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Abstract: AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMT)
with a low-temperature epitaxy (LTE)-grown single crystalline AlN gate dielectric were demonstrated
for the first time and the post-gate annealing effects at 400 ◦C were studied. The as-deposited
LTE-AlN MISHEMT showed a maximum drain current (IDmax) of 708 mA/mm at a gate bias of 4 V
and a maximum extrinsic transconductance (gmmax) of 129 mS/mm. The 400 ◦C annealed MISHEMT
exhibited an increase of 15% in gmmax, an order of magnitude reduction in reverse gate leakage and
about a 3% suppression of drain current (ID) collapse. The increase of gmmax by post-gate annealing
is consistent with the increase of 2DEG mobility. The suppression of ID collapse and the reduction
of gate leakage current is attributed to the reduction of interface state density (5.0 × 1011 cm−2eV−1)
between the AlN/GaN interface after post-gate annealing at 400 ◦C. This study demonstrates that LTE
grown AlN is a promising alternate material as gate dielectric for GaN-based MISHEMT application.
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1. Introduction

AlGaN/GaN based high-electron-mobility transistors (HEMTs) have demonstrated excellent
high-frequency and high-power performance owing to their excellent material properties, such as
large breakdown field, wide band gap and high electron mobility [1–4]. However, two of the major
limiting factors that conventional GaN HEMTs with Schottky metal gates suffer from are a high gate
leakage current, and current collapse [5]. The high gate-leakage occurs due to the Schottky metal
contact, while current collapse is caused by charge trapping at the surface states present on the AlGaN
surface. To solve these issues, various materials such as Al2O3 [6,7], HfO2 [8] or ZrO2 [9] have been
used as both a passivation layer and gate dielectrics. Among non-oxide insulators, AlN is an attractive
high-k dielectric material for III–N metal-insulator-semiconductor high-electron-mobility transistors
(MISHEMTs) due to its high breakdown field and high dielectric constant [10,11]. In addition, AlN is
of interest due to its high thermal conductivity (200 WK−1m−1), which makes it suitable for use as a
passivation layer to suppress the self-heating [12]. AlN has also been reported to help reduce current
collapse [13]. There are two main methods used for the deposition of AlN namely metal-organic
chemical vapor deposition [14] (MOCVD) and plasma-enhanced atomic layer deposition [15,16]
(PEALD). However, the growth temperature of MOCVD (>600 ◦C) is not desirable for the fabrication
of AlGaN/GaN HEMTs. Furthermore, using a lower growth temperature also has the advantage of
preventing tensile strain-induced cracking of AlN layer in AlN based MIS-HEMTs [17,18]. PEALD is
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a different approach to grow AlN films which can form a better interface with GaN at 350 ◦C but
with a low deposition rate [19]. Recently, Dikme et al. [20] realized thick single crystalline AlN layers
on Si and sapphire substrates at 200 ◦C using a novel technique called low-temperature epitaxy
(LTE). In this technique, AlN is deposited as a combination of physical vapor deposition (PVD) and
chemical vapor deposition (CVD). LTE also allows for thick (~1 µm) crystalline films to be grown
at low-temperatures which is compatible with III-V device processing. We have recently reported
the properties of interface states for AlGaN/GaN metal-insulator-semiconductor diodes (MIS-diodes)
using the LTE grown AlN [21,22] So far, no reports have discussed the AlGaN/GaN MISHEMTs with
LTE-AlN and its post-gate annealing effects. In this paper, we report AlGaN/GaN MISHEMTs on Si
substrate with LTE grown AlN through DC, pulsed I-V and interface trap characterization and analysis.

