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Abstract: Fatigue driving (FD) is one of the main causes of traffic accidents. Traditionally, machine
learning technologies such as back propagation neural network (BPNN) and support vector machine
(SVM) are popularly used for fatigue driving detection. However, the BPNN exhibits slow convergence
speed and many adjustable parameters, while it is difficult to train large-scale samples in the SVM.
In this paper, we develop extreme learning machine (ELM)-based FD detection method to avoid the
above disadvantages. Further, since the randomness of the weight and biases between the input
layer and the hidden layer of the ELM will influence its generalization performance, we further
apply a differential evolution ELM (DE-ELM) method to the analysis of the driver’s respiration and
heartbeat signals, which can effectively judge the driver fatigue state. Moreover, not only will the
Doppler radar and smart bracelet be used to obtain the driver respiration and heartbeat signals,
but also the sample database required for the experiment will be established through extensive signal
collections. Experimental results show that the DE-ELM has a better performance on driver’s fatigue
level detection than the traditional ELM and SVM.

Keywords: fatigue driving detection; differential evolution; extreme learning machine

1. Introduction

With the rapid development of automobile technology, car ownership has increased rapidly
over the past decades. However, the frequent occurrence of road traffic accidents has brought social
problems that seriously threaten the safety of human life and property. According to the data of
World Health Organization [1], more than 1.2 million people have died in traffic accidents each year,
and millions were injured or maimed. Due to the increase in the number of traffic accidents, the severity
of this problem has drawn considerable attention from society and governments [2]. Therefore, how to
prevent traffic accidents has become one of the most important aspects in the world. According to
relevant research, traffic accidents caused by fatigue driving (FD) account for 20–30% of all traffic
accidents, which indicates that FD is a major cause of traffic accidents [3]. Drivers normally tend to
be distracted, have less activity and slower brain response under fatigue, which will increase the
likelihood of traffic accidents [4]. FD detection (FDD) techniques have broad development prospects in
the prevention of traffic accidents, and has gradually attracted intensive attention among researchers,
automotive industry as well as government organizations.
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Researchers have found that drivers’ physiological or driving behaviors can change drastically
over a period of time before the accidents caused by FD happen [5]. Based on these changes,
many researchers have done some related researches and various methods have been proposed to
detect FD, which can be classified into three categories: (1) detecting driver’s physiological information,
e.g., electroencephalogram (EEG) [6], electrocardiogram (ECG) [7], electrooculogram (EOG) [8],
electromyography (EMG) [9], respiratory signal and heart rate variability [10]; (2) detecting driver’s
physical behavior, such as eye state [11], eye blink [12] and gaze direction [13], yawning [14] and head
movements [15]; (3) detecting vehicle status and parameter, including lane position, steering wheel
angle (SWA), driving speed, acceleration and braking [16–20].

The driver’s physiological signals are highly reliable, with small error and little external interference
in responding to the level of fatigue, because it can truly reflect the conditions inside the driver’s body.
Dong et al. obtained EEG signals through electrodes embedded in the human head, and analyzed these
signals to determine whether the driver is in a fatigue state [21]. Wang et al. analyzed the fusion entropy
combining EOG and EEG signals to detect the fatigue state of the driver [22]. Changes in respiration and
heartbeat signals have been reported to be associated with driver fatigue and the corresponding detection
systems have been developed [23]. However, in order to obtain the driver’s physiological signal,
the existing detection methods and devices are normally invasive or contactable [24]. Electrodes need
to be attached to drivers, which is unacceptable for many users [25].

Driver behavior based-detection technology has an important advantage that the detection is
performed in a non-contact manner without causing interference to the driver, compared with the
physiological signal detection method. The main work is to use the camera to obtain the driver’s
facial condition and head movements, and use computer vision technology to determine the fatigue
state [26]. Cheng et al. collected the videos of 21 participants’ faces and extract many features including
number of yawns, blink rate, statistics of blink duration, closing speed, reopening speed and so on,
for establishing an FD assessment model [27]. However, these methods are only applicable to the FD
late stage, particularly when the driver’s facial changes are obvious and the driving behavior changes
have reached a very dangerous stage. In addition, these technologies are also sensitive to external
factors, such as driver wearing sunglasses or changes in brightness.

