
solution ϕ = {λa, . . . , λb, λi, λc, . . . , λd, λi′ , λe, . . . , λ f }, the move Insert(ϕ, i, i′) results in solution
ϕ′ = {λa, . . . , λb, λc, . . . , λd, λi′ , λi, λe, . . . , λ f }.

The third and last movement is based on the 2−opt move, which is a widely used
operator in vehicle routing problems [32]. In that context, given a route, the 2−opt move
reverses a certain part of the route. The adaptation to the BCP is performed as follows.
Given a solution ϕ = {λa, . . . , λb, λi, λc, λd, . . . , λe, λ f , λi′ , λg, . . . , λh}, the movement 2−opt(ϕ, i, i′)
reverses all the wavelengths located in positions between λi and λi′ , resulting in solution
ϕ′ = {λa, . . . , λb, λi′ , λ f , λe, . . . , λd, λc, λi, λg, . . . , λh}.

Once the movements have been defined, we can now define the neighborhoods considered in this
work. Specifically, we define Ns, Ni, and N2o for neighborhoods based on swaps, insertions, and 2−opt,
respectively, as:

Ns(ϕ) = {ϕs ← Swap(ϕ, i, i′) ∀i, i′ ∈ [1 . . . m], i < i′}
Ni(ϕ) = {ϕi ← Insert(ϕ, i, i′) ∀i, i′ ∈ [1 . . . m], i, i′}

N2o(ϕ) = {ϕ2o ← 2−opt(ϕ, i, i′) ∀i, i′ ∈ [1 . . . m], i < i′}

For each neighborhood structure, we propose a local search method, which locally improves
the input solution. A local search is conformed with the neighborhood to be explored and the
order in which those neighbor solutions are traversed. In particular, we propose three local search
methods, namely LSs, LSi, and LS2o. All of them follows the same ordering when exploring the
associated neighborhood. The search starts performing the movement over the wavelengths located
at the first and second positions of the solution, continuing in ascending order until the complete
neighborhood is explored. It is worth mentioning that the three proposed local search methods follow
a first improvement approach, which usually leads to better results [33]. In this scheme, the first
movement that leads to a better solution is performed, restarting the search. The search stops when no
improvement is found after exploring the complete neighborhood.

4. Computational Results

This section has two main objectives: to select the best combination of parameter values for the
proposed algorithms, and to perform an in-depth comparison of the proposed algorithm and the best
method found in the state-of-the-art. All the algorithms have been implemented in Java 11 and the
experiments have been performed in an AMD Ryzen 53,600 (2.2 GHz) with 16 GB RAM.

Since the BCP have been recently proposed, there are not many research works on this problem.
In particular, the best method found in the literature is the Simulated Annealing (SA) algorithm
proposed in [2], which is able to outperform the results obtained with the Genetic Algorithm, and the
Artificial Bee Colony algorithm also presented in that work. Therefore, we will compare our best
proposal with the SA procedure.

In order to have a fair comparison, we have considered the same set of instances than the ones used
in the previous work. It is called the BPLIB and it is publicly available at http://grafo.etsii.urjc.es/bcp.
We select the same set of instances used in [2], which consists in 72 m× n matrices with m ranging
from 12 to 96 and n ranging from 6 to 28. In these instances the optimal value is not known and the
best known value is the one obtained in [2].

http://grafo.etsii.urjc.es/bcp

Electronics 2020, 9, 1860 9 of 15

This section is divided into two types of experiments. On the one hand, the preliminary
experimentation is designed to find the best values for the input parameters of the proposed algorithms.
In particular, it is required to perform the following analysis:

• Selection of the best constructive procedure among G0, G1, and G01.
• Selection of the best local search method among LSi, LSs, and LS2o.
• Selection of the neighborhood exploration order within VND, testing all possibilities.
• Selection of the best kmax value for the Basic VNS algorithm among

kmax = {0.05 m, 0.10 m, 0.15 m, 0.20 m}.
• Selection of the best kmax value for the General VNS algorithm among

kmax = {0.05 m, 0.10 m, 0.15 m, 0.20 m}.
• Selection of the best VNS algorithm for the BCP among Basic VNS, VND, and General VNS.

On the other hand, the competitive testing has the aim of analyzing the performance of the final
version of the algorithm when comparing the results with the ones presented in the best method found
in the literature. A subset of 15 out 72 representative instances (20%) are used in the preliminary
experimentation to avoid overfitting. Then, in the competitive testing, the complete set of 72 instances
is considered.