2. Materials and Methods

The AlGaN/GaN HEMT structure on Si (111) substrate was grown by MOCVD. It consists of
i-GaN (2 nm) cap layer, i-Al0.27Ga0.73N (18 nm) barrier layer, i-GaN (800 nm) buffer layer and transition
layer (1400 nm). The resistivity of the Si substrate is >10,000 Ω.cm. Hall samples of (i) as-grown HEMT
without LTE-AlN, (ii) HEMT with as-deposited ~8 nm LTE-AlN, (iii) HEMT with LTE-AlN annealed
at 400 ◦C and (iv) HEMT with LTE-AlN annealed at 450 ◦C were prepared and their results at room
temperature are summarized in Table 1. The MISHEMT fabrication process started with mesa isolation
by reactive ion etching (RIE) using a Cl2/BCl3 mixture. The ohmic contacts consisting of Ti/Al/Ni/Au
(20/120/40/50 nm) was deposited followed by rapid thermal annealing at 825 ◦C for 30 s in an N2
atmosphere. Transmission line measurements showed a contact resistance of 0.4 Ω mm. Next, the gate
dielectric layer using single crystalline AlN with a thickness of ~8 nm was deposited at 200 ◦C by
LTE. The thickness of the deposited LTE-AlN has previously been confirmed by TEM and is reported
elsewhere [22]. The novel growth method combines physical vapor deposition (PVD) and chemical
vapor deposition (CVD). The Al source is solid Al with a purity of 5N, while the N source is N2 gas
with purity of 5N8. The N was activated by a linear ion gun close to the sample surface and the Al was
sputtered in a way that its beam overlaps with the ion gun beam. The substrate temperature was in
the range of 200–225 ◦C and the deposition pressure was in the upper 10−3 mbar range with a total
power density of around 5–7 W/cm2. Before the deposition, the sample was cleaned with a weak Ar/H2

plasma to remove the native oxide. More details of the growth conditions can be found in the paper by
Dikme et al. [20,21].

Table 1. 2DEGproperties of AlGaN/GaN with and without AlN and its post deposition annealing at
400 ◦C and 450 ◦C for 300 s in N2.

2DEG Parameters

AlGaN/GaN HEMT Structure

Without
LTE-AlN [22]

With LTE-AlN

As-dep. [22]
Annealing Temperature ◦C

400 450

Sheet Resistance (Ω/�) 591 523 520 512
Hall Mobility (cm2V−1s−1) 1440 1210 1330 1360

Sheet Carrier Concentration (×1012 cm−2) 7.35 9.89 9.02 8.76

The gate metal stack Ni/Au (50/200 nm) was subsequently formed on the LTE grown AlN by
electron beam evaporation. Finally, metal thickening (Ti/Au 10/400 nm) was also performed after
AlN etching by Cl2/BCl3/Ar (40/20/10 sccm) plasma. The inset of Figure 1a shows the cross-sectional
schematic diagram of the fabricated MISHEMTs with LTE-grown AlN. For this study, we have used
device dimensions of Lg/Lsg/Lgd/Wg = 2/2/2/(2 × 100) µm. To study the post-gate annealing effects
a MISHEMT sample with ~8 nm of LTE-AlN were annealed at 400 ◦C in a N2 atmosphere using
rapid thermal annealing process. A post-gate annealing temperature of 400 ◦C was chosen as there
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was minimal changes to the Hall parameters after post deposition annealing at 450 ◦C (see Table 1).
A lower temperature is also beneficial, as higher temperatures have previously been shown to cause
degradation of Ni/Au gates [23,24].

3. Results and Discussion

Figure 1 shows (a) the capacitance-voltage (C-V) and (b) gate leakage current (Igleak) characteristics
of Schottky diode (MS-diode), LTE-AlN MIS-diode with and without post-gate annealing. At zero-bias,
the capacitance density of 373 nF/cm2 and 302 nF/cm2 for 200 µm diameter conventional Schottky
diode and MIS-diode were obtained, respectively. After annealing, there is no significant change in
capacitance density at 0 V. With reference to Schottky diode, the LTE-AlN MIS-diode exhibited 2 orders
of magnitude lower Igleak at−20 V (Figure 1b). After post-gate annealing at 400 ◦C, MIS-diodes exhibited
about an order of magnitude further reduction in Igleak. The improvement in Igleak is attributed to the
improvement of interface properties of LTE-AlN on GaN/AlGaN after the 400 ◦C annealing.

