
electronics

Article

Improving the Characteristics of Multi-Level
LUT-Based Mealy FSMs

Alexander Barkalov 1,2, Larysa Titarenko 1,3, Kazimierz Krzywicki 4,* and Svetlana Saburova 3

1 Institute of Metrology, Electronics and Computer Science, University of Zielona Góra, ul. Licealna 9,
65-417 Zielona Góra, Poland; a.barkalov@imei.uz.zgora.pl (A.B.); l.titarenko@imei.uz.zgora.pl (L.T.)

2 Department of Mathematics and Information Technology, Vasyl’ Stus Donetsk National University,
21, 600-richya str., 21021 Vinnytsia, Ukraine

3 Department of Infocommunication Engineering, Faculty of Infocommunications, Kharkiv National
University of Radio Electronics, Nauky Avenue 14, 61166 Kharkiv, Ukraine; sabsvet@gmail.com

4 Department of Technology, The Jacob of Paradies University, ul. Teatralna 25,
66-400 Gorzów Wielkopolski, Poland

* Correspondence: kkrzywicki@ajp.edu.pl

Received: 9 September 2020; Accepted: 2 November 2020; Published: 5 November 2020
����������
�������

Abstract: Contemporary digital systems include many varying sequential blocks. In the article,
we discuss a case when Mealy finite state machines (FSMs) describe the behavior of sequential blocks.
In many cases, the performance is the most important characteristic of an FSM circuit. In the article,
we propose a method which allows increasing the operating frequency of multi-level look-up table
(LUT)-based Mealy FSMs. The main idea of the proposed approach is to use together two methods of
structural decomposition. They are: (1) the known method of transformation of codes of collections
of outputs into FSM state codes and (2) a new method of extension of state codes. The proposed
approach allows producing FPGA-based FSMs having three levels of logic combined through the
system of regular interconnections. Each function for every level of logic was implemented using
a single LUT. An example of the synthesis of Mealy FSM with the proposed architecture is shown.
The effectiveness of the proposed method was confirmed by the results of experimental studies
based on standard benchmark FSMs. The research results show that FSM circuits based on the
proposed approach have a higher operating frequency than can be obtained using other investigated
methods. The maximum operating frequency is improved by an average of 3.18 to 12.57 percent.
These improvements are accompanied by a small growth of LUT count.

Keywords: Mealy FSM; structural decomposition; LUT; FPGA; extension of state codes;
collections of outputs

1. Introduction

Digital systems are widely used in our daily life [1]. They can be viewed as combinations of
various sequential and combinational blocks [2,3]. To implement the circuit of a sequential block, it is
necessary to formally describe its behavior. Very often, models of finite state machines (FSMs) [4,5]
are used for this purpose. The quality of an FSM circuit is determined by a combination of such
characteristics as: a chip area occupied by the circuit, maximum operating frequency and consumption
of power. As follows from [6], there is a direct relationship between these circuit characteristics.
To reduce the occupied chip area, various methods of structural decomposition can be applied [7].
These methods produce circuits with multiple levels of logic, which are significantly slower than their
single-level counterparts.

However, very often the performance is a critical factor for a digital system. For example, it
is true for real-time embedded systems [8,9]. If a multi-level circuit does not provide the required

Electronics 2020, 9, 1859; doi:10.3390/electronics9111859 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1088-5784
http://www.mdpi.com/2079-9292/9/11/1859?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111859
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1859 2 of 34

performance, then the number of levels should be decreased. This conversion must be performed in
a way that increases the amount of resources used as little as possible. In this paper, we propose a
method for the solution of this problem in the case in which circuits of Mealy FSMs are implemented
using field programmable gate arrays (FPGAs).

There are two models of FSMs, namely, Mealy and Moore FSMs [4,5]. Problems related to the
synthesis of FSM circuits are discussed in a huge number of scientific articles and books. These works
are mainly devoted to the synthesis and design of Mealy automata. This determined our choice of
Mealy FSMs in the current research.

To optimize the characteristics of FSM circuits, a designer should use the main features of context
in which these circuits are implemented [2,10]. In this article we consider methods of implementing
FSM circuits in the context of field programmable gate arrays [11–13]. These chips are very popular
devices used for implementations of digital systems [2,14–18]. This fact explains our choice of
FPGA-based Mealy FSMs as a research object. The current article deals with FSM circuits, which are
implemented using look-up table (LUT) elements, flip-flops and programmable interconnections of
FPGAs. Since the Xilinx is the largest manufacturer of FPGA chips [13], we focus our research on
its solutions.

A LUT is a single-output block having SL inputs [19,20]. If a Boolean function depends on up to
SL Boolean variables, then its logic circuit includes only one LUT. However, a LUT has a very small
number of inputs [11,13]. At the same time, FSMs can be represented by very complex systems of
Boolean functions (SBFs) having dozens of arguments [4]. For LUT-based FSMs, this contradiction leads
to the necessity of functional decomposition of initial SBFs [21]. In turn, the functional decomposition
gives rise to FSM circuits having many logic levels and very complex interconnections [22,23].

To implement a LUT-based FSM circuit, it is necessary to execute the step of technology
mapping [24–27]. The technology mapping is a very important stage of the FPGA-based design
process [28]. Its outcome significantly determines the characteristics of a resulting FSM circuit.

As a rule, LUT-based circuits of sequential blocks use five components of FPGA
fabric. These components include LUTs, synced memory elements (flip-flops), programmable
interconnections, synchronization circuits and blocks of input–output. Our current article is devoted
to synthesis of multi-level LUT-based circuits of Mealy FSMs obtained using the methods of structural
decomposition. As follows from [24,29], it is very important to optimize the system of interconnections
between different elements of a circuit. The article [24] notes that time delays of the interconnection
system are starting to play a major role in comparison with logic delays. Additionally, more than 70%
of the power dissipation is due to the interconnections [29]. Thus, the optimization of interconnections
leads to improving main characteristics of LUT-based FSM circuits. This can be done, for example,
using an encoding of collections of outputs.

The main goal of our article is to increase the operating frequency of LUT-based Mealy FSM
circuits. To achieve this goal, we try to reduce the number of levels of LUTs between the FSM inputs and
FSM outputs. We determine the number of levels of LUTs as the number of LUT elements connected
in series in the longest path connecting FSM inputs with FSM outputs. Reducing the number of levels
reduces the number of interconnections in the FSM circuit [24]. Since interconnections significantly
affect performance [29], a simultaneous decrease in the number of levels of LUTs and the number of
interconnections leads to a significant increase in frequency.

Research [19,20] has shown that there is no point in increasing the number of LUT inputs. If the
number of inputs exceeds six, it violates the balance between the main characteristics of a LUT circuit.
However, the increasing complexity of modern digital systems is accompanied by an increase in the
number of arguments in representing FSM functions. Therefore, there is a need for new methods and
improvements to existing methods of LUT-based FSM design.

The methods of structural decomposition [7] are designed to reduce the numbers of LUTs in FSM
circuits. As a rule, FSM circuits with three levels of logic blocks require the smallest numbers of LUTs.
However, three-level FSMs have a much lower operating frequency compared to their single-level

Electronics 2020, 9, 1859 3 of 34

counterparts. FSM circuits with two levels of logic blocks represent a compromise on the number of
LUTs and operating frequency. The main contribution of this paper is a novel design method aimed
at increasing the operating frequency of two-level LUT-based Mealy FSMs. The main idea of the
proposed approach is to use together two methods of structural decomposition. They are: (1) the
known method of transformation of codes of collections of outputs into FSM state codes and (2) a
new method of extension of state codes. Due to it, there are exactly three levels of LUTs in the part
of FSM circuit implementing the system of outputs. Additionally, it produces FSM circuits having
regular system of interconnections, where each level of logic has its unique systems of inputs and
outputs. The proposed method allows obtaining FSM circuits that have slightly more LUTs and a
higher operating frequency than their three-level counterparts [30]. The experimental results presented
in the article show that the advantage of the proposed approach increases as the number of FSM
inputs increases.

The further text of the article includes five sections. Section 2 presents the background of
single-level LUT-based Mealy FSMs. Section 3 discusses the methods currently used in design of
FPGA-based FSMs. The main idea of our method is considered in Section 4. In Section 5, we discuss
an example synthesis, and the main ways for improving the characteristics of the resulting FSM
circuit. In Section 6, we present the results of research on the effectiveness of the proposed method for
benchmarks FSMs from [31]. The article ends with a brief summary.

2. Single-Level LUT-Based Mealy FSMs

As follows from [13], FPGAs manufactured by Xilinx are based on “island-style”
architecture [19,20]. The configurable logic blocks (CLBs) are “islands” surrounded by a “sea” of
programmable interconnections that form a general routing matrix [13]. In this paper, we discuss a
case of CLBs including LUTs and programmable flip-flops. The flip-flops are used to organize hidden
distributed registers keeping FSM state codes [2]. A LUT-based CLB includes a LUT, a flip-flop and a
multiplexer (Figure 1).

Figure 1. Architecture of a look-up table (LUT)-based configurable logic block (CLB).

A LUT can implement a function fc dependent on up to SL arguments. A LUT is a combinational
block. Thus, the value of fc could be changed by changing the values of arguments. Using the pulse of
synchronization clock, the current value of fc is written into the D flip-flop. The output of flip-flop
represents a registered function fR. The multiplexer MX selects an appropriate form of CLB’s output.
The output fCLB is either combinational (f0 = 0) or registered (f0 = 1).

An FSM circuit is represented by some SBF. For practical digital systems, an SBF can include
around 50–70 literals [3,4]. However, a LUT has not more than six inputs. This limitation
makes it necessary to transform SBFs representing FSM circuits. The transformation is executed
using different methods of functional decomposition (FD) [32]. The FD-based transformation
leads to FSM circuits with many levels of LUT-based CLBs and systems of unordered (irregular)
interconnections. The functional decomposition leads to CLB-based circuits having “spaghetti-type”
interconnections [33].

A Mealy FSM is represented as a six-component vector S =< X, Y, A, δ, λ, a1 > [34]. The vector
S includes a set of inputs X = {x1, . . . , xL}, a set of outputs Y = {y1, . . . , yN}, a set of internal
states A = {a1, . . . , aM}, a function of transitions δ, a function of output λ and an initial state

Electronics 2020, 9, 1859 4 of 34

a1 ∈ A. Various tools can be applied to represent the vector S. The most commonly used tools
are: graph-schemes of algorithms [3,34], binary decision diagrams [35,36], state transition graphs [4]
and inverter graphs [37]. In this article, we use state transition tables (STTs) to represent Mealy FSMs.

An STT includes the following columns [4]: a current state am; a state of transition (a next state) as;
an input signal Xh (it determines a transition from am to as); a collection of outputs Yh (it is generated
during the transition from the current state into the next state). The column h includes the numbers of
transitions (h ∈ {1, . . . , H}). For example, a Mealy FSM S0 is represented by the STT (Table 1).