The metrics reported in all the experiments are: Avg., the average objective function value; Time(s),
the computing time required by the algorithm to finish in seconds; Dev(%), the average deviation with
respect to the best solution found in the experiment; and #Best, the number of times that the algorithm
reaches the best solution of the experiment. For the sake of clarity, the best value of each metric is
highlighted with bold font.

4.1. Preliminary Experimentation

The first preliminary experiment is intended to select the best constructive procedure among the
ones presented in Section 3.4: G0, G1, G01. Table 1 shows the results obtained when executing each
constructive procedure over the preliminary set of instances.

Table 1. Comparison among the three constructive procedures G0, G1, G01.

Algorithm Avg. Time (s) Dev (%) #Best

G01 337,300.00 0.06 0.12 10
G0 341,302.00 0.06 1.34 3
G1 340,383.33 0.06 0.89 2

As it can be seen, the computing time is negligible in all cases, being considerably smaller than
1 s. Hence, in terms of quality, G01 emerges as the best constructive method with the largest number of
best solutions found, missing the best solution in only 5 out of 15 instances. Notice that, in those cases
in which the best solution is not found, G01 remains close to it, as it can be seen in the obtained average
deviation of 0.12%. From this experiment we can derive that it is interesting to locate the wavelengths
that must be delivered to the same target stations in close rows. Therefore, we select G01 as the best
constructive method and it will be used in the final competitive testing.

The next experiment is designed to evaluate the influence of each local search method (LSi,
LSs, and LS2o) when coupling it with the best constructive procedure G01. Table 2 shows the results
obtained in this experiment.

It is worth mentioning that the efficient evaluation of the objective function allows the local search
to be executed also in small computing times. In this case, the superiority of LS2o is clear, reaching
the best solution in every instance, with a deviation of 0.00%. Then, LS2o is the local search selected
for BVNS.

The aim of the third experiment is to find the optimal ordering of the neighborhood structures in
the context of VND. Although it is usually recommended to firstly explore the neighborhoods from the

Electronics 2020, 9, 1860 10 of 15

smallest to the largest [34], we perform an empirical evaluation of all possibilities in order to select the
best one. In this experiment, each variant of VND has been applied to the solution derived from G01.
Figure 3 shows a graph comparing computing time (X-axis) with average deviation (Y-axis) of the six
possibilities for the local search order within VND.

Table 2. Comparison among the three local search methods LSi, LSs, LS2o when improving the solutions
generated by the best constructive procedure, G01.

Algorithm Avg. Time (s) Dev (%) #Best

G01 + LSi 337,199.33 1.94 0.65 1
G01 + LSs 337,170.00 0.69 0.50 1
G01 + LS2o 335,281.34 0.99 0.00 15

Figure 3. Time versus deviation graph for the different orderings of the local search inside the Variable
Neighborhood Descent (VND) framework.

As it can be derived from the graph, the two best options are Ns + N2o + Ni and N2o + Ns + Ni,
with the same average deviation of 0.06%. Since the computing time of Ns + N2o + Ni is twice the time
of N2o + Ns + Ni, we select the last one for the VND and GVNS algorithm.

The next experiment analyzes the influence of the parameter kmax in the context of BVNS.
The VNS literature [19] recommends using small values for this parameter. This is mainly because
large values of kmax will explore solutions that are very different to the incumbent one, being
similar to constructing an entire new solution. Therefore, the values considered for this experiment
are kmax = {0.05, 0.1, 0.15 m, 0.2 m}. Notice that, to favor scalability, the value of the parameter is
dependent on the number of wavelengths m of the input instance. Table 3 shows the results obtained
in this experiment.

As it can be observed in this experiment, the quality of the solutions increase with the value
of kmax. However, when reaching kmax = 0.2, the search seems to be stagnated, but increasing the
computing time required. Therefore, we select kmax = 0.15 m for the final BVNS algorithm.

The next experiment is designed to identify the best kmax value for the GVNS algorithm.
Following the same reasoning as in the previous experiment, we have tested the same values,
kmax = {0.05 m, 0.1 m, 0.15 m, 0.2 m}. Table 4 shows the results of this experiment.

Again, the larger the value of kmax, the better the quality. However, the differences in quality
(deviation and number of best solutions) between kmax = 0.15 and kmax = 0.20 are negligible, while the
latter requires a larger computing time. Therefore, we select kmax = 0.15 as the best value for GVNS.

Electronics 2020, 9, 1860 11 of 15

The last preliminary experiment is intended to analyze which VNS variant is the most promising
one. Table 5 shows the results obtained by the best configuration of each VNS variant: BVNS, VND,
and GVNS.