Figure 2 shows (a) current–voltage (Ids-Vds) and (b) transfer characteristics of LTE-AlN/AlGaN/GaN
MISHEMTs without and with post-gate annealing at 400 ◦C. The as-deposited AlN MISHEMT showed
a maximum drain current (IDmax) of 708 mA/mm at a gate bias of 4 V and a maximum extrinsic
transconductance (gmmax) of 129 mS/mm. After annealing, MISHEMT exhibited IDmax of 684 mA/mm
at a gate bias of 4 V and gmmax of 148 mS/mm. The decrease in IDmax after annealing originates from
a change in two-dimensional electron gas (2DEG) carrier concentration (ns), as ID ∝ ns. As shown
in Table 1, after annealing at 400 ◦C, ns was found to decrease by 9% (from 9.89 × 1012 cm−2 to
9.02 × 1012 cm−2) which results in the 9% reduction in IDmax. Similarly, the 15% improvement of gmmax

after post-gate annealing is attributed to an increase in electron mobility as well as a reduction of
interface states [25]. This is attributed to a reduction in Coulomb scattering from the dielectric layer
near the AlGaN/GaN interface [26]. The enhanced mobility was confirmed by Hall measurements,
which shows an ~10% improvement (from 1210 cm2V−1s−1 to 1330 cm2V−1s−1) in 2DEG Hall mobility
(µn), as seen in Table 1. From the Figure 2b, it is clear that AlN MISHEMT exhibited an order of
magnitude improvement in the device ION/IOFF ratio after the post-gate annealing at 400 ◦C, which is
due to the reduction of drain current at OFF-state. This is possibly caused by a reduction on traps at the
AlN/GaN interface reducing the available leakage current conduction paths. The threshold voltages
(Vth) of the devices were measured at −3.95 V and −3.8 V for as-deposited MISHET and post-gate
annealed MISHEMT at 400 ◦C, respectively. Vth can be expressed as

Vth = Vth0 −
Qit

CAlN
(1)

where Vth0 is the threshold voltages without any interface states, Qit is the interface-trapped charge
density and CAlN is the capacitance of the AlN layer. After annealing at 400 ◦C there is a minimal
positive shift in threshold voltage which could be caused by a slight reduction of interface traps at
LTE-AlN/GaN interface. This is verified by the frequency-dependent conductance measurements
discussed in the later section. A similar occurrence was also reported after post-gate annealing
by Zhou et al. for Al2O3 and Shih et al. for HfO2 [8,25]. In these cases, it was postulated that
the positive Vth shift was caused by a reduction in positively charged traps and interface traps or
positive fixed/mobile charges, and was confirmed by a reduction in calculated interface states after
annealing. A benchmarking table between these devices and those published elsewhere can be seen in
Table 2 [15,27–29].
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Figure 3 shows pulsed ID-VD characteristics of (a) as-deposited MISHEMTs with LTE-AlN and 
(b) MISHEMTs with post-gate annealing at 400 °C. The devices were subjected to the pulse 
width/period of 100 µs/10ms and quiescent biases of (Vgs0, Vds0) = (0, 0) and (−6, 20) V was used for 
the pulsed I-V measurements. The as-deposited LTE-AlN MISHEMT exhibited a ID/IDmax ratio of 0.91 
for both quiescent biases (Vgs0, Vds0) = (0, 0) and (−6, 20). This indicates that the devices exhibited 
around 9% drain current (ID) collapse. After annealing at 400 °C, the ID/IDmax ratio of MISHEMT 

Figure 1. (a) C-V characteristics and (b) two terminal Igleak-Vg (200 um diameter diodes) characteristics
of Ni/AlGaN/GaN Schottky diode, as-deposited LTE-AlN/AlGaN/GaN metal-insulator-semiconductor
diode [22] and post-gate annealed MIS-diode at 400 ◦C. Inset: Schematic cross-sectional diagram of
fabricated AlGaN/GaN MISHEMTs with LTE grown AlN on Si substrate.
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Figure 2. (a) DC IDS-VDS and (b) transfer characteristics of as-deposited LTE-AlN/AlGaN/GaN
MISHEMT and post-gate annealed MISHEMT at 400 ◦C.