Table 1. The state transition table (STT) of Mealy FSM S0.

am as Xh Yh h

a1 a2 x1 y1 1
a3 x1 y2y3 2

a2 a3 x2 y4 3
a1 x2 y2 4

a3 a1 1 – 5

As follows from Table 1, the FSM S0 has two inputs, four outputs, three states and five transitions.
From Table 1 we can find, for example, that δ(a1, x1) = a2 and λ(a1, x1) = y1 (these formulae
follow from the first row of Table 1). The following steps should be executed to construct SBFs
describing logic circuits of FSMs [3,34]: (1) the encoding of FSM states am ∈ A by binary codes
K(am); (2) the constructing sets of state variables T = {T1, . . . , TR} and input memory functions (IMFs)
Φ = {D1, . . . , DR}; and (3) constructing a direct structure table (DST). To encode the states am ∈ A,
the step of state assignment should be executed [2].

In this paper, we use the style of binary state assignment where the number state variables (R) is
determined as

R = dlog2Me. (1)

The binary state assignment is used, for example, in the system SIS [38]. The number of bits of the
state code can vary from the minimum value determined by (1) to the number of states, M. If R = M,
then the corresponding state codes are one-hot codes. This style is used, for example, by the academic
system ABC [37] of Berkeley.

A special state register (RG) keeps FSM state codes. It is controlled by two internal pulses.
The pulse start causes the loading of the initial state code into the RG. The pulse clock sets the time
when the RG can be changed. For CLB-based FSMs, state registers are constructed on the basis of D
flip-flops [2]. In this article, we also use state registers based on D flip-flops. The pulse clock allows the
functions Dr ∈ Φ to change the RG content.

After the state assignment, each state am ∈ A is represented by its code K(am). The Boolean
systems representing an FSM circuit can be derived from a DST. Compared to the initial STT, a DST
includes three additional columns: K(am), K(as) and Φh. The column Φh includes the symbols Dr ∈ Φ
corresponding to 1s in the code of the state as from the row h of a DST. A DST is a base for finding the
following SBFs:

Φ = Φ(T, X); (2)

Y = Y(T, X). (3)

The architecture of a Mealy FSM U1 is defined by these systems of Boolean functions (SBFs). It is
shown in Figure 2.

Let us analyze this architecture. The SBF (2) is implemented by Blockδ. This block includes the
distributed register. The RG is controlled by IMFs (2) and mutual pulses of synchronization and reset.
The SBF (3) is implemented using Blockλ. Both blocks are implemented with CLBs (Figure 1).

Electronics 2020, 9, 1859 5 of 34

Analysis of systems Φ and Y shows that they depend on the same variables. It is the main
peculiarity of Mealy FSMs. Many design methods [7,39] use this specific to reduce the numbers of
LUTs in circuits represented by SBFs (2) and (3).

Figure 2. Architecture of LUT-based Mealy FSM U1.

3. State-Of-The-Art

As a rule, the process of designing digital systems involves solving some optimization
problems [2,4]. In the case of FPGA-based sequential blocks, these problems are the following [2,24]:
(1) the reduction of chip resources required to implement a LUT-based circuit; (2) the decreasing the
propagation time (the increasing the maximum operating frequency); and (3) the reducing power
consumption. Our current article is devoted to improving the maximum operating frequency of
LUT-based Mealy FSMs.

The characteristics of FPGA-based FSM circuits can be improved due to optimal state
assignment [2,8,37–42]. Additionally, this can be done using embedded memory blocks (EMBs)
instead of LUT-based CLBs [43–50]. Let us analyze these approaches.

We call optimal state codes such codes that allow reducing the numbers of arguments in SBFs (2)
and (3). For example, the numbers of arguments is significantly reduced by the algorithm JEDI [38].
It is one of the best state assignments algorithms [2]. Due to it, we chose JEDI-based FSMs to compare
with FSMs based on our proposed approach.

Modern industrial CAD tools include various state assignment strategies. For example,
the following state assignment methods are used in the Xilinx design tool Vivado [40]: automatic state
assignment (auto); sequential encoding; the one-hot; Gray encoding and Johnson codes. The same
methods can be found in the package XST by Xilinx [51].

The one-hot state assignment is very popular in LUT-based design [41], because FPGAs include
many programmable flip-flops. The one-hot state assignment leads to increasing the number of input
memory functions compared with (1). However, these IMFs are much simpler than in the case of
binary state assignment [2]. As follows from [41], it is better to use the one-hot codes if an FSM has
more than 16 states. However, the characteristics of LUT-based FSM circuits significantly depend on
the number of inputs [2]. As follows from [42], the binary state encoding allows producing better FSM
circuits if L ≥ 10. Since each approach is good under certain conditions, we compare both of these
encoding styles with our proposed method. The method of binary state assignment auto of Vivado is
used as a baseline for comparison with the proposed method.

To reduce the power consumption, it is very important to diminish the number of interconnections
inside an FSM circuit. Therefore, to diminish the number of interconnections, it is necessary to minimize
the numbers of arguments in SBFs (2) and (3) [2]. Thus, it is always useful to apply the optimal state
assignment to improve the characteristics of FSM circuits.

The second approach to optimizing CLB-based FSMs is related to using EMBs instead of LUTs [47].
There are many design methods targeting EMB-based FSMs [47–49,52–57].The survey of different
methods of EMB-based design can be found in [47]. In the best case, only a single EMB is necessary to
implement an FSM circuit [49]. However, if the number of arguments in systems (2) and (3) exceeds the
maximum possible number of EMB address inputs, then an FSM is represented by a network of EMBs.

Electronics 2020, 9, 1859 6 of 34

To diminish the number of EMBs in such a network, it is necessary to implement some functions using
LUTs [2,49].

Thus, an FSM circuit can be implemented as either a network of EMBs, or a network of LUTs,
or a joint network of LUTs and EMBs. In this article, we discuss the second case, when FSM circuits
are implemented using LUT-based CLBs. This approach makes sense if: (1) all EMBs are used to
implement other parts of a digital system or (2) the number of arguments in SBFs (2) and (3) exceeds
15 (this is a maximum possible number of modern EMBs [11–13]).

Denote as NL(fi) the number of literals [4] in sum-of-products (SOPs) of functions (2) and (3).
If the condition

NL(fi) ≤ SL (i ∈ {1, . . . , N + R}) (4)

takes place, then a logic circuit for any function fi ∈ Φ ∪ Y is represented by exactly one LUT.
If NL(fi) > SL, then the corresponding logic circuit can be obtained using various methods of
FD [21,23,27,35,36,48,58,59]. The FD can be viewed as a process during which decomposed functions
are broken down into smaller and smaller components. If any component depends on no more than SL
arguments, the process of FD for a given function is completed. Of course, this results in multi-level
LUT-based circuits. For these circuits, it is typical that the same inputs xl ∈ X or state variables appear
on several logic levels. It significantly complicates the system of interconnection between LUTs of
FD-based FSM circuits (with all the ensuing consequences).

In the best case, the LUT count of an FSM circuit is equal to the total number of inputs and
state variables. However, if the condition (4) is violated, the LUT count increases by the value of
|Ψ|, where Ψ is a set of additional functions different from (2) and (3). These additional functions
are components of functions (2) and (3) produced during the process of FD. We do not discuss these
methods in our article.

The reducing LUT counts in circuits of Mealy FSMs can be achieved using the various methods of
structural decomposition [7,39]. These methods eliminate a direct dependence of functions yn ∈ Y
and Dr ∈ Φ on inputs xl ∈ X. The methods of structural decomposition are also connected with
introducing new functions fi ∈ Ψ. Functions fi ∈ Ψ depend on variables xl ∈ X and Tr ∈ T.
The structural decomposition allows reducing LUT counts if there is

|Ψ| � N + R. (5)

These new functions are divided into subsystems having unique input and output variables.
Each subsystem determines a separate LUT-based block of logic. When the condition (5) takes place,
the total LUT count for a decomposed FSM is significantly less than it is for equivalent FSM U1.
The new functions are arguments of functions (2) and (3). If the condition

|Ψ| � L + R (6)

takes place, then the total LUT count of a decomposed FSM circuit is significantly less than it is
for an equivalent multi-level circuit . A survey of different methods of structural decomposition is
represented in [7].

In this article, we discuss three known methods of structural decomposition [7,34]: replacement
of inputs, encoding of outputs and transformation of codes of collections of outputs into state codes.
Consider these approaches.

To reduce the LUT count, the inputs xl ∈ X could be replaced by additional variables pg ∈ P =

{p1, . . . , pG}, where G � L [34]. As a rule, the value of G is determined as [34]:

G = max(|X(a1)|, . . . , |X(aM)|). (7)

Electronics 2020, 9, 1859 7 of 34

The system of additional variables pg ∈ P is represented by the SBF

P = P(T, X). (8)

The functions fi ∈ Φ ∪Y are represented by the following SBFs:

Φ = Φ(T, P); (9)

Y = Y(T, P). (10)

Collections of outputs (COs) Yq ⊆ Y(q ∈ {1, . . . , Q}) include functions yn ∈ Y generated
simultaneously. To synthesize an FSM circuit, it is necessary to represent each CO Yq ⊆ Y by a binary
code K(Yq). As a rule, the number of bits in these codes is determined as

RQ = dlog2Qe. (11)

To create codes K(Yq), it is necessary to use additional variables zr ∈ Z = {z1, . . . , zRQ}.
This allows representing outputs of FSM as the following:

Y = Y(Z). (12)

The additional variables zr ∈ Z are represented by the following system:

Z = Z(T, X). (13)

To generate functions (13), an additional block of logic should be used.
In the work [30], two known methods of structural decomposition are used for reducing LUT

count for FPGA-based Mealy FSMs. It results in Mealy FSM U2 shown in Figure 3.

Figure 3. Architecture of Mealy FSM U2.

The logic circuit of Mealy FSM U2 has three logic levels. The BlockP executes the replacement of
inputs xl ∈ X by additional variables pg ∈ P = {p1, . . . , pG} and implements the SBF (8). The Blockδ

generates input memory functions (9) and additional variables zr ∈ Z used for encoding of collections
of outputs Yq ⊆ Y(q ∈ {1, . . . , Q}). This block includes a distributed register keeping state codes.
To generate variables zr ∈ Z, it is necessary to implement the system

Electronics 2020, 9, 1859 8 of 34

Z = Z(T, P). (14)

Blockλ implements the system (12) dependent on additional variables zr ∈ Z.
As our investigations [30] show, this approach allows significantly reducing the LUT count as

compared to equivalent FSM U1. However, this solution has a serious drawback: the performance of
FSM U2 is always less than it is for an equivalent Mealy FSM U1.

In [36], different models of Mealy FSMs based on transformation of object codes are discussed.
One of the typical methods from this group is a transformation of codes K(Yq) into state codes K(am).

The main idea of this approach is the following. For example, some CO Y3 is generated during
transitions into states a4 and a6. Using CO Y3, it is possible to determine these states. To do it, it is
necessary to use identifiers I1 and I2. Using two pairs < collection o f outputs, identi f ier > allows
the following representation of these states of transition: a4 →< Y3, I1 > and a6 →< Y3, I2 >. Thus,
each state am ∈ A can be represented by one or more pairs < Yq, Inp >. To create the set of identifiers
SI = {I1, . . . , INP}, it is necessary to find the maximum amount of pairs (NP) including the same CO
Yq ⊆ Y.