Table 3. Comparison of the different kmax values considered in the Basic Variable Neighborhood Search
(BVNS) algorithm.

kmax Avg. Time (s) Dev (%) #Best

0.05 334,610.00 2.06 0.27 8
0.10 334,156.66 4.13 0.20 12
0.15 332,959.33 7.52 0.00 15
0.20 332,959.33 9.20 0.00 15

Table 4. Comparison of the different kmax values considered in the General Variable Neighborhood
Search (GVNS) algorithm.

kmax Avg. Time (s) Dev (%) #Best

0.05 326,517.33 78.45 0.32 4
0.10 326,174.00 108.59 0.16 9
0.15 325,531.33 149.94 0.02 13
0.20 325,468.67 167.89 0.00 15

Table 5. Comparison among the different VNS variants for the preliminary set of instances.

Algorithm Avg. Time (s) Dev (%) #Best

BVNS 332,959.33 7.52 2.04 1
VND 327,008.67 34.78 0.50 2

GVNS 325,531.33 149.94 0.00 15

As it can be derived from the data, the worst variant is BVNS, with a deviation of 2.04%.
However, it is the fastest algorithm, so it would be an interesting selection when requiring small
computing times. Analyzing the results of VND and GVNS, the former is considerably faster,
as expected, since GVNS executes a complete VND in each iteration. However, it is worth mentioning
that VND is able to reach a small deviation of 0.50%, which makes it a relevant candidate if the
computing time is one of the main requisites, although it only reaches 2 out of 15 best solutions.
Finally, GVNS emerges as the best variant reaching all the best solutions found, requiring a larger,
but reasonable, computing time.

4.2. Competitive Testing

Once the parameters of the proposed algorithm have been tested, this competitive testing is
devoted to analyzing the efficiency of the best variant, which is GVNS, with the best previous method
found in the state-of-the-art, which is based on a Simulated Annealing (SA) framework. In this case,
the experiment is performed over the complete set of 72 instances. The results of the previous method
are directly imported from the original work [2]. Table 6 shows the summary table with the results
obtained by both algorithms. To facilitate future comparisons, we report in Appendix A (see Table A1)
individual results per instance.

In order to have a fair comparison, we have considered the same experimental methodology than
the one used in the previous paper. In particular, the algorithm has executed 50 independent iterations,
reporting the average objective function value and time in the first main row, and the best values in
the second main row.

If we firstly analyze the average results, we can clearly see that GVNS is able to obtain the largest
number of best solutions (65 vs. 7) and a smaller deviation (0.04% vs. 1.10%). This small deviation
indicates that, in the seven instances in which GVNS does not reach the best solution, it remains

Electronics 2020, 9, 1860 12 of 15

very close to it. Regarding the best results obtained with both algorithms, GVNS is still the best
option, with the smallest deviation (0.19% vs. 0.57%) and the largest number of best solutions found
(44 vs. 38). Notice that the computing times are equivalent in both cases. It is worth mentioning that it
is always a difficult task to compare execution times of different algorithms implemented in different
programming languages but, in this case, the execution environment could be considered equivalent.

Table 6. Comparison with the state-of-the-art.

Avg. Dev (%) #Best Time (s)

Average SA 403,826.79 1.10 7 24.20
GVNS 399,856.92 0.04 65 143.51

Best SA 400,205.83 0.57 38 1210.19
GVNS 398,470.97 0.19 44 1435.09

In order to confirm that there are statistically significant differences between both algorithms,
we have conducted a non-parametric pairwise Wilcoxon test. The resulting p-value smaller than 0.05
confirms the superiority of our proposal.

5. Conclusions

This paper presents three Variable Neighborhood Search variants for dealing with the Band
Collocation Problem. This problem arose in the context of telecommunication networks to solve some
concerns with the original Bandpass Problem with respect to its practical application.

The evaluation of the objective function is very computationally demanding, so the proposed
LRU cache optimization method is able to efficiently evaluate solutions without requiring large
computational times. This optimization allows the VNS to perform a deeper analysis of the
search space.

Three neighborhood structures are explored, as well as their combination in a Variable
Neighborhood Descent scheme. Additionally, a Basic VNS, which considers the best neighborhood
structure in its local search phase is presented, as well as a General VNS algorithm, which increases the
diversification of VND. The experimental results show how the combination of several neighborhood
structures in the GVNS scheme allows the algorithm to explore a wider portion of the search space,
resulting in better results.

Finally, the General VNS algorithm is able to outperform the state-of-the-art method, based on
Simulated Annealing in similar computing times, emerging GVNS as a competitive method for the
Band Collocation Problem.