Vehicle parameter-based detection technology also exhibits the advantage of non-contact and is
more suitable for real-time systems. However, this technology also has certain limitations. (i) In lane
departure detection, road image data need to be captured and processed in real time, which results in
the high cost of hardware and computer support development. (ii) Lane shift detection relies purely
on external factors such as road markings, weather and light conditions. Although steering wheel
detection seems to be a reliable alternative due to its low price and accurate detection without relying
on external conditions [28], steering wheel detection is only applicable under very limited conditions,
because it is closely related to vehicle type, driver experience, and driver’s condition.

After obtaining a large amount of data through the above methods, they need to be well processed
for better determining the driver’s fatigue level. Data processing methods are implemented via
mathematical models and machine learning. The machine learning-based implementation method
is to train a large amount of driving data obtained from the laboratory and the road, which is
called a data-driven algorithm [29]. At present, some researchers have made relevant explorations.
Support vector machine (SVM) is a classic kernel learning method which aims to find the best
hyperplane to maximize the margin [30]. Hu and Zheng extracted the eyelid-related parameters
from the electrooculogram (EOG) as the data input, and utilized SVM to classify the driver state into
alert, sleepy and very sleepy [31]. The disadvantage of SVM lies in that it cannot directly support
multi-classification and it has difficulties in training large-scale data. The back propagation neural
network (BPNN) is a multilayer feedforward neural network trained using the error back propagation
algorithm [32], which has been widely used in driver fatigue detection. Ying et al. obtained the relevant
parameters of eyes and mouth from the driver’s entire face image as data input and then adopted
the BPNN to judge the fatigue state [33]. However, BPNN has significant drawbacks, such as slow
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convergence speed, many adjustable parameters, and falling into local minimums, which leads to
training failure.

Recently, in the field of classifications, in addition to some typical machine learning algorithms,
i.e., enhanced k-NN [34], random forests [35], extreme learning machine (ELM) as a new type of
single-layer feedforward network (SLFN) learning algorithm has attracted a great deal of attention
among researchers. Different from BPNN, ELM has the advantages of faster learning speed, easier
modeling, and better generalization performance [36–38], which has a great potential to be applied
in FDD. However, the random selection of the input weights and hidden thresholds might greatly
affect the accuracy of ELM classification. Considering the fact that the differential evolution (DE)
algorithm has the characteristics of simple structure, easy implementation, fast convergence and strong
robustness [39], the DE algorithm can be used to optimize the initial weights and biases in traditional
ELM, which can increase the sensitivity of neurons, obtain the optimal network model, and thereby
improve the classification accuracy. The differential evolution extreme learning machine (DE-ELM)
algorithm was successfully applied to analog circuit fault diagnosis [40].

Considering the above problems of FDD and motived by ELM and DE, in this paper, we use
Doppler radar and smart bracelets to collect the driver’s respiration and heartbeat signals, and then
develop an FDD method based on DE-ELM. The rest of this paper is organized as follows. In Section 2,
the designed human respiratory and heartbeat signal detection platform and signal acquisition are
given. Section 3 introduces the process of data collection, the sample database establishment and
classification. In Section 4, DE-ELM-based FDD approach is developed in order to select the best weights
and biases of the ELM. In Section 5, experimental results are presented involving traditional ELM,
DE-ELM and SVM classification accuracy of fatigue driving samples. Section 6 draws the conclusion.

2. Experimental Platform

The experimental platform for the collection of respiratory and heartbeat signals in this
paper is shown in Figure 1. The platform mainly includes three parts: simulated driving system,
physiological signal detection system and video signal acquisition system. The simulated driving system
consists of two parts: a simulated driving device and a simulated driving environment reproduction
system. The simulated driver device includes steering wheel, manual gear, clutch, throttle, brake,
etc., while the simulated driving environment reproduction system uses a computer monitor to
display the virtual driving environment. The driving simulation software adopts Yijiaxing driving
simulation system, and the scenes are taken from on-site video images, such as from urban areas,
residential areas, highways, and snowy environments. The front of the screen shows the virtual driving
environment, traffic conditions, traffic lights, traffic signs, weather conditions, etc. The information of
the car dashboard is displayed at the bottom of the screen. Additionally, physiological signal detection
system is used to collect respiratory and heartbeat signals of drivers, video signal acquisition system is
used to collect facial information of drivers, and video information serves as an important component
for experts to judge fatigue level.