Each identifier Inp ∈ I is represented by a binary code K(Inp) having RI bits, where

RI = dlog2NPe. (15)

To encode identifiers, the elements of the set V = {v1, . . . , vRI} are used.
It allows representing the IMFs by the following system:

Φ = Φ(Z, V). (16)

The variables vr ∈ V are represented by the following system:

V = V(T, X). (17)

Thus, an FSM based on this principle implements systems (12), (13), (16) and (17). It is an FSM U3

shown in Figure 4.

Figure 4. Architecture of Mealy FSM U3.

In FSM U3, the BlockZV implements systems (13) and (17); the Blockδ implements input memory
functions represented as (16); the Blockλ implements the system (12). Thus, there are only two levels
of logic between inputs and outputs in the case of FSM U3. As follows from Figure 3, there are three
levels of logic between inputs and outputs in the case of FSM U2.

Electronics 2020, 9, 1859 9 of 34

This property of FSM U3 can be used for acceleration of a digital system. As is known [2],
outputs (3) of Mealy FSM are not stable. If inputs are changing during a clock cycle, the outputs (3)
may also change. This may cause the digital system as a whole to crash. To prevent failures, it is
necessary to prohibit the access of incorrect outputs (3) to a digital system. To do it, a special register
SRG is introduced (Figure 5).

Figure 5. Interaction of FSM with the rest of a digital system.

If all transients in the FSM circuit are completed and the values of outputs are stable, then a pulse
of synchronization C1 is generated. It allows loading outputs yn ∈ Y into SRG. Next, the registered
outputs yn ∈ YR enter the digital system. The system executes the corresponding operations and
generates the values of inputs xl ∈ X. Such an interaction should be organized for any model of
Mealy FSM.

Thus, in the case of FSM U3, the pulse C1 may be generated when the correct values are set for the
outputs of two blocks (BlockZV and Blockλ). In the case of FSM U2, the correct outputs are set after all
three blocks are triggered sequentially. Thus, the model U3 can provide better performance than the
model U2.

There is one very serious disadvantage of FSM U3 compared to equivalent FSM U2. If the relation

G < RI + RQ (18)

is true, then the number of LUTs (and maybe their levels) in BlockZV is significantly more than in
BlockP of equivalent FSM U2. In this article, we propose a method which allows reducing the number
of LUTs in FSM U3.

4. Main Idea of the Proposed Method

In this article, we discuss a case when the condition (4) is violated for some functions fi ∈ Z ∪V.
It leads to a multi-level circuit of BlockZV with an irregular system of interconnections. Obviously,
it degenerates the performance of FSM U3. To diminish the number of levels of LUTs in the circuit of
BlockZV, we propose the following approach.

As it is in the case of two-fold state assignment [7,60], we propose to construct a partition
Π = {A1, ..., AJ} of the set A such that the following condition takes place:

Rj + Lj ≤ SL(j ∈ {1, ..., J}). (19)

Using methods [7,60] allows creating the required partition ΠA having the minimum possible
number of classes, J.

If a class Aj ∈ ΠA includes Mj states am ∈ A,

Rj = dlog2(Mj + 1)e (20)

then there are enough state variables to encode the states am ∈ Aj. To do it, the state variables
Tr ∈ T j ⊆ T are used. There are Ro elements in the sets T and Φ:

Electronics 2020, 9, 1859 10 of 34

Ro =
J

∑
j=1

Rj. (21)

If am /∈ Aj, then Tr = 0 for Tr ∈ T j. It explains the presence of 1 in (20).
Now, we can encode each state am ∈ Aj by a code C(am) having Ro bits. In this code, Ro − Rj

variables are equal to zero. Only variables Tr ∈ T j identify a state am ∈ A as an element of Aj ∈ ΠA.
As Ro > R, the codes C(am) are extended state codes [7]. However, only Rj < R state variables

are used to represent functions dependent on states am ∈ Aj.
To find SBFs (13) and (17), it is necessary to construct a table of BlockZV (TZV). It includes the

columns am, C(am), as, Yq, Inp, Xh, K(Yq), K(Inp), Zh, Vh and h.
A class Aj ∈ ΠA determines a table TZVj which is a subtable of TZV. A table TZVj determines

sets X j ⊆ X, Zj ⊆ Z and V j ⊆ V. These variables are written in the columns Xh, Zh and Vh of TZVj,
respectively. Additionally, a table TZVj determines SBFs

Zj = Zj(T j, X j); (22)

V j = V j(T j, X j). (23)

Using this preliminary information, we propose an architecture of Mealy FSM U4 (Figure 6).

Figure 6. Architecture of Mealy FSM U4.

In FSM U4, the Blockj implements functions (22) and (23). Due to (19), each Blockj has only a
single level of LUTs.

BlockOR implements functions zr ∈ Z and vr ∈ V as disjunctions:

zr = z1
r ∨ z2

r ∨ ...∨ zj
r; (24)

vr = v1
r ∨ v2

r ∨ ...∨ vj
r. (25)

In (24) and (25), the superscript j means that the corresponding function is generated by the Blockj.
If J ≤ SL, then there is only a single level of LUTs in the circuit of BlockOR. Otherwise, it is a

multi-level block.
Blockλ and Blockδ execute the same functions as these blocks in FSM U3. The Blockλ generates

functions (12), the Blockδ the functions (16). If RQ ≤ SL, then Blockλ includes only a single level
of LUTs.

Electronics 2020, 9, 1859 11 of 34

Thus, in the best case, there are three levels of LUTs between inputs xl ∈ X and outputs
yn ∈ Y. If the condition (4) is violated for equivalent FSM U3, then the FSM U4 provides higher
operating frequency.

Comparison of Figure 4 and Figure 6 shows that: (1) BlockZV of U3 is replaced by Block1, ...,
BlockJ, BlockOR and (2) Blockδ of U4 has Ro > R outputs. These two issues are the main specifics of
FSM U4.

In this paper, we propose a method of synthesis of finite state machine U4. If an FSM is represented
by an STT, then the method includes the following steps:

1. Representing states am ∈ A by pairs P(m, q).
2. Encoding of collections of outputs and identifiers. Constructing SBF (12) representing Blockλ.
3. Constructing the partition ΠA of the set A.
4. Creating tables TZVj determining Block1–BlockJ.
5. Constructing SBFs representing Block1–BlockJ.
6. Constructing SBFs (24) and (25) representing BlockOR.
7. Constructing SBF (16) representing Blockδ.
8. Implementing the logic circuit of FSM U4.

The first step is executed using an initial STT. If CO Yq ⊆ Y is generated during transitions into
mq different states as ∈ A, then there are mq identifiers. Each identifier determines an unique state
represented by Yq ⊆ Y. The cardinality of the set SI is determined as

NP = max(m1, ..., mQ). (26)

Step 2 is executed on the basis of STT. The COs should be encoded in a way optimizing the
number of literals in SBF (12). Identifiers can be encoded in the trivial way.

The partition ΠA is constructed using methods from [7,43]. After finding classes Aj ∈ ΠA, we can
encode the states am ∈ Aj. It gives sets T j ⊆ T = {T1, ..., TR0} and Φ = {D1, ..., DR0}.

A table of Blockj has the following columns: am, C(am), X j
h, Zj

h, V j
h, h. The states am ∈ Aj are

written in the column am. As Tr = 0 if Tr ∈ T j, we can write only parts of C(am) created from state
variables Tr ∈ T j. A column Zj

h includes variables zj
h ∈ Zj, a column V j

h variables vj
h ∈ V j. The outcome

of step 4 is tables of Block1–BlockJ.
A table TZVj is a base to derive the SBFs (24) and (25). The terms of corresponding SOPs are

conjunctions Am · Xh, where Am is a conjunction of variables Tr ∈ T j. All other state variables are
treated as insignificant. The SBF (24) and (25) are used to implement circuits of Block1–BlockJ.

The step 6 is executed in the trivial way. If J ≤ SL, then there is a single level of LUTs in BlockOR.
In this case, its circuit includes exactly RQ + RI LUTs.

To find the SBF (16), it is necessary to construct a table of Blockδ. This table includes the following
columns: Yq, K(Yq), In p, K(Inp), as, C(as), Φh, h. Each row of this table corresponds to a pair < Yq, Inp >

determining the state as ∈ A. The terms of SOPs (16) are conjunctions of variables zr ∈ Z and vr ∈ V.
The corresponding literals are determined by codes K(Yq) and K(Inp).

The last step is executed using standard CAD tools. It is based on program tools translating initial
STT into required SBFs. These SBFs are used into VHDL models of FSMs.

Now, we would like to show the difference between the two-fold state assignment [60] and the
proposed method. In the first case, there are two sets of state variables. The set T = {T1, ...TR} is
used to encode states am ∈ A as elements of set A. The set τ = {τ1, ..., τR0} is used to encode states
am ∈ Aj as elements of sets Aj(j = 1, J). Due to it, there are two levels of logic creating inputs of
the Block1–BlockJ. In the proposed approach, the inputs of these block are generated by Blockδ. Thus,
the proposed approach leads to faster FSMs than for the two-fold state assignment.

Electronics 2020, 9, 1859 12 of 34

5. Example Of Synthesis

In this article, we use a symbol Ui(Sj) to show that an FSM model Ui is used to synthesize an
FSM Sj. An example of synthesis of Mealy FSM U4(S1) is shown in this section. A Mealy FSM S1 is
represented by Table 2.

The following characteristics of S1 follow from Table 2: the number of states M = 6, the number
of transitions H = 15, the number of inputs L = 6 and the number of outputs N = 8. Additionally,
the following collections of outputs can be found from Table 2: Y1 = ∅, Y2 = {y1, y2}, Y3 = {y3},
Y4 = {y2, y4}, Y5 = {y5, y6}, Y6 = {y5, y7}, Y7 = {y3, y8}. Thus, there is Q = 7.

Table 2. STT of Mealy FSM S1.

am as Xh Yh h

a1 a2 x1 y1y2 1
a3 x1x2 y3 2
a4 x1 x2 y2y4 3

a2 a2 x3x4 y3 4
a3 x3x4 y5y6 5
a5 x3 y5y7 6

a3 a4 x5 y5y6 7
a5 x5x1 y3y8 8
a6 x5 x1 y1y2 9

a4 a3 x6x3 y3 10
a5 x6x3 y2y4 11
a2 x6 y1y2 12

a5 a6 1 y1y2 13

a6 a1 x5 – 14
a3 x5 y3y8 15

1. Representing states by pairs P(m, q).
Using STT (Table 2), it is possible to find pairs < Yq, Inp > representing the states am ∈ A.

For example, the CO Y2 is written in the rows 1, 9, 12 and 13. Additionally, these rows include the
states of transitions a2 (rows 1 and 12) and a6 (rows 9 and 13). Thus, it is necessary two identifiers
(I1, I2) to distinguish these states: a2 →< Y2, I1 >, a6 →< Y2, I2 >.

Using the same approach, we can find all pairs < Yq, Inp > for the given example. The process is
shown in Figure 7. Using (26) gives NP = 2 and I = {I1, I2}.

Y1 → a1 → ∅→< Y1, ∅ >= P(1, 1)
Y2 → a2 → I1 →< Y2, I1 >= P(2, 2)
Y2 → a6 → I2 →< Y2, I2 >= P(6, 2)
Y3 → a2 → I1 →< Y3, I1 >= P(2, 3)
Y3 → a3 → I2 →< Y3, I2 >= P(3, 3)
Y4 → a4 → I1 →< Y4, I1 >= P(4, 4)
Y4 → a5 → I2 →< Y4, I2 >= P(5, 4)
Y5 → a3 → I1 →< Y5, I1 >= P(3, 5)
Y5 → a4 → I2 →< Y5, I2 >= P(4, 5)
Y6 → a5 → ∅→< Y6, ∅ >= P(5, 6)
Y7 → a3 → I1 →< Y7, I1 >= P(3, 7)
Y6 → a5 → I2 →< Y7, I2 >= P(5, 7)

Figure 7. Representation of states by pairs P(m, q).

Electronics 2020, 9, 1859 13 of 34

In the discussed case, there is HP = 12, where HP is a number of pairs P(m, q). Thus, the Blockδ

will be represented by the table having 12 rows.
2. Encoding of COs Yq ⊆ Y and identifiers Inp ∈ SI. There is Q = 7, NP = 2. Using (11) gives

RQ = 3 and the set Z = {z1, z2, z3}. Using (15) gives RI = 1 and the set V = {v1}.
There is RQ + RI = 4 < SL. Therefore, each equation from SBF (16) is implemented using only

a single look-up table. Thus, there is no need in encoding of COs in a way optimizing (16). Let us
encode COs Yq ⊆ Y in a way optimizing the SBF (12).

Using contents of COs, the following SBF can be obtained:

y1 = Y2; y2 = Y2 ∨Y4; y3 = Y3 ∨Y7;
y4 = Y4; y5 = Y5 ∨Y6; y6 = Y5; y7 = Y6; y8 = Y7.

(27)

To diminish the number of interconnections between BlockOR and Blockδ, it is necessary to
reduce the number of literals in functions (12). It can be done using approach [61]. One of the possible
solutions is shown in Figure 8.

z1z2

z3 00 01 11 10

0

1

Y1 Y2 Y5Y4

Y3 Y7 Y6∗

Figure 8. Outcome of encoding of collections of outputs (COs).

Using codes from Figure 8 and rules of minimization [4], we can transform the SBF (27) into the
following system:

y1 = z1z2z3; y2 = z2z3; y3 = z1z3;
y4 = z1z2; y5 = z1z2; y6 = z1z2 z3;

y7 = z1z3; y8 = z2z3.
(28)

The system (28) represents Blockλ of U4(S1). This block has 18 interconnections with BlockOR.
In the common case, there are N · RQ = 8× 3 = 24 literals (and 24 interconnections). Thus, the number
of interconnections is reduced by 1.33 times thanks to encoding of COs shown in Figure 8.

The identifiers can be encoded in a trivial way: K(I1) = 0 and K(I2) = 1. Now, the identifier I1 is
determined by v1, and I2 by v1.

3. Constructing the partition of the set A. There is SL = 5 in the discussed example. It means that
each block Aj ∈ ΠA should satisfy the condition Lj + Rj ≤ 5.

This step is very important because it determines significantly the characteristics of FSM U4 [60].
We do not discuss this step in detail. Instead, we use the approach [60] to create the partition
ΠA = {A1, A2} with classes A1 = {a1, a3, a6} and A2 = {a2, a4, a5}. Using Table 2 gives the sets
X1 = {x1, x2, x5} and X2 = {x3, x4, x6}.

Using (20) gives R1 = R2 = 2, Ro = 4, T = {T1, ..., T4}, T1 = {T1, T2} and T2 = {T3, T4}. There is
L1 = L2 = 3. It means that L1 + R1 = L2 + R2 = 5 = SL. Thus, the found partition satisfies the
condition (19).

Due to it, state codes C(am) do not affect the number of look-up tables in circuits of Block1 and
Block2. We can encode them in the following way: C(a1) = 0100, C(a2) = 0001, C(a3) = 1000,
C(a4) = 0010, C(a5) = 0011 and C(a6) = 1100.

4. Creating tables of Block1 and Block2. To do it, we should construct a table of BlockZV of
equivalent FSM U3(S1). Next, this table is divided by two tables using classes Aj ∈ ΠA and
codes C(am).

Table of BlockZV is constructed using an initial STT. To do it, the states of transitions are
replaced by corresponding pairs P(m, q). Additionally, the codes K(Yq), K(Ip) and columns Zh, Vh are

Electronics 2020, 9, 1859 14 of 34

introduced instead of the column Yh of STT. In the discussed example, the BlockZV is represented by
Table 3.

In Table 3, we used codes K(Yq) from Figure 8. The pairs <Yq, Inp> were taken from Figure 7.
To design circuits of Block1–BlockJ, Table 3 should be transformed into a set of tables representing
blocks of the first level of logic.

Table 3. Table of BlockZV of Mealy FSM U3(S1).

am C(am) as Yq Inp Xh K(Yq) K(Inp) Zh Vh h

a1 0100 a2 Y2 I1 x1 010 0 z2 – 1
a3 Y3 I2 x1x2 001 1 z3 v1 2
a4 Y4 I1 x1 x2 110 0 z1z2 – 3

a2 0001 a2 Y3 I1 x3x4 001 0 z3 – 4
a3 Y5 I1 x3x4 100 0 z1 – 5
a5 Y6 – x3 101 – z1z3 – 6

a3 1000 a4 Y5 I2 x5 100 1 z1 v1 7
a5 Y7 I2 x5x1 011 1 z2z3 v1 8
a6 Y2 I2 x5 x1 010 1 z2 v1 9

a4 0010 a3 Y3 I2 x6x3 001 1 z3 v1 10
a5 Y4 I2 x6x3 110 1 z1z2 v1 11
a2 Y2 I1 x6 010 0 z2 – 12

a5 0011 a6 Y2 I2 1 010 1 z2 v1 13

a6 1100 a1 Y1 – x5 000 – – – 14
a3 Y7 I1 x5 011 0 z2z3 – 15

Consider the row h = 1 of Table 3. It corresponds the pair P(2, 2). Thus, the column Yq includes
Y2 and the column Inp includes I1. The column K(Yq) includes K(Y2) = 010, the column K(Inp) the
code K(I1) = 0. It explains the contents of columns Zh and Vh of the row 1. The column Xh is the same
as for initial STT (Table 2). All other rows are filled in the same way.

To create tables of a Blockj, we should: (1) choose state am ∈ Aj and (2) take rows of table of
BlockZV for these states. In this case, the Block1 is represented by Table 4 and the Block2 by Table 5.
In Tables 4 and 5 the superscripts 1 and 2 mean that corresponding functions are implemented by
Block1 or Block2, respectively.

Table 4. Table of Block1 of Mealy FSM U4(S1).

am C(am) X1
h Z1

h V1
h h

a1 01 x1 z1
2 – 1

x1x2 z1
3 v1

1 2
x1 x2 z1

1 z1
2 – 3

a3 10 x5 z1
1 v1

1 4
x5x1 z1

2 z1
3 v1

1 5
x5 x1 z1

2 v1
1 6

a6 11 x5 – – 7
x5 z1

2 z1
3 – 8

Electronics 2020, 9, 1859 15 of 34

Table 5. Table of Block2 of Mealy FSM U4(S1).

am C(am) X1
h Z1

h V1
h h

a2 01 x3x4 z2
1 – 1

x3x4 z2
3 – 2

x3 z2
1 z2

3 – 3

a4 10 x6x3 z2
3 v2

1 4
x6x3 z2

1 z2
2 v2

1 5
x6 z2

2 – 6

a5 11 1 z2
2 v2

1 7

5. Constructing systems representing blocks of the first level. These systems are constructed
using Tables 4 and 5. Each system includes RQ + RI = 4 equations.

The Block1 is represented by the following SBF:

z1
1 = T1T2x5;

z1
2 = T1T2x1 ∨ T1T2x2 ∨ T1x5;

z1
3 = T1T2x1x2 ∨ T1T2x5x1 ∨ T1T2x5;

v1
1 = T1T2x1x2 ∨ T1T2.

(29)

The Block2 is represented by the following SBF:

z2
1 = T3T4x4 ∨ T3T4x3 ∨ T3T4x6x3;

z2
2 = T3T4x3 ∨ T3T4x6 ∨ T3T4;

z2
3 = T3T4x4 ∨ T3T4x3 ∨ T3T4x6x3;

v2
1 = T3T4x6 ∨ T3T4.

(30)

6. Constructing the system for BlockOR. This system is constructed in a trivial way. Each function
fi ∈ Z ∪V is represented by a disjunction of functions of the same name with different upper indexes.
It is the following SBF in the discussed case:

z1 = z1
1 ∨ z2

1; z2 = z1
2 ∨ z2

2;
z3 = z1

3 ∨ z2
3; v1 = v1

1 ∨ v2
1.

(31)

7. Constructing the system for Blockδ. To find the system (16), it is necessary to create a table of
Blockδ. It is constructed using pairs P(m, q) and codes K(Yq), K(Inp) and C(as). In the discussed case,
this is Table 6. The table uses data from Figures 7 and 8. The following SBF is derived from Table 6:

D1 = z1z2z3v1 ∨ z1 z2z3v1 ∨ z1z2 z3 v1 ∨ z1z2z3v1;
D2 = z1 z2 z3 ∨ z1z2z3v1;

D3 = z1z2z3 ∨ z1z2 z3v1 ∨ z1z2z3 ∨ z1z2z3v1;
D4 = z1z2z3 v1 ∨ z1 z2z3v1 ∨ z1z2z3v1 ∨ z1z2z3 ∨ z1z2z3v1.

(32)

Now, we have systems for each block of FSM U4(S1). Next step is the implementation of the
logic circuit.

8. Implementing the logic circuit of FSM U4(S1). This step is executed using special synthesis
tools, e.g., Quartus Prime [50] or Vivado by Xilinx [40]. During this step, each LUT is represented by
its truth table. Such complicated tasks are executed as mapping, placement and routing [6]. We just
focus on finding the number of LUTs in the circuit and do not discuss this step for our example.

The Block1 is represented by the SBF (29). The corresponding circuit includes four LUTs. The Block2
is represented by the SBF (30). Its circuit also includes four LUTs. Thus, the first level of logic includes
eight LUTs having SL = 5.

Electronics 2020, 9, 1859 16 of 34

The BlockOR is represented by the SBF (31). To implement its circuit, it is enough to have four LUTs.
Blockλ is represented by the SBF (28). Its circuit consist of 8 LUTs. At last, the system (32) represents
Blockδ. Its circuit has four LUTs.

Thus, the circuit of FSM U4(S1) includes 24 LUTs. There are three levels of LUTs between inputs
xl ∈ X and outputs yn ∈ Y. The same is true for inputs and input memory functions Dr ∈ Φ.

This example is very simple. We show it to explain all steps of the proposed method. The next
Section shows results of experiments with more complex FSMs.