Table 2. A benchmarking table for MISHEMT on AlGaN/GaN using AlN as a gate dielectric layer.

Reference Thickness
(nm) Substrate Deposition

Method

Device
Dimensions
Lg/Wg (µm)

Idmax
(mA/mm)

gmmax
(mS/mm)

On/Off Ratio
(Orders of

Magnitude)

[15] 10.6 Si ALD 2.5/60 563 @ 5V 87 ~5
[27] 10 Sapphire ALD 1/200 600 @ 4V 127 ~9
[28] 20 Sapphire PEALD 0.5/50 ~1050 @ 2 V 289 ~3
[29] 8 SiC Reactive Sputtering 0.4/200 ~1250 @ 2 V 260 ~3

This work 8 Si LTE 2/(2 × 100) 684 @ 4V 148 ~8

Figure 3 shows pulsed ID-VD characteristics of (a) as-deposited MISHEMTs with LTE-AlN and (b)
MISHEMTs with post-gate annealing at 400 ◦C. The devices were subjected to the pulse width/period
of 100 µs/10ms and quiescent biases of (Vgs0, Vds0) = (0, 0) and (−6, 20) V was used for the pulsed
I-V measurements. The as-deposited LTE-AlN MISHEMT exhibited a ID/IDmax ratio of 0.91 for both
quiescent biases (Vgs0, Vds0) = (0, 0) and (−6, 20). This indicates that the devices exhibited around 9%
drain current (ID) collapse. After annealing at 400 ◦C, the ID/IDmax ratio of MISHEMT increases to 0.94.
Therefore, about 3% ID collapse was suppressed after post-gate annealing at 400 ◦C. The improvement
in current collapse in 400 ◦C annealed MISHEMT is attributed to the reduction of interface states at the
AlN/GaN interface.
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for (a) LTE-AlN MISHEMTs, (b) 400 ◦C annealed MISHEMTs and (c) normalized ID with IDmax for
as-deposited LTE-AlN/AlGaN/GaN MISEMT and annealed MISHEMT at 400 ◦C vs. the quiescent bias
points (Vgs0, Vds0) = (0, 0), (−6, 0), (−6, 20) V.

In order to quantify the amount of interface states at the LTE-AlN/GaN interfaces, frequency-
dependent conductance measurements were performed at selected biases to estimate the density of
interface states (Dit) and trap time constant (τit). The frequency was varied from 1 kHz to 5 MHz over
a wide range of gate voltages (Vg). Figure 4a shows the typical Gp/ω versus ω graph of LTE-AlN
MISHEMT with post-gate annealed at 400 ◦C measured at different Vg values between −4.1 V to −3.5 V.
The Dit calculations were performed using the conductance-frequency method, which is widely used
for interface calculations [21,30,31]. The two peak regions in the Gp/ω plots correspondingly indicate
the presence of both low frequency (slow traps) and high frequency (fast traps). The exhibited fast traps
are associated interface traps of the AlGaN/GaN hetero-interface [15,32], while the observed slow traps
are associated with the AlN/GaN interface. The estimated Dit is shown in Figure 4b for the as-deposited
LTE-AlN MIS-diode, as well as the MIS-diodes with post-gate annealing at 400 ◦C. The minimum Dit

were estimated as 7.6 × 1011 cm−2eV−1 and 5.0 × 1011 cm−2eV−1 for the as-deposited MIS-diode and
MIS-diode with post-gate annealing at 400 ◦C, respectively. With reference to as-deposited MIS-diode,
a reduction of Dit (24%) has been observed in the MIS-diode after post-gate annealing at 400 ◦C.
This reduction of interface traps can be associated with the suppression of ID collapse. Annealing at
400 ◦C helps to reduce the slow deep level traps thus reducing the remote Coulomb scattering from the
AlN layer and improving the mobility.
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