Based on the experimental platform, a set of data collected from the platform have been tested.
The corresponding test results are described as follows: (i) the waveform shown in Figure 2 is the signal
collected by the radar module without testers. As is seen from the waveform, there is no signal input
other than a small amount of noise signal. (ii) The waveform shown in Figure 3 is the signal collected by
the radar module with the tester breathing normally. As observed from the waveform, the waveform
changes periodically and the signal should be composed of the respiratory signal, the heartbeat signal,
and the noise superposition in each cycle. (iii) The waveform shown in Figure 4 is the signal collected
by the tester when he holds his breath. It can be seen that the amplitude of signal change is very
small, which indicates that the heartbeat signal collected by the radar module is very weak as well as
mixed with noise. Therefore, during signal collection, a smart bracelet is added to detect the driver’s
heartbeat signal in real time which will be recorded every 2 min.
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Through the above tests, it is noted that the Doppler radar module is used to detect human
respiratory signals. As for the heartbeat signal, several experiments have shown that the heartbeat
signal is very weak and is basically covered by noise, such that the Doppler radar module cannot
detect the heartbeat signal. Instead, the smart bracelet is used for heart rate collection. The experiment
recruited 7 drivers as experimental test subjects, including 6 men and 1 woman, aged between 22 and
30 years old. It requires good health, normal hearing and vision, and no red–green color blindness.
Before the experiment, the tester is required to ensure sufficient sleep time. After the debugging of
the whole experimental platform, the test personnel will conduct simulated driving, and each test
period will last for 3 h. Throughout the three-hour test, the tester will experience different fatigue
states. The Doppler radar module and the smart bracelet collect respiratory and heartbeat signals,
and synchronizes video signals to record facial features. At the end of each test, a data set containing
respiration and heartbeat signals and corresponding video signals will be obtained through each
test. The entire data set will be used for the next expert’s review before classification into different
fatigue levels.

3. Sample Library

In Section 2, the data are classified through the facial expert evaluation method. This method was
first introduced to the driver’s fatigue assessment and becomes the most practical method for evaluating
the fatigue state of drivers [41]. The specific operation procedure is as follows. Firstly, the video signals
and the synchronously collected radar and smart bracelet signals are segmented every 2 min and
stored randomly. Secondly, three facial experts are selected to score based on multiple indicators such
as the rubbing eyes, scratching face, yawning, closing eyes, and adjusting postures, etc. The evaluation
result is a continuous value between 0 and 3. The specific classification criteria are described in Table 1.
If more than two facial experts judge the same on a certain fatigue level, then the corresponding fatigue
level of the driver in the video signal is determined. If the evaluation levels of the three experts are
different, then the fatigue level evaluation of this signal needs to be re-evaluated. Finally, three experts
will discuss and determine the fatigue level. After the fatigue level is determined, the signals need to
be labeled for subsequent neural network learning. The video evaluation results are corresponding to
the synchronous radar signals and the smart bracelet signals, which are used as the criteria and basis
for fatigue driving evaluation.
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Table 1. Fatigue level and evaluation criteria.

Fatigue Grade Fatigue State Fatigue Grade Criteria

0 Sober Good mental state, no fatigue performance.

I Mild fatigue Quick blinking, rubbing eyes, yawing, inattention.

II Moderate fatigue Decreased eye rotation, frequent blinking, frequent yawning, reduced limb
activity and marked inattention.

III Severe fatigue Eyelid fatigue, drowsiness, into a sleepy state and even subconscious
operation behavior.

After classifying all signals according to the expert evaluation mechanism, it is necessary to
conduct filtering processing and discrete Fourier transform (DFT) for each group of data. A zero-phase
indefinite impulse response (IIR) filter is used for the filtering algorithm, which can completely
eliminate the signal phase distortion and improve the real-time performance of detection at the cost
of increasing the appropriate computation [42]. After the filtering is completed, DFT processing of
the signal will continue to obtain the spectrum diagram. Then, both the frequency and amplitude
of the signal are extracted. Figures 3 and 5 show the respiratory signal and its amplitude–frequency
characteristics, respectively.
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Finally, the following characteristic values are determined as the training sample data: RC, RA,
HR, where RC is the respiratory cycle, RA is the respiratory amplitude, and HR indicates the heart rate.