Author Contributions: I.L.-O. implemented the proposed algorithm, and performed the experiments; A.D. and
J.S.-O. designed the algorithm and the experiments; A.D. and M.Á.R.-G. analyzed the data and contributed
reagents/materials/analysis tools; A.D., I.L.-O. and J.S.-O. wrote the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by “Ministerio de Ciencia, Innovación y Universidades” under grant ref.
PGC2018-095322-B-C22, “Comunidad de Madrid” and “Fondos Estructurales” of the European Union with grant
references S2018/TCS-4566, Y2018/EMT-5062, and PEJD-2019-PRE/TIC-16151, and by Research Talent Attraction
Program by the Comunidad de Madrid with grant reference 2017-T2/TIC-5664.

Acknowledgments: Authors would like to thank researcher R. Martin-Santamaria for his promising ideas about
the optimization of the objective function evaluation.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 shows the results of our competitive testing, where we report for each instance the
objective function value (O.F.), the average deviation with respect to the best known value (Dev (%)),
an indicator that determines whether the methods match the best known solution or not (#Best),

Electronics 2020, 9, 1860 13 of 15

and the computing time in seconds (Time (s)). These results are obtained as the average execution of
50 independent iterations (Average (grey)) or best one among those 50 iterations (Best).

Table A1. Individual result for each instance.

SA GVNS

Average Best Average Best

Name O.F. Dev (%) #Best Time (s) O.F. Dev (%) #Best Time (s) O.F. Dev (%) #Best Time (s) O.F. Dev (%) #Best Time (s)