Table 6. Table of Blockδ of Mealy FSM U4(S1).

Yq K(Yq) Inp K(Inp) as C(as) Φh h

Y1 000 – – a1 0100 D2 1

Y2 010 I1 0 a2 0001 D4 2
I2 1 a6 1100 D1D2 3

Y3 001 I1 0 a2 0001 D4 4
I2 1 a3 1000 D1 5

Y4 110 I1 0 a4 0010 D3 6
I2 1 a5 0011 D3D4 7

Y5 100 I1 0 a3 1000 D1 8
I2 1 a4 0010 D3 9

Y6 101 – – a5 0011 D3D4 10

Y7 011 I1 0 a3 1000 D1 11
I2 1 a5 0011 D3D4 12

6. Experimental Results

In this section we show the results of experiments based on benchmark FSMs from the library [31].
There are 48 benchmarks in the library. They are very often used to compare outcomes of different
design methods. The benchmark Mealy FSMs are represented in the format KISS2. We do not show
the characteristics of these benchmarks in this article. They can be found, for example, in [30].

To implement FPGA-based FSM, we used VHDL-based FSM models. Our CAD tool K2F [2]
translated the benchmarks into VHDL-based FSM models. The synthesis and simulation of FSMs were
executed by the Active-HDL environment. As a target platform, we used Xilinx VC709 Evaluation
Board (Virtex 7, XC7VX690T-2FFG1761C) [62]. This chip includes LUTs having SL = 6. To execute the
technology mapping and produce reports with characteristics of resulting FSM circuits, we used Xilinx
CAD tool Vivado—version 2019.1 [40].

When we investigated FSM U2 [30], we found that this model allows producing circuits with
less area and power consumption if R + L > SL. In [30], we divided the benchmarks into five
groups using the values of L + R and SL. If L + R ≤ 6, then benchmarks belong to group 0 (trivial
FSMs); if L + R ≤ 12, then to group 1 (simple FSMs); if L + R ≤ 18, then to group 2 (average FSMs);
if L + R ≤ 24, then to group 3 (big FSMs); otherwise, they belong to group 4 (very big FSMs). As our
research [30] shows, the larger the group number, the bigger the gain from using our method. We use
the same division of benchmarks in this article too.

Group 0 includes the following benchmarks: bbtas, dk17, dk27, dk512, ex3, ex5, lion, lion9, mc,
modulo12 and shiftreg. Group 1 contains the most benchmarks. They are the following: bbara, bbsse,
beecount, cse, dk14, dk15, dk16, donfile, ex2, ex4, ex6, ex7, keyb, mark1, opus, s27, s386, s840 and
sse. Group 2 consists of the following 12 benchmarks: ex1, kirkman, planet, planet1, pma, s1, s1488,
s1494, s1a, s208, styr and tma. There is only a single benchmark: sand in Group 3. Group 4 includes
the following benchmarks: s420, s510, s820 and s832.

In the section State-of-the-art, we have justified the choice of three methods for comparison
with our approach. We chose the method auto of Vivado as a method based on binary state codes.

Electronics 2020, 9, 1859 17 of 34

Additionally, we used the method one-hot of Vivado. Due to its high reputation, we chose JEDI-based
FSMs as a basis for comparison too. Our approach is a competitor to the method from work [30].
Thus, we chose U2-based FSMs with three levels of logic blocks as the fourth method used in
experiments. The results of experiments are shown in Table 7 (the number of LUTs) and Table 8
(the maximum operating frequency). These results were taken from reports generated by Vivado.

Table 7. Results of experiments (LUT count).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbara 17 17 10 10 14 1

bbsse 33 37 24 26 29 1

bbtas 5 5 5 8 9 0

beecount 19 19 14 14 16 1

cse 40 66 36 33 35 1

dk14 16 27 10 12 14 1

dk15 15 16 12 8 11 1

dk16 15 34 12 11 13 1

dk17 5 12 5 8 10 0

dk27 3 5 4 7 9 0

dk512 10 10 9 12 14 0

donfile 31 31 24 21 24 1

ex1 70 74 53 40 44 2

ex2 9 9 8 8 10 1

ex3 9 9 9 11 14 0

ex4 15 13 12 11 13 1

ex5 9 9 9 10 12 0

ex6 24 36 22 21 23 1

ex7 4 5 4 6 8 1

keyb 43 61 40 37 40 1

kirkman 42 58 39 33 35 2

lion 2 5 2 6 8 0

lion9 6 11 5 8 10 0

mark1 23 23 20 19 21 1

mc 4 7 4 6 8 0

modulo12 7 7 7 9 11 0

opus 28 28 22 21 23 1

planet 131 131 88 78 82 2

planet1 131 131 88 78 82 2

pma 94 94 86 72 76 2

s1 65 99 61 54 58 2

s1488 124 131 108 89 93 2

s1494 126 132 110 90 94 2

s1a 49 81 43 38 42 2

Electronics 2020, 9, 1859 18 of 34

Table 7. Cont.

Benchmark Auto One-Hot JEDI U2 Our Approach Group

s208 12 31 10 9 11 2

s27 6 18 6 6 8 1

s386 26 39 22 20 22 1

s420 10 31 9 8 10 4

s510 48 48 32 22 23 4

s8 9 9 9 9 11 1

s820 88 82 68 52 56 4

s832 80 79 62 50 52 4

sand 132 132 114 99 103 3

shiftreg 2 6 2 4 6 0

sse 33 37 30 26 29 1

styr 93 120 81 70 78 2

tma 45 39 39 30 34 2

Total 1808 2104 1489 1320 1448

Percentage,% 124.86 145.30 102.83 91.16 100

Table 8. Results of experiments (the operating frequency, MHz).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbara 193.39 193.39 212.21 183.32 210.21 1

bbsse 157.06 169.12 182.34 159.24 193.43 1

bbtas 204.16 204.16 206.12 194.43 201.47 0

beecount 166.61 166.61 187.32 156.72 194.47 1

cse 146.43 163.64 178.12 153.24 182.62 1

dk14 191.64 172.65 193.85 162.78 201.39 1

dk15 192.53 185.36 194.87 175.42 206.74 1

dk16 169.72 174.79 197.13 164.16 199.14 1

dk17 199.28 167.00 199.39 147.22 172.99 0

dk27 206.02 201.9 204.18 181.73 190.32 0

dk512 196.27 196.27 199.75 175.63 187.45 0

donfile 184.03 184 203.65 174.28 206.83 1

ex1 150.94 139.76 176.87 164.32 180.72 2

ex2 198.57 198.57 200.14 188.95 196.58 1

ex3 194.86 194.86 195.76 174.44 187.26 0

ex4 180.96 177.71 192.83 168.39 196.18 1

ex5 180.25 180.25 181.16 162.56 162.56 0

ex6 169.57 163.8 176.59 156.42 187.53 1

ex7 200.04 200.84 200.6 191.43 204.16 1

keyb 156.45 143.47 168.43 136.49 178.59 1

kirkman 141.38 154.00 156.68 155.36 184.62 2

lion 202.43 204.00 202.35 185.74 195.73 0

Electronics 2020, 9, 1859 19 of 34

Table 8. Cont.

Benchmark Auto One-Hot JEDI U2 Our Approach Group

lion9 205.3 185.22 206.38 167.28 183.45 0

mark1 162.39 162.39 176.18 153.48 182.37 1

mc 196.66 195.47 196.87 178.02 182.95 0

modulo12 207.00 207.00 207.13 189.7 201.74 0

opus 166.2 166.2 178.32 157.42 186.34 1

planet 132.71 132.71 187.14 174.68 212.45 2

planet1 132.71 132.71 187.14 173.29 212.45 2

pma 146.18 146.18 169.83 156.12 192.43 2

s1 146.41 135.85 157.16 145.32 145.32 2

s1488 138.5 131.94 157.18 141.27 182.14 2

s1494 149.39 145.75 164.34 155.63 186.49 2

s1a 153.37 176.4 169.17 166.36 188.92 2

s208 174.34 176.46 178.76 166.42 192.15 2

s27 198.73 191.5 199.13 185.15 201.26 1

s386 168.15 173.46 179.15 164.65 192.34 1

s420 173.88 176.46 177.25 186.35 218.62 4

s510 177.65 177.65 198.32 199.05 221.19 4

s8 180.02 178.95 181.23 168.32 191.32 1

s820 152.00 153.16 176.58 175.69 195.73 4

s832 145.71 153.23 173.78 174.39 199.18 4

sand 115.97 115.97 126.82 120.07 143.14 3

shiftreg 262.67 263.57 276.26 248.79 253.72 0

sse 157.06 169.12 174.63 158.14 171.18 1

styr 137.61 129.92 145.64 118.02 164.52 2

tma 163.88 147.8 164.14 137.48 182.72 2

Total 8127.08 8061.22 8718.87 7873.36 9005.11

Percentage,% 90.25 89.52 96.82 87.43 100

We use the same organization of Tables 7 and 8. Their rows are marked by the names of
benchmarks, the columns by investigated design methods. The row “Total” includes results of
summation for corresponding values. The summarized characteristics of our approach (U4-based
FSMs) were taken as 100%. The row “Percentage” shows the percentages of summarized characteristics
of FSM circuits implemented by other methods, respectively, compared to benchmarks based on our
approach. Let us point out that the model U1 was used for designs with auto, one-hot, and JEDI.

As follows from Table 7, the U2-based FSMs require fewer LUTs than other investigated methods.
Our approach produces circuits having 8.84% more LUTs than equivalent U2-based FSMs. However,
our approach requires fewer LUTs than auto (24.86% of gain), one-hot (45.3% of gain) and JEDI-based
FSMs (2.83% of gain). The higher is the group, the greater is the gain in LUTs respectively auto, one-hot
and JEDI-based FSMs. We show these results in Figure 9.

Electronics 2020, 9, 1859 20 of 34

Analysis of Table 8 shows that the U4-based FSMs have the highest operating frequency of the
investigated methods. Our method gives us a 9.85% advantage over the auto. The one-hot of Vivado
loses 10.48% to our approach. The U4-based FSMs provide a 3.18% gain compared to JEDI-based FSMs.
At last, the U2-based FSMs have an average frequency of 12.57% less than it is for FSM based on our
approach. These results are shown in Figure 10.

Figure 9. Total gain in LUTs relative to our approach (LUT count—total percentage).

Figure 10. Total gain in frequency relative to our approach (the operating frequency—total percentage).

Electronics 2020, 9, 1859 21 of 34

To clarify how the gain in LUTs depends on the FSM group, we have created Table 9 (gain in
LUTs for group 0), Table 10 (gain in LUTs for group 1) and Table 11 (gain in LUTs for groups 2–4).
Additionally, we present these results by graphs on Figures 11–13, respectively. To clarify how the gain
in frequency depends on the FSM group, we have created Table 12 (gain in frequency for group 0),
Table 13 (gain in frequency for group 1) and Table 14 (gain in frequency for groups 2–4). Additionally,
we present these results by graphs on Figures 14–16, respectively.

Table 9. Gain in LUTs for group 0 (LUT count).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbtas 5 5 5 8 9 0

dk17 5 12 5 8 10 0

dk27 3 5 4 7 9 0

dk512 10 10 9 12 14 0

ex3 9 9 9 11 14 0

ex5 9 9 9 10 12 0

lion 2 5 2 6 8 0

lion9 6 11 5 8 10 0

mc 4 7 4 6 8 0

modulo12 7 7 7 9 11 0

shiftreg 2 6 2 4 6 0

Total 62 86 61 89 111

Percentage,% 55.86 77.48 54.59 80.18 100

Figure 11. Gain in LUTs for group 0 (LUT count—total percentage).

Electronics 2020, 9, 1859 22 of 34

Table 10. Gain in LUTs for group 1 (LUT count).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbara 17 17 10 10 14 1

bbsse 33 37 24 26 29 1

beecount 19 19 14 14 16 1

cse 40 66 36 33 35 1

dk14 16 27 10 12 14 1

dk15 15 16 12 8 11 1

dk16 15 34 12 11 13 1

donfile 31 31 24 21 24 1

ex2 9 9 8 8 10 1

ex4 15 13 12 11 13 1

ex6 24 36 22 21 23 1

ex7 4 5 4 6 8 1

keyb 43 61 40 37 40 1

mark1 23 23 20 19 21 1

opus 28 28 22 21 23 1

s27 6 18 6 6 8 1

s386 26 39 22 20 22 1

s8 40 9 9 9 9 11 1

sse 33 37 30 26 29 1

Total 406 525 337 319 364

Percentage,% 111.54 144.23 92.58 87.64 100

Figure 12. Gain in LUTs for group 1 (LUT count—total percentage).

Electronics 2020, 9, 1859 23 of 34

Table 11. Gain in LUTs for groups 2–4 (LUT count).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

ex1 70 74 53 40 44 2

kirkman 42 58 39 33 35 2

planet 131 131 88 78 82 2

planet1 131 131 88 78 82 2

pma 94 94 86 72 76 2

s1 65 99 61 54 58 2

s1488 124 131 108 89 93 2

s1494 126 132 110 90 94 2

s1a 49 81 43 38 42 2

s208 12 31 10 9 11 2

styr 93 120 81 70 78 2

tma 45 39 39 30 34 2

sand 132 132 114 99 103 3

s420 10 31 9 8 10 4

s510 48 48 32 22 23 4

s820 88 82 68 52 56 4

s832 80 79 62 50 52 4

Total 1340 1493 1091 912 973

Percentage,% 137.72 153.44 112.13 93.73 100.00

Figure 13. Gain in LUTs for groups 2–4 (LUT count—total percentage).

Analysis of Table 9 and Figure 10 shows that the U4-based FSMs have more used LUTs than other
investigated methods. Our method has the following loss: 44.14% compared to auto, 22.52% compared
to one-hot, 45.05% compared to JEDI-based FSMs and 19.82% compared to U2-based FSMs. Thus, this
method is not suitable for small FSMs.

Electronics 2020, 9, 1859 24 of 34

As follows from Table 10 and Figure 12, the U4-based FSMs of group 1 required fewer LUTs
than FSMs based on auto (11.54% of gain) and one-hot (44.23% of gain). However, we still lose to the
JEDI-based FSMs (7.42% of loss) and U2-based FSMs (12.36% of loss). Note that the loss decreased in
comparison with the group 0.

As follows from Table 11 and Figure 10, the U4-based FSMs of groups 2–4 required fewer LUTs
than FSMs based on auto (37.72% of gain), one-hot (53.44% of gain) and JEDI-based FSMs (12.13% of
gain). Only U2-based FSMs have better results and our approach has 6.27% of loss. Note that the loss
decreased in comparison with the group 1. Thus, starting from average FSMs, our approach loses only
to the U2-based FSMs.

Table 12. Gain in frequency for group 0 (the operating frequency).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbtas 204.16 204.16 206.12 194.43 201.47 0

dk17 199.28 167 199.39 147.22 172.99 0

dk27 206.02 201.9 204.18 181.73 190.32 0

dk512 196.27 196.27 199.75 175.63 187.45 0

ex3 194.86 194.86 195.76 174.44 187.26 0

ex5 180.25 180.25 181.16 162.56 162.56 0

lion 202.43 204 202.35 185.74 195.73 0

lion9 205.3 185.22 206.38 167.28 183.45 0

mc 196.66 195.47 196.87 178.02 182.95 0

modulo12 207 207 207.13 189.7 201.74 0

shiftreg 262.67 263.57 276.26 248.79 253.72 0

Total 2254.90 2199.70 2275.35 2005.54 2119.64

Percentage, % 106.38 103.78 107.35 94.62 100.00

Figure 14. Gain in frequency for group 0 (the operating frequency—total percentage).

Electronics 2020, 9, 1859 25 of 34

Table 13. Gain in frequency for group 1 (the operating frequency).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbara 193.39 193.39 212.21 183.32 210.21 1

bbsse 157.06 169.12 182.34 159.24 193.43 1

beecount 166.61 166.61 187.32 156.72 194.47 1

cse 146.43 163.64 178.12 153.24 182.62 1

dk14 191.64 172.65 193.85 162.78 201.39 1

dk15 192.53 185.36 194.87 175.42 206.74 1

dk16 169.72 174.79 197.13 164.16 199.14 1

donfile 184.03 184 203.65 174.28 206.83 1

ex2 198.57 198.57 200.14 188.95 196.58 1

ex4 180.96 177.71 192.83 168.39 196.18 1

ex6 169.57 163.8 176.59 156.42 187.53 1

ex7 200.04 200.84 200.6 191.43 204.16 1

keyb 156.45 143.47 168.43 136.49 178.59 1

mark1 162.39 162.39 176.18 153.48 182.37 1

opus 166.2 166.2 178.32 157.42 186.34 1

s27 198.73 191.5 199.13 185.15 201.26 1

s386 168.15 173.46 179.15 164.65 192.34 1

s8 180.02 178.95 181.23 168.32 191.32 1

sse 157.06 169.12 174.63 158.14 171.18 1

Total 3339.55 3335.57 3576.72 3158.00 3682.68

Percentage, % 90.68 90.57 97.12 85.75 100.00

Figure 15. Gain in frequency for group 1 (the operating frequency—total percentage).

Electronics 2020, 9, 1859 26 of 34

Table 14. Gain in frequency for groups 2–4 (the operating frequency).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

ex1 150.94 139.76 176.87 164.32 180.72 2

kirkman 141.38 154 156.68 155.36 184.62 2

planet 132.71 132.71 187.14 174.68 212.45 2

planet1 132.71 132.71 187.14 173.29 212.45 2

pma 146.18 146.18 169.83 156.12 192.43 2

s1 146.41 135.85 157.16 145.32 145.32 2

s1488 138.5 131.94 157.18 141.27 182.14 2

s1494 149.39 145.75 164.34 155.63 186.49 2

s1a 153.37 176.4 169.17 166.36 188.92 2

s208 174.34 176.46 178.76 166.42 192.15 2

styr 137.61 129.92 145.64 118.02 164.52 2

tma 163.88 147.8 164.14 137.48 182.72 2

sand 115.97 115.97 126.82 120.07 143.14 3

s420 173.88 176.46 177.25 186.35 218.62 4

s510 177.65 177.65 198.32 199.05 221.19 4

s820 152 153.16 176.58 175.69 195.73 4

s832 145.71 153.23 173.78 174.39 199.18 4

Total 2532.63 2525.95 2866.80 2709.82 3202.79

Percentage, % 79.08 78.87 89.51 84.61 100.00

Figure 16. Gain in frequency for groups 2–4 (the operating frequency—total percentage).

As follows from Table 12 and Figure 14, the U4-based FSMs of group 0 are faster than U2-based
FSMs (5.38% of gain). In this group, the best results belong to JEDI-based FSMs. They have the
following gains: (1) 0.9% regarding auto; (2) 3.57% regarding one-hot; (3) 12.73% regarding U2-based

Electronics 2020, 9, 1859 27 of 34

FSMs; (4) 7.35% regarding our approach. Thus, for the group 0, there is no sense in applying our
approach. However, starting from the group 1, our method allows producing faster circuits than the
other investigated methods.

The proposed approach produces the best results for FSMs from group 1 (Table 13 and Figure 15).
There are the following gains: (1) 9.32% regarding auto; (2) 9.43% regarding one-hot; (3) 2.88%
regarding JEDI-based FSMs; and (4) 14.25% regarding U2-based FSMs. Our approach provides even
better results (Table 14 and Figure 16) for FSMs from groups 2–4. The gain increases and amounts to:
(1) 20.92% regarding auto; (2) 21.13% regarding one-hot; (3) 10.49% regarding JEDI-based FSMs; and
(4) 15.39% regarding U2 -based FSMs.

As can be seen from Table 8, the U2-based FSMs require fewer LUTs compared to other methods.
Analysis of Table 9 shows that U4-based FSMs are the ones with the highest maximum operating
frequency compared to other methods. The overall design quality can be estimated by the product of
used resources [63] (for example, chip area occupied by a circuit) and the latency time. As it is in [63],
we use the number of LUTs to compare areas required for FSM circuits based on different models
(auto, one-hot, JEDI, U2 and U4). As a rule, an FSM is only a part of a digital system. We do not know
how many cycles a system needs to perform a required task. Thus, we cannot find absolute values of
latency times. However, for a relative evaluation of different models, it is sufficient to know only the
time of cycle.

In this article, we have performed a generalized comparison of the models used in experiments.
As a generalized assessment, we used the result of multiplying the number of LUTs in an FSM circuit
by the cycle time. The numbers of LUTs are taken from Table 7. To calculate the cycle times in
nanoseconds, we used the operating frequencies from Table 8. The area-time products measured in
LUTs × ns are shown in Table 16.

To better evaluate the chip resources used by FSM circuits, we have created Table 15. It contains
the numbers of flip-flops required for implementing the state registers. As follows from Table 15,
there are the same number of flip-flops in registers of FSMs obtained using methods auto, JEDI and
U2-based FSMs. For these FSMs the number of memory elements is the same. They use the least
number of flip-flops determined as R = dlog2Me. The largest number of flip-flops is consumed by
FSMs based on the one-hot state assignment (eight times more than, for example, U2-based FSMs and
4.97 times more than U4-based FSMs). Our approach gives a gain of 397% compared to one-hot-based
FSMs, but loses 37% to other investigated methods. If we find the difference between, for example,
the number of flip-flops in registers of U2- and U4-based FSMs, we can see that the difference decreases
as the group number decreases.

Table 15. Results of experiments (FFs count).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbara 4 12 4 4 6 1

bbsse 5 26 5 5 6 1

bbtas 4 9 4 4 4 0

beecount 4 10 4 4 6 1

cse 5 32 5 5 7 1

dk14 5 26 5 5 8 1

dk15 5 17 5 5 7 1

dk16 7 75 7 7 10 1

dk17 4 16 4 4 4 0

dk27 4 10 4 4 4 0

dk512 5 24 5 5 4 0

Electronics 2020, 9, 1859 28 of 34

Table 15. Cont.