The sample library can be built as:

X =
(

RC
(s) RA

(s) HR
(s)

)(i)
(1)

T =
(

h(s) h(s− 1) h(s− 2) h(s− 3)
)(i)

(2)

S =
{(

X(i) T(i)
)}

, i ∈ [1, N] (3)

where
X: input data.
T: output label corresponding to X.
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h(x): impact function which defined as:

h(x) =
{

1, x = 1
0, x , 1

(4)

where s is the fatigue state with the value as 1, 2, 3 or 4, which correspondingly represents sober state,
first-level fatigue state, second-level fatigue state and third-level fatigue state, i is the sample index,
and N is the total sample size. A total of 720 sets of respiration and heartbeat data were collected in
this experiment.

After obtaining the complete data set S, we also need to divide it into training set and test set
by using a subject-wise method. Data classification should follow the following three principles:
(i) randomly assigned, (ii) training set sample size: test set sample size = 7:3, and (iii) the same number
of samples per fatigue level.

In the following section, we will introduce the basic principles of ELM and DE-ELM in detail and
further give the DE-ELM-based FDD approach.

4. Introduction of Classification Method

4.1. Extreme Learning Machine

ELM is an SLFN proposed by Guangbin Huang [43], which consists of the following parts:
dimension of input feature vector n, total number of samples N, number of hidden layer neurons L,
and dimension of outputs m, data set S =

[
X T

]
. It can be represented by following matrix:

Input data:
X =

[
X(1) X(2)

· · · X(N)
]
n×N

(5)

X(i) =
(

x1 x2 · · · xn
)(i)T (6)

Output label:

T =
[

T(1) T(2)
· · · T(N)

]T
N×m (7)

T(i) =
(

t1 t2 · · · tm
)(i)T (8)

Hidden layer input weight matrix is W:

W =
[

W1 W2 · · · WL
]T

L×n (9)

W j =
(

w j1 w j2 . . . w jn
)T

(10)

Hidden layer bias is b:

b =
(

b1 b2 . . . bL
)T

(11)

Hidden layer output weight matrix is β:

β =
[
β1 β2 · · · βL

]T
L×m (12)

βk =
(
βk1 βk2 · · · βkm

)T
(13)

The activation function selected in this paper is sigmoid function which is defined as:

g(x) =
1

1 + e−x (14)
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By using the activation function, the nonlinear characteristics can be added to make learning
faster and more efficient [44]. Thus, we have

H(i)
j = g

(
W jX(i) + b j

)
=

1

1 + e−(W jX(i)+b j)
(15)

The output O(i) can be expressed as:

H(i)β = O(i), i = 1, · · · , N (16)

The goal of the neural network learning is to minimize the output error

N∑
i=1

‖ O(i)
− T(i)

‖m×N= 0 (17)

That is, there exist β, W j and b j, such that:

H(i)β = T(i), i = 1, 2, · · · , N (18)

For the entire training set, Equation (17) can be expressed in matrix form as:

Hβ = T (19)

where H is the hidden layer output matrix:

H(W, b, X) =


g
(
W1X(1) + b1

)
· · · g

(
WLX(1) + bL

)
...

. . .
...

g
(
W1X(N) + b1

)
· · · g

(
WLX(N) + bL

)


N×L

(20)

For fixed input weights and the hidden layer biases, to train an SLFN is simply equivalent to find
a least-squares solution β̂ of the linear system Hβ = T:∣∣∣∣∣∣Hβ̂− T

∣∣∣∣∣∣ = min
β

∣∣∣∣∣∣Hβ− T
∣∣∣∣∣∣ (21)

According to the minimum norm criterion, the solution is obtained by finding the least squares:

β̂ = (H)†T (22)

where (H)† is the Moore–Penrose generalized inverse of the hidden layer output matrix H. In summary,
when inputting training data and randomly initializing the input weight matrix, the output weight
matrix can be obtained through Equation (22). The design of the ELM neural network model for
fatigue driving detection is shown Figure 6. It is noted that the ELM possesses the advantages of high
learning efficiency and strong generalization ability and thus is widely used in classification, regression,
clustering, feature learning and other problems [45]. Since the input weights and the hidden layer
biases of the ELM are randomly assigned, these weights and biases may not be the optimal choices
relative to the input data. For practical applications, in order to enable the neural network to have
better generalization performance, more hidden layer neurons may be needed, thereby increasing
the complexity of the network. To compensate for these shortcomings, we will introduce differential
evolution algorithms in the following section to optimize the weights and biases of the ELM, such that
the optimal network structure can be obtained.
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4.2. Differential Evolution ELM (DE-ELM)

Differential evolution, proposed by Storn and Price in 1995, is a simple yet powerful evolutionary
algorithm (EA) [39]. The basic idea of the optimization algorithm is as follows: starting from a randomly
generated initial population, a new individual is generated by summing the vector difference of any
two individuals in the population with a third individual, and then comparing the new individual
with the corresponding individual in the contemporary population. The corresponding fitness is better
than the fitness of the current individual, so the new individual will replace the old individual in the
next generation, otherwise the old individual will still be saved. Through continuous evolution, it will
keep the good individuals, eliminate the bad individuals, and guide the search to the optimal solution.
Compared with most of the available evolutionary algorithms, it exhibits the advantages of simple
structure, fast convergence, few adjustable parameters, and strong robustness, etc.

Next, we show the detailed mathematical description of DE algorithm in the following.
Step 1: Initialization. We randomly generate NP individuals to form the primary population,

where D is the dimension of the population. The i-th individual θi(g) in the g-th iteration can be
marked as:

θi(g) =
{
θi, j(g)

}
, i = 1, 2, · · · , NP; j = 1, 2 · · ·D (23)

The value of the j-th dimension of the i-th individual θi, j(g) can be obtained by the
following equation:

θi, j(g) = θmin + rand(0, 1)·(θmax − θmin) (24)

where θmax and θmin represent the upper and lower bounds of each parameter: θmin ≤ θi, j(g) ≤ θmax

and rand(0, 1) represents a random number uniformly distributed in the interval (0,1).
Step 2: Individual Evaluation. In this step, the entire population is evaluated, that is, the fitness

function value of each individual in the population is calculated.
Step 3: Mutation Operation. DE achieves the mutation of individuals through a differential

strategy, which is also an important difference from genetic algorithms. The differential strategy used
in this paper is to randomly select two different individuals in the population, scale their vector
differences, and perform vector synthesis with the individuals that need to be mutated, that is:

vi(g + 1) = θr1(g) + F·(θr2(g) − θr3(g)) (25)

where r1, r2, r3 are randomly chosen in the range [1, NP], with r1 , r2 , r3 , i, θr2(g) − θr3(g) is the
differential variation, vi(g + 1) is the new mutation individual, and the constant factor F is a scaling
parameter, which is used to control the amplification of the differential variation.
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In the mutation process, in order to ensure the validity of the solution, it must be determined
whether the parameters of each individual are between the maximum and minimum values. If this
condition is not met, they will be regenerated by using Equation (24).

Step 4: Crossover Operation. The crossover to differential evolution algorithm is introduced for
the sake of increasing the diversity of generation. Crossover operation is described as follows:

ui, j(g + 1) =

vi, j(g + 1) rand(0, 1) ≤ CR or j = jrand

θi, j(g) otherwise
(26)

where CR is the crossover probability and jrand is a random integer generated in the set {1, 2, . . . , D}.
Step 5: Selection Operation. The purpose of this step is to generate individuals of the population

in g + 1 generation. Among the target individual θi(g) and ui(g + 1) obtained in the previous step,
the one with better effect is selected as the individual θi(g + 1) of the g + 1 generation population
according to the fitness function:

θi(g + 1) =

ui(g + 1) i f f (ui(g + 1)) ≤ f (θi(g))

θi(g) otherwise
(27)

where f is the fitness function. The smaller fitness function value is selected as the individual of the
g + 1 generation population, which is used to replace the previous individual. Meanwhile, g = g + 1.

Step 6: Stop Test. Judge whether the termination condition is reached or the maximum evolutionary
algebra is reached. If so, the evolution is terminated, and the optimal parameters obtained at this time
are output as the solution. Otherwise, the program will jump to Step