T1-M1-R10 23,144 0.02 0 0.85 23,140 0.00 1 42.50 23,140 0.00 1 0.04 23,140 0.00 1 0.37

T1-M1-R30 19,670 0.05 0 0.85 19,660 0.00 1 42.50 19,660 0.00 1 0.02 19,660 0.00 1 0.23

T3-M1-R10 47,936 0.41 0 0.86 47,680 0.00 1 43.00 47,738 0.00 1 0.04 47,680 0.00 1 0.41

T3-M1-R30 37,136 0.94 0 0.85 36,640 0.00 1 42.50 36,791 0.00 1 0.04 36,640 0.00 1 0.39

T4-M1-R10 42,041 0.36 0 1.68 41,860 0.00 1 84.00 41,890 0.00 1 0.23 41,860 0.00 1 2.27

T4-M1-R30 36,109 1.93 0 1.69 35,570 0.85 0 84.50 35,425 0.00 1 0.16 35,270 0.00 1 1.57

T6-M1-R10 84,939 0.46 0 1.72 84,530 0.00 1 86.00 84,549 0.00 1 0.12 84,530 0.00 1 1.19

T6-M1-R30 63,827 0.24 0 1.69 63,270 0.00 1 84.50 63,672 0.00 1 0.10 63,270 0.00 1 0.91

T7-M1-R10 76,710 0.51 0 3.83 76,070 0.00 1 191.50 76,323 0.00 1 1.44 76,240 0.22 0 14.35

T7-M1-R30 63,983 1.49 0 3.84 62,790 0.45 0 192.00 63,045 0.00 1 2.06 62,510 0.00 1 20.58

T9-M1-R10 155,409 0.37 0 3.97 154,410 0.00 1 198.50 154,837 0.00 1 1.61 154,410 0.00 1 16.10

T9-M1-R30 112,506 1.00 0 3.93 110,750 0.00 1 196.50 111,394 0.00 1 0.83 110,750 0.00 1 8.27

T10-M1-R10 122,594 1.15 0 6.76 121,620 0.63 0 338.00 121,195 0.00 1 10.05 120,860 0.00 1 100.54

T10-M1-R30 99,527 1.74 0 6.69 96,330 0.00 1 334.50 97,823 0.00 1 7.62 97,330 1.04 0 76.16

T12-M1-R10 247,800 0.22 0 6.97 246,040 0.00 1 348.50 247,259 0.00 1 13.19 246,430 0.16 0 131.94

T12-M1-R30 164,364 0.04 0 6.68 163,170 0.00 1 334.00 164,296 0.00 1 4.61 163,670 0.31 0 46.05

T13-M1-R10 182,052 0.83 0 10.61 180,790 0.46 0 530.50 180,554 0.00 1 46.87 179,970 0.00 1 468.70

T13-M1-R30 150,137 2.04 0 10.62 147,690 0.48 0 531.00 147,141 0.00 1 31.37 146,980 0.00 1 313.67

T15-M1-R10 360,460 0.39 0 10.68 358,140 0.15 0 534.00 359,058 0.00 1 70.35 357,600 0.00 1 703.53

T15-M1-R30 237,175 0.02 0 10.73 235,260 0.00 1 536.50 237,122 0.00 1 35.49 236,400 0.48 0 354.88

T16-M1-R10 250,212 0.89 0 15.46 248,540 0.49 0 773.00 248,010 0.00 1 126.01 247,330 0.00 1 1260.15

T16-M1-R30 202,997 0.96 0 15.48 198,160 0.00 1 774.00 201,071 0.00 1 124.19 199,040 0.44 0 1241.93

T18-M1-R10 489,605 0.06 0 15.94 486,900 0.00 1 797.00 489,309 0.00 1 120.19 487,310 0.08 0 1201.86

T18-M1-R30 323,881 0.95 0 15.97 319,100 0.01 0 798.50 320,831 0.00 1 110.41 319,070 0.00 1 1104.12

T19-M1-R10 327,338 0.72 0 21.53 325,660 0.35 0 1076.50 324,996 0.00 1 192.21 324,520 0.00 1 1922.05

T19-M1-R30 271,147 1.75 0 21.51 267,780 0.62 0 1075.50 266,486 0.00 1 133.07 266,120 0.00 1 1330.70

T21-M1-R10 644,890 0.57 0 21.64 641,830 0.36 0 1082.00 641,263 0.00 1 190.15 639,530 0.00 1 1901.47

T21-M1-R30 420,458 0.40 0 21.76 416,190 0.00 1 1088.00 418,772 0.00 1 96.63 418,110 0.46 0 966.27

T22-M1-R10 409,402 1.03 0 28.17 406,160 0.46 0 1408.50 405,237 0.00 1 230.34 404,300 0.00 1 2303.35

T22-M1-R30 320,969 2.38 0 28.24 312,560 0.50 0 1412.00 313,518 0.00 1 236.44 311,020 0.00 1 2364.36

T24-M1-R10 819,750 0.48 0 28.96 814,710 0.07 0 1448.00 815,805 0.00 1 268.24 814,180 0.00 1 2682.44

T24-M1-R30 486,612 1.16 0 28.55 480,280 0.00 1 1427.50 481,019 0.00 1 72.51 480,370 0.02 0 725.11

T25-M1-R10 513,040 0.87 0 35.38 510,110 0.36 0 1769.00 508,596 0.00 1 209.06 508,280 0.00 1 2090.58

T25-M1-R30 414,461 0.74 0 35.74 408,930 0.03 0 1787.00 411,412 0.00 1 395.48 408,810 0.00 1 3954.84

T27-M1-R10 1,009,427 0.02 0 39.02 1,005,880 0.00 1 1951.00 1,009,231 0.00 1 314.02 1,007,230 0.13 0 3140.22

T27-M1-R30 595,666 1.01 0 44.02 590,470 0.61 0 2201.00 589,689 0.00 1 174.13 586,890 0.00 1 1741.32

T28-M1-R10 613,781 1.19 0 54.54 610,900 1.00 0 2727.00 606,572 0.00 1 459.08 604,870 0.00 1 4590.83

T28-M1-R30 479,258 1.65 0 50.56 470,530 0.02 0 2528.00 471,461 0.00 1 404.22 470,420 0.00 1 4042.22

T30-M1-R10 1,194,789 0.33 0 44.56 1,189,580 0.07 0 2228.00 1,190,881 0.00 1 478.33 1,188,760 0.00 1 4783.30