Benchmark Auto One-Hot JEDI U2 Our Approach Group

donfile 5 24 5 5 6 1

ex1 7 80 7 7 11 2

ex2 5 25 5 5 7 1

ex3 4 14 4 4 4 0

ex4 5 18 5 5 7 1

ex5 4 16 4 4 4 0

ex6 4 14 4 4 6 1

ex7 5 17 5 5 7 1

keyb 5 22 5 5 6 1

kirkman 6 48 6 6 10 2

lion 3 5 3 3 3 0

lion9 4 11 4 4 4 0

mark1 5 22 5 5 7 1

mc 3 8 3 3 3 0

modulo12 4 12 4 4 4 0

opus 5 18 5 5 7 1

planet 7 86 7 7 12 2

planet1 7 86 7 7 12 2

pma 6 49 6 6 11 2

s1 6 54 6 6 10 2

s1488 7 112 7 7 16 2

s1494 7 118 7 7 16 2

s1a 7 86 7 7 14 2

s208 6 37 6 6 11 2

s27 4 11 4 4 5 1

s386 5 23 5 5 7 1

s420 8 137 8 8 18 4

s510 8 172 8 8 21 4

s8 4 15 4 4 5 1

s820 7 78 7 7 16 4

s832 7 76 7 7 17 4

sand 7 88 7 7 14 3

shiftreg 4 16 4 4 4 0

sse 5 26 5 5 8 1

styr 7 67 7 7 13 2

tma 6 63 6 6 12 2

Total 251 2011 251 251 404

Percentage,% 62.13 497.77 62.13 62.13 100

As follows from Table 16, our approach produces FSM circuits with better area-time products than
those of other investigated methods. Our approach gives the following gains: (1) 55.24% regarding

Electronics 2020, 9, 1859 29 of 34

auto; (2) 79.87% regarding one-hot; (3) 12.28% regarding JEDI-based FSMs; and (4) 8.6% regarding
U2-based FSMs. If we compare results for different groups, we can draw the following conclusions.
Our approach loses out to all other models for group 0. For group 1, U4-based FSMs lose out only
to JEDI-based FSMs (4.46% of loss). However, our approach provides significantly better area-time
products for FSMs from groups 2–4. In this case, our approach gives the following gains: (1) 76.79%
regarding auto; (2) 97.55% regarding one-hot; (3) 24.71% regarding JEDI-based FSMs; and (4) 12.63%
regarding U2-based FSMs.

Table 16. Results of experiments (the generalized assessments, LUTs× ns).

Benchmark Auto One-Hot JEDI U2 Our Approach Group

bbara 87.91 87.91 47.12 54.55 66.60 1

bbsse 210.11 218.78 131.62 163.28 149.93 1

bbtas 24.49 24.49 24.26 41.15 44.67 0

beecount 114.04 114.04 74.74 89.33 82.27 1

cse 273.17 403.32 202.11 215.35 191.65 1

dk14 83.49 156.39 51.59 73.72 69.52 1

dk15 77.91 86.32 61.58 45.60 53.21 1

dk16 88.38 194.52 60.87 67.01 65.28 1

dk17 25.09 71.86 25.08 54.34 57.81 0

dk27 14.56 24.76 19.59 38.52 47.29 0

dk512 50.95 50.95 45.06 68.33 74.69 0

donfile 168.45 168.48 117.85 120.50 116.04 1

ex1 463.76 529.48 299.66 243.43 243.47 2

ex2 45.32 45.32 39.97 42.34 50.87 1

ex3 46.19 46.19 45.97 63.06 74.76 0

ex4 82.89 73.15 62.23 65.32 66.27 1

ex5 49.93 49.93 49.68 61.52 73.82 0

ex6 141.53 219.78 124.58 134.25 122.65 1

ex7 20.00 24.90 19.94 31.34 39.18 1

keyb 274.85 425.18 237.49 271.08 223.98 1

kirkman 297.07 376.62 248.91 212.41 189.58 2

lion 9.88 24.51 9.88 32.30 40.87 0

lion9 29.23 59.39 24.23 47.82 54.51 0

mark1 141.63 141.63 113.52 123.79 115.15 1

mc 20.34 35.81 20.32 33.70 43.73 0

modulo12 33.82 33.82 33.80 47.44 54.53 0

opus 168.47 168.47 123.37 133.40 123.43 1

planet 987.11 987.11 470.24 446.53 385.97 2

planet1 987.11 987.11 470.24 450.11 385.97 2

pma 643.04 643.04 506.39 461.18 394.95 2

s1 443.96 728.74 388.14 371.59 399.12 2

s1488 895.31 992.88 687.11 630.00 510.60 2

s1494 843.43 905.66 669.34 578.29 504.05 2

Electronics 2020, 9, 1859 30 of 34

Table 16. Cont.

Benchmark Auto One-Hot JEDI U2 Our Approach Group

s1a 319.49 459.18 254.18 228.42 222.32 2

s208 68.83 175.68 55.94 54.08 57.25 2

s27 30.19 93.99 30.13 32.41 39.75 1

s386 154.62 224.84 122.80 121.47 114.38 1

s420 57.51 175.68 50.78 42.93 45.74 4

s510 270.19 270.19 161.36 110.52 103.98 4

s8 40 49.99 50.29 49.66 53.47 57.50 1

s820 578.95 535.39 385.09 295.98 286.11 4

s832 549.04 515.56 356.77 286.71 261.07 4

sand 1138.23 1138.23 898.91 824.52 719.58 3

shiftreg 7.61 22.76 7.24 16.08 23.65 0

sse 210.11 218.78 171.79 164.41 169.41 1

styr 675.82 923.65 556.17 593.12 474.11 2

tma 274.59 263.87 237.60 218.21 186.08 2

Total 12,228.61 14,168.64 8844.90 8554.93 7877.31

Percentage,% 155.24 179.87 112.28 108.60 100

The results of our experiments show that the proposed approach can be used instead of other
models starting from simple FSMs. The U2-based FSMs have fewer LUTs than other models. However,
starting from average FSMs, our approach allows producing circuits having slightly larger numbers of
LUTs with significantly higher maximum operating frequencies. Additionally, our approach provides
better area-time products starting from average FSMs. It has rather good potential and can be used in
targeting FPGA-based Mealy FSMs.

7. Conclusions

Modern FPGA chips have reached such a level that quite complex systems can be implemented
using only a single chip. At the same time, significant parts of the digital systems are implemented
using LUTs having rather small numbers of inputs. The value SL = 6 is considered as optimal [19,20],
but it is too small compared to the number of inputs and outputs of FSMs from modern digital systems.
To design these complex FSMs with the use of such simple elements, it is necessary to apply the
methods of functional decomposition. As a rule, the functional decomposition results in LUT-based
FSM circuits having many logic levels and very complicated systems of interconnections.

Different methods of structural decomposition can be used to optimize the characteristics of
FPGA-based FSM circuits. Our research [30,60] shows that the FSM circuits based on structural
decomposition possess significantly better characteristics (fewer LUTs, higher maximum operating
frequency, lower power consumption) than their counterparts based on functional decomposition.
It is very important that the FSM circuits based on structural decomposition have regular systems of
interconnections and predicted numbers of levels of logic. In the best case, each logic block of an FSM
circuit has only a single level of LUTs.

In this paper, we propose a novel approach aimed at optimization of LUT-based Mealy FSMs.
The proposed method leads to Mealy FSM U4. Two methods of structural decomposition are the
cornerstones of our approach. They are: (1) the transformation of codes of collections of outputs into
state codes and (2) the extension of state codes. The second method is a new one and it is proposed
in this paper. To increase the maximum operating frequency, we encode the FSM states using more

Electronics 2020, 9, 1859 31 of 34

than the minimum number of state variables determined by (1). Our approach leads to Mealy FSM
circuits with three levels of LUTs and regular systems of interconnections. As it is in a single-level
FSMs U1, FSM outputs are generated simultaneously with input memory functions. As a result, our
approach provides an increase in maximum operating frequency, accompanied by a small increase in
the number of LUTs compared to equivalent three-level FSMs.

The results of our experiments clearly show that the proposed approach can be used instead of
other models starting from simple FSMs. The U2-based FSMs have fewer LUTs than other models.
However, starting from average FSMs, our approach allows producing circuits having slightly larger
numbers of LUTs with significantly higher maximum operating frequency. Additionally, our approach
provides better area-time products starting from average FSMs. Thus, our approach can be used if
either the performance or the area-time product is the dominant characteristic of a digital system.

We are currently considering several areas of research. We intend to explore the possibility of
applying the proposed approach to FPGA chips of Intel (Altera). We will also try to adapt this approach
for optimizing characteristics of Moore finite state machines.

Author Contributions: Conceptualization, A.B., L.T. and K.K.; methodology, A.B., L.T., K.K. and S.S.; software,
A.B., L.T. and K.K.; validation, A.B., L.T. and K.K.; formal analysis, A.B., L.T., K.K. and S.S.; investigation, A.B.,
L.T. and K.K.; writing—original draft preparation, A.B., L.T., K.K. and S.S.; supervision, A.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BIMF block of input memory functions
CLB configurable logic block
COF collection of output functions
CO collection of output
DST direct structure table
EMB embedded memory block
FD functional decomposition
FSM finite state machine
FPGA field-programmable gate array
LUT look-up table
SBF systems of Boolean functions
SOP sum-of-products
STT state transition table

References

1. Bailliul J.; Samad T. (Eds.) Encyclopaedia of Systems and Control; Springer: London, UK, 2015; p. 1554.
2. Sklyarov, V.; Skliarova, I.; Barkalov, A.; Titarenko, L. Synthesis and Optimization of FPGA-Based Systems;

Volume 294 of Lecture Notes in Electrical Engineering; Springer: Berlin, Germany, 2014.
3. Baranov, S. Logic and System Design of Digital Systems; TUTPress: Tallinn, Estonia, 2008.
4. Micheli, G.D. Synthesis and Optimization of Digital Circuits; McGraw-Hill: Cambridge, MA, USA, 1994.
5. Minns, P.; Elliot, I. FSM-Based Digital Design Using Verilog HDL; JohnWiley and Sons: Hoboken, NJ, USA, 2008.
6. Grout, I. Digital Systems Design with FPGAs and CPLDs; Elsevier Science: Amsterdam, The Netherlands, 2011.
7. Barkalov, A.; Titarenko, L.; Mielcarek, K.; Chmielewski, S. Logic Synthesis for FPGA-Based Control

Units—Structural Decomposition in Logic Design; Volume 636 of Lecture Notes in Electrical Engineering;
Springer: Berlin/Heidelberg, Germany, 2020.

8. Gajski, D.D.; Abdi, S.; Gerstlauer, A.; Schirner, G. Embedded System Design: Modeling, Synthesis and Verification;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.

Electronics 2020, 9, 1859 32 of 34

9. Krzywicki, K.; Barkalov, A.; Andrzejewski, G.; Titarenko, L.; Kolopienczyk, M. SoC research and
development platform for distributed embedded systems. Przegląd Elektrotechniczny 2016, 92, 262–265.

10. Czerwinski, R.; Kania, D. Finite State Machine Logic Synthesis for Complex Programmable Logic Devices;
Volume 231 of Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013.

11. Intel FPGAs and Programmable Devices. Available online: https://www.intel.pl/content/www/pl/pl/
products/programmable.html (accessed on 9 September 2020).

12. Altera. Cyclone IV Device Handbook. http://www.altera.com/literature/hb/cyclone-iv/cyclone4-
handbook.pdf(accessed on 9 September 2020).

13. Xilinx FPGAs. Available online: https://www.xilinx.com/products/silicon-devices/fpga.html (accessed on
9 September 2020).

14. Sass, R.; Schmidt, A. Embedded System Design with Platform FPGAs: Principles and Practices; Morgan Kaufmann
Publishers: Amsterdam, The Netherlands, 2010; pp. 409.

15. Branco, S.; Ferreira, A.G.; Cabral, J. Machine Learning in Resource-Scarce Embedded Systems, FPGAs,
and End-Devices: A Survey. Electronics 2019, 8, 1289.

16. Cheng, Q.; Zhao, X.; Wen, M.; Shen, J.; Tang, M.; Zhang, C. SAPTM: Towards High-Throughput Per-Flow
Traffic Measurement with a Systolic Array-Like Architecture on FPGA. Electronics 2020, 9, 1160.

17. Wang, Z.; Tang, Q.; Guo, B.; Wei, J.-B.; Wang, L. Resource Partitioning and Application Scheduling with
Module Merging on Dynamically and Partially Reconfigurable FPGAs. Electronics 2020, 9, 1461.

18. Salauyou V.; Ostapczuk M. State Assignment of Finite-State Machines by Using the Values of Output
Variables. In Theory and Applications of Dependable Computer Systems. DepCoS-RELCOMEX 2020. Advances in
Intelligent Systems and Computing; Zamojski W., Mazurkiewicz J., Sugier J., Walkowiak T., Kacprzyk J., Eds.;
Springer: Cham, Switzerland, 2020; Volume 1173, pp. 543–553.

19. Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization; Wiley-IEEE Press:
Hoboken, NJ, USA, 2007.

20. Kuon, I.; Tessier, R.; Rose, J. FPGA architecture: Survey and challenges—found trends. Electr. Des. Autom.
2008, 2, 135–253.

21. Scholl, C. Functional Decomposition with Application to FPGA Synthesis; Kluwer Academic Publishers:
Boston, MA, USA, 2001.

22. Kubica, M.; Kania, D. Technology mapping oriented to adaptive logic modules. Bull. Pol. Acad. Sci. 2019,
67, 947–956.

23. Kubica, M.; Kania, D. Decomposition of multi-level functions oriented to configurability of logic blocks.
Bull. Pol. Acad. Sci. 2017, 67, 317–331.

24. Mishchenko, A.; Chattarejee, S.; Brayton, R. Improvements to technology mapping for LUT-based FPGAs.
IEEE Trans. CAD 2006, 27, 240–253.

25. Kubica, M.; Kania, D.; Kulisz, J. A technology mapping of fsms based on a graph of excitations and outputs.
IEEE Access 2019, 7, 16123–16131.

26. Kubica, M.; Kania, D. Area-oriented technologymapping for lut-based logic blocks. Int. J. Appl. Math.
Comput. Sci. 2017, 27, 207–222.

27. Machado, L.; Cortadella, J. Support-Reducing Decomposition for FPGA Mapping. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 2020, 39, 213–224.

28. Mishchenko, A.; Brayton, R.; Jiang, J.-H.R.; Jang, S. Scalable don’t-care-based logic optimization and
resynthesis. ACM Trans. Reconfigurable Technol. Syst. 2011, 4, 4.

29. Feng, W.; Greene, J.; Mishchenko, A. Improving FPGA Performance with a S44 LUT structure. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA”18),
Monterey, CA, USA, 25–27 February 2018; p. 6, doi:10.1145/3174243.3174272.

30. Barkalov, A.; Titarenko, L.; Krzywicki, K. Reducing LUT Count for FPGA-Based Mealy FSMs. Appl. Sci.
2020, 10, 5115.

31. McElvain, K. LGSynth93 Benchmark; Mentor Graphics: Wilsonville, OR, USA, 1993.
32. Rawski, M.; Łuba, T.; Jachna, Z.; Tomaszewicz, P. The Influence of Functional Decomposition Onmodern

Digital Design Process. In Design of Embedded Control Systems; Springer: Boston, MA, USA, 2005; pp. 193–203.
33. Dahl, O.; Dijkstra, E.; Hoare, C. (Eds.) Structured Programming; Academic Press: London, UK, 1972; p. 234
34. Baranov, S. Logic Synthesis of Control Automata; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1994.

https://www.intel.pl/content/www/pl/pl/products/programmable.html
https://www.intel.pl/content/www/pl/pl/products/programmable.html
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
https://www.xilinx.com/products/silicon-devices/fpga.html

Electronics 2020, 9, 1859 33 of 34

35. Opara, A.; Kubica, M.; Kania, D. Strategy of Logic Synthesis using MTBDD dedicated to FPGA. Integr. VLSI J.
2018, 62, 142–158.

36. Kubica, M.; Opara, A.; Kania, D. Logic synthesis for FPGAs based on cutting of BDD. Microprocess. Microsyst.
2017, 52, 173–187.

37. Brayton, R.; Mishchenko, A. ABC: An Academic Industrial-Strength Verification Tool. In Computer Aided
Verification (Berlin, Heidelberg, 2010); Touili, T., Cook, B., Jackson, P., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 24–40.

38. Sentowich, E.; Singh, K.; LLavango, Moon, C.; Murgai, R.; Saldanha, A.; Savoj, H.; P.; P.S.; Bryton, R.;
Sangiovanni-Vincentelli, A. SIS: A System for Sequential Circuit Synthesis; University of California:
Berkely, CA, USA, 1992.

39. Barkalov, A.; Titarenko, L.; Barkalov, A., Jr. Structural decomposition as a tool for the optimization of an
FPGA-based implementation of a Mealy FSM. Cybern. Syst. Anal. 2012, 48, 313–322.

40. Vivado Design Suite User Guide: Synthesis. UG901 (v2019.1). Available online: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf (accessed on
9 September 2020).

41. De Micheli, G.; Brayton, R.K.; Sangiovanni-Vincentelli, A. Optimal state assignment for finite statemachines.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2006, 4, 269–285.

42. Sutter, G.; Todorovich, E.; López-Buedo, S.; Boemo, E. Low-power FSMs in FPGA: Encoding
alternatives. In Integrated Circuit Design, Power and Timing Modeling, Optimization and Simulation; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 363–370.

43. Klimovich, A.S.; Solovev, V.V. Minimization of mealy finite-state machines by internal states gluing. J. Comput.
Syst. Sci. Int. 2012, 51, 244–255

44. Zając, W.; Andrzejewski, G.; Krzywicki, K.; Królikowski, T. Finite State Machine Based Modelling of
Discrete Control Algorithm in LAD Diagram Language With Use of New Generation Engineering Software.
Procedia Comput. Sci. 2019, 159, 2560–2569.

45. El-Maleh, A.H. A probabilistic pairwise swap search state assignment algorithm for sequential circuit
optimization. Integr. VLSI J. 2017, 56, 32–43.

46. Park, S.; Cho, S.; Yang, S.; Ciesielski, M. A new state assignment technique for testing and low power.
In Proceedings of the 41st annual Design Automation Conference (2004), San Diego, CA, USA, 7–11 June 2004;
pp. 510–513

47. Garcia-Vargas, I.; Senhadji-Navarro, R. Finite state machines with input multiplexing: A performance study.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 867–871.

48. Rawski, M.; Selvaraj, H.; Łuba, T. An application of functional decomposition in ROM-based FSM
implementation in FPGA devices. J. Syst. Archit. 2005, 51, 423–434.

49. Kołopienczyk, M.; Titarenko, L.; Barkalov, A. Design of emb-based moore fsms. J. Circuits Syst. Comput.
2017, 26, 1–23.

50. Quartus Prime. Available online: https://www.intel.pl/content/www/pl/pl/software/programmable/
quartus-prime/overview.html (accessed on 9 September 2020).

51. Xilinx. XST UserGuide.V. 11.3. Available online: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx11/xst.pdf (accessed on 9 September 2020).

52. Rafla, N.I.; Gauba, I. A reconfigurable pattern matching hardware implementation using on-chip RAM-based
FSM. In Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle,
WA, USA, 1–4 August 2010; pp. 49–52.

53. Senhadji-Navarro, R.; Garcia-Vargas, I.; Jiménez-Moreno, G.; Civit-Balcells, A.; Guerra-Gutierrez, P.
ROM based FSM implementation using input multiplexing in FPGA devices. Electron. Lett. 2004,
40, 1249–1251.

54. Garcia-Vargas, I.; Senhadji-Navarro, R.; Jiménez-Moreno, G.; Civit-Balcells, A.; Guerra-Gutierrez, P.
ROM-based finite state machine implementation in low cost FPGAs. In Proceedings of the IEEE International
Symposium on Industrial Electronics ISIE 2007, Vigo, Spain, 4–7 June 2007; pp. 2342–2347.

55. Senhadji-Navaro, R.; Garcia-Vargas, I. High-Speed and Area-Efficient Reconfigurable Multiplexer Bank for
RAM-Based Finite State Machine Implementations. J. Circuits Syst. Comput. 2015, 24, 7.

56. Barkalov, A.; Titarenko, L.; Mazurkiewicz, M.; Krzywicki, K. Encoding of terms in EMB-based Mealy FSMs.
Appl. Sci. 2020, 10, 22.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/overview.html
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/overview.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf

Electronics 2020, 9, 1859 34 of 34

57. Senhadji, N.; Garcia-Vargas, I., High-Performance Architecture for Binary-Tree-Based Finite State Machines.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 796–805

58. Selvaraj, H.; Nowicka, M.; Luba, T. Non-Disjoint Decomposition Strategy in Decomposition-Based
Algorithms & Tools. In Proceedings of the International Conference on Computational Intelligence and
Multimedia Application, Gippsland, Australia, 2 July–2 October 1998; pp. 34–42.

59. Michalski, T.; Kokosiński, Z. Functional decomposition of combinational logic circuits with PKmin. Czas. Tech.
2016, 2016, 191–202.

60. Barkalov, O.; Titarenko, L.; Mielcarek, K. Hardware reduction for LUT-based Mealy FSMs. Int. J. Appl. Math.
Comput. Sci. 2018, 28, 595–607.

61. Achasova S. Synthesis Algorithms for Automata with PLAs; Soviet Radio: Moscow, Russia, 1987.
62. VC709 Evaluation Board for the Virtex-7 FPGA User Guide; UG887 (v1.6); Xilinx, Inc.: San Jose, CA, USA, 2019.
63. Islam, M.M.; Hossain, M.S.; Shahjalal, M.D.; Hasan, M.K.; Jang, Y.M. Area-Time Efficient Hardware

Implementation of Modular Multiplication for Elliptic Curve Cryptography. IEEE Access 2020,
8, 73898–73906.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Single-Level LUT-Based Mealy FSMs
	State-Of-The-Art
	Main Idea of the Proposed Method
	Example Of Synthesis
	Experimental Results
	Conclusions
	References