T30-M1-R30 691,123 0.63 0 44.84 684,100 0.00 1 2242.00 686,826 0.00 1 113.06 685,920 0.27 0 1130.56

T31-M1-R10 726,716 12.70 0 54.23 719,550 11.63 0 2711.50 644,844 0.00 1 285.34 644,610 0.00 1 2853.42

T31-M1-R30 537,201 11.81 0 54.57 529,220 11.37 0 2728.50 480,472 0.00 1 449.69 475,200 0.00 1 4496.92

T33-M1-R10 1,428,080 0.00 1 55.37 1,422,480 0.00 1 2768.50 1,433,556 0.38 0 280.89 1,431,500 0.63 0 2808.85

T33-M1-R30 848,478 0.06 0 56.28 840,680 0.00 1 2814.00 847,991 0.00 1 332.81 843,090 0.29 0 3328.10

T34-M1-R10 872,717 1.09 0 66.67 868,940 0.75 0 3333.50 863,307 0.00 1 406.37 862,450 0.00 1 4063.71

T34-M1-R30 696,284 0.55 0 66.68 688,390 0.00 1 3334.00 692,486 0.00 1 575.50 690,180 0.26 0 5755.01

T36-M1-R10 1,712,658 0.00 1 67.04 1,703,600 0.00 1 3352.00 1,717,668 0.29 0 501.65 1,713,460 0.58 0 5016.48

T36-M1-R30 1,020,757 0.04 0 67.45 1,014,750 0.00 1 3372.50 1,020,381 0.00 1 150.32 1,017,920 0.31 0 1503.23

T37-M1-R10 214,827 1.01 0 14.14 213,450 0.73 0 707.00 212,675 0.00 1 173.96 211,910 0.00 1 1739.65

T37-M1-R30 171,903 1.14 0 14.15 168,770 0.26 0 707.50 169,970 0.00 1 118.61 168,340 0.00 1 1186.07

T39-M1-R10 422,009 0.10 0 14.23 418,630 0.00 1 711.50 421,603 0.00 1 80.70 420,920 0.55 0 807.04

T39-M1-R30 272,117 0.00 1 14.31 268,530 0.00 1 715.50 273,611 0.55 0 106.64 269,740 0.45 0 1066.38

T40-M1-R10 240,730 1.34 0 16.68 238,630 0.85 0 834.00 237,547 0.00 1 119.30 236,610 0.00 1 1193.00

T40-M1-R30 183,624 0.85 0 16.70 179,560 0.00 1 835.00 182,068 0.00 1 76.11 180,010 0.25 0 761.13

T42-M1-R10 484,858 0.26 0 16.78 481,710 0.10 0 839.00 483,593 0.00 1 155.67 481,230 0.00 1 1556.68

T42-M1-R30 293,520 2.35 0 16.89 288,690 0.79 0 844.50 286,779 0.00 1 31.33 286,420 0.00 1 313.33

T43-M1-R10 273,560 1.38 0 19.66 271,020 0.82 0 983.00 269,835 0.00 1 149.04 268,810 0.00 1 1490.38

T43-M1-R30 209,032 1.02 0 19.68 204,450 0.00 1 984.00 206,928 0.00 1 174.55 204,700 0.12 0 1745.46

T45-M1-R10 537,892 0.41 0 19.79 534,920 0.30 0 989.50 535,722 0.00 1 105.61 533,310 0.00 1 1056.10

T45-M1-R30 318,202 1.66 0 19.90 315,680 0.98 0 995.00 313,012 0.00 1 28.54 312,620 0.00 1 285.41

T46-M1-R10 300,189 1.91 0 22.60 298,190 1.57 0 1130.00 294,549 0.00 1 110.17 293,580 0.00 1 1101.70

T46-M1-R30 219,515 1.39 0 22.65 213,650 0.00 1 1132.50 216,506 0.00 1 202.67 214,770 0.52 0 2026.67

T48-M1-R10 588,024 0.24 0 22.77 584,150 0.00 1 1138.50 586,630 0.00 1 212.45 584,150 0.00 1 2124.50

T48-M1-R30 344,442 0.63 0 22.94 339,870 0.00 1 1147.00 342,283 0.00 1 72.44 341,910 0.60 0 724.36

T49-M1-R10 329,375 2.26 0 25.57 325,350 1.40 0 1278.50 322,110 0.00 1 143.92 320,850 0.00 1 1439.16

T49-M1-R30 236,380 0.34 0 26.69 230,280 0.00 1 1334.50 235,588 0.00 1 199.10 233,190 1.26 0 1991.00

T51-M1-R10 648,823 0.00 1 31.10 644,100 0.00 1 1555.00 650,647 0.28 0 72.70 650,230 0.95 0 726.96

T51-M1-R30 379,620 0.00 1 31.27 375,280 0.00 1 1563.50 382,086 0.65 0 49.04 379,410 1.10 0 490.37

T52-M1-R10 364,329 2.18 0 34.43 361,130 1.46 0 1721.50 356,560 0.00 1 84.57 355,950 0.00 1 845.68

T52-M1-R30 271,182 0.76 0 34.49 265,990 0.00 1 1724.50 269,137 0.00 1 97.35 267,940 0.73 0 973.45

T54-M1-R10 707,132 0.00 1 34.69 702,880 0.00 1 1734.50 709,195 0.29 0 64.26 703,950 0.15 0 642.64

T54-M1-R30 415,028 0.00 1 34.90 408,520 0.00 1 1745.00 416,462 0.35 0 47.36 413,670 1.26 0 473.64

Electronics 2020, 9, 1860 14 of 15

References

1. Resende, M.G.C.; Pardalos, P.M. Handbook of Optimization in Telecommunications; Springer: New York, NY,
USA, 2006. [CrossRef]

2. Kutucu, H.; Gursoy, A.; Kurt, M.; Nuriyev, U.G. The Band Collocation Problem: A Library of Problems and
a Metaheuristic Approach. In Proceedings of the International Conference on Discrete Optimization and
Operations Research (DOOR), Vladivostok, Russia, 19–23 September 2016; pp. 464–476.

3. Bell, G.; Babayev, D. Bandpass problem. In Proceedings of the Annual INFORMS Meeting, Denver, CO,
USA, 24–27 October 2004.

4. Kumar, S. Fiber Optic Communications: Fundamentals and Applications; Wiley John + Sons: Hoboken, NJ,
USA, 2014.

5. Babayev, D.A.; Bell, G.I.; Nuriyev, U.G. The bandpass problem: Combinatorial optimization and library of
problems. J. Comb. Optim. 2008, 18, 151–172. [CrossRef]

6. Babayev, D.A.; Nuriyev, U.G.; Bell, G.I.; Berberler, M.E.; Gursoy, A.; Kurt, M. Library of Bandpass
Problems. 2007. Available online: https://scholar.google.com/scholar?cluster=13307288714367400187&hl=
en&oi=scholarr (accessed on 15 October 2020).

7. Lin, G. On the Bandpass problem. J. Comb. Optim. 2009, 22, 71–77. [CrossRef]
8. Nuriyev, U.G.; Kutucu, H.; Kurt, M. Mathematical models of the Bandpass problem and OrderMatic

computer game. Math. Comput. Model. 2011, 53, 1282–1288. [CrossRef]
9. Li, Z.; Lin, G. The three column Bandpass problem is solvable in linear time. Theor. Comput. Sci. 2011,

412, 281–299. [CrossRef]
10. Gürsoy, A.; Nuriyev, U. Genetic algorithm for multi bandpass problem and library of problems.

In Proceedings of the 2012 IV International Conference “Problems of Cybernetics and Informatics” (PCI),
Baku, Azerbaijan, 12–14 September 2012; pp. 1–5.

11. Chen, Z.Z.; Wang, L. An Improved Approximation Algorithm for the Bandpass-2 Problem. In Combinatorial
Optimization and Applications; Lin, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 188–199.

12. Kurt, M.; Kutucu, H.; Gursoy, A.; Nuriyev, U. The Optimization of the Bandpass Lengths in the Multi-Bandpass
Problem; Springer: Berlin/Heidelberg, Germany, 2013; pp. 115–123, [CrossRef]

13. Sánchez-Oro, J.; Laguna, M.; Martí, R.; Duarte, A. Scatter search for the bandpass problem. J. Glob. Optim.
2016, 66, 769–790. [CrossRef]

14. Gursoy, A.; Kurt, M.; Kutucu, H.; Nuriyev, U. New heuristics and meta-heuristics for the Bandpass problem.
Eng. Sci. Technol. Int. J. 2017, 20, 1531–1539. [CrossRef]

15. Iannone, E. Telecommunication Networks; CRC Press: Boca Raton, USA, 2017.
16. Gursoy, A.; Kurt, M.; Kutucu, H.; Nuriyev, U. A heuristic algorithm for the band collocation problem.

In Proceedings of the 2016 IEEE 10th International Conference on Application of Information and
Communication Technologies (AICT), Baku, Azerbaijan, 12–14 October 2016; pp. 1–4.

17. Gursoy, A.; Tekin, A.; Keserlioğlu, S.; Kutucu, H.; Kurt, M.; Nuriyev, U. An improved binary integer
programming model of the Band Collocation problem. J. Mod. Technol. Eng. 2017, 2, 34–42.

18. Kutucu, H.; Gursoy, A.; Kurt, M.; Nuriyev, U. On the solution approaches of the band collocation problem.
Twms J. Appl. Eng. Math. 2019, 9, 724–734.

19. Hansen, P.; Mladenović, N.; Pérez, J.A.M. Variable neighbourhood search: Methods and applications.
Ann. Oper. Res. 2009, 175, 367–407. [CrossRef]

20. Hansen, P.; Mladenović, N.; Brimberg, J.; Pérez, J.A.M. Variable Neighborhood Search. In Handbook of
Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 61–86. [CrossRef]

21. Kutucu, H.; Gursoy, A.; Kurt, M.; Nuriyev, U. The band collocation problem. J. Comb. Optim. 2020,
40, 454–481. [CrossRef]

22. Johnson, T.; Shasha, D. 2Q: A Low Overhead High Performance Buffer Management Replacement
Algorithm. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago,
Chile, 12–15 September 1994; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1994; pp. 439–450.

23. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
24. Pardo, E.G.; Mladenović, N.; Pantrigo, J.J.; Duarte, A. Variable Formulation Search for the Cutwidth

Minimization Problem. Appl. Soft Comput. 2013, 13, 2242–2252. [CrossRef]

http://dx.doi.org/10.1007/978-0-387-30165-5
http://dx.doi.org/10.1007/s10878-008-9143-3
https://scholar.google.com/scholar?cluster=13307288714367400187&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=13307288714367400187&hl=en&oi=scholarr
http://dx.doi.org/10.1007/s10878-009-9273-2
http://dx.doi.org/10.1016/j.mcm.2010.12.014
http://dx.doi.org/10.1016/j.tcs.2010.09.018
http://dx.doi.org/10.1007/978-3-642-40078-0-9
http://dx.doi.org/10.1007/s10898-016-0446-0
http://dx.doi.org/10.1016/j.jestch.2017.12.004
http://dx.doi.org/10.1007/s10479-009-0657-6
http://dx.doi.org/10.1007/978-1-4419-1665-5_3
http://dx.doi.org/10.1007/s10878-020-00576-2
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.asoc.2013.01.016

Electronics 2020, 9, 1860 15 of 15

25. Duarte, A.; Sánchez-Oro, J.; Mladenović, N.; Todosijević, R. Variable Neighborhood Descent. In Handbook of
Heuristics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 341–367. [CrossRef]

26. Sánchez-Oro, J.; José Pantrigo, J.; Duarte, A. Combining intensification and diversification strategies in VNS.
An application to the Vertex Separation problem. Comput. Oper. Res. 2014, 52, 209–219. [CrossRef]

27. Duarte, A.; Escudero, L.F.; Martí, R.; Mladenovic, N.; Pantrigo, J.J.; Sánchez-Oro, J. Variable neighborhood
search for the Vertex Separation Problem. Comput. Oper. Res. 2012, 39, 3247–3255. [CrossRef]

28. Pei, J.; Dražić, Z.; Dražić, M.; Mladenović, N.; Pardalos, P.M. Continuous Variable Neighborhood Search
(C-VNS) for Solving Systems of Nonlinear Equations. Informs J. Comput. 2019, 31, 235–250. [CrossRef]

29. Brimberg, J.; Mladenović, N.; Todosijević, R.; Urošević, D. Solving the capacitated clustering problem with
variable neighborhood search. Ann. Oper. Res. 2017, 272, 289–321. [CrossRef]

30. Ivanov, S.V.; Kibzun, A.I.; Mladenović, N.; Urošević, D. Variable neighborhood search for stochastic linear
programming problem with quantile criterion. J. Glob. Optim. 2019, 74, 549–564. [CrossRef]

31. Sánchez-Oro, J.; López-Sánchez, A.D.; Colmenar, J.M. A general variable neighborhood search for solving
the multi-objective open vehicle routing problem. J. Heuristics 2020, 26, 423–452. [CrossRef]

32. Potvin, J.Y.; Rousseau, J.M. An Exchange Heuristic for Routeing Problems with Time Windows. J. Oper.
Res. Soc. 1995, 46, 1433–1446. [CrossRef]

33. Pérez-Peló, S.; Sánchez-Oro, J.; Martín-Santamaría, R.; Duarte, A. On the Analysis of the Influence of the
Evaluation Metric in Community Detection over Social Networks. Electronics 2018, 8, 23. [CrossRef]

34. Hansen, P.; Mladenović, N. Variable Neighborhood Search. In Search Methodologies; Springer US: New York,
NY, USA, 2005; pp. 211–238. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-07124-4_9
http://dx.doi.org/10.1016/j.cor.2013.11.008
http://dx.doi.org/10.1016/j.cor.2012.04.017
http://dx.doi.org/10.1287/ijoc.2018.0876
http://dx.doi.org/10.1007/s10479-017-2601-5
http://dx.doi.org/10.1007/s10898-019-00773-2
http://dx.doi.org/10.1007/s10732-017-9363-8
http://dx.doi.org/10.1057/jors.1995.204
http://dx.doi.org/10.3390/electronics8010023
http://dx.doi.org/10.1007/0-387-28356-0_8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Evaluation of the Objective Function
	Variable Neighborhood Search
	Basic VNS
	Variable Neighborhood Descent
	General VNS
	Constructive Procedure
	Neighborhood Structures

	Computational Results
	Preliminary Experimentation
	Competitive Testing

	Conclusions
	
	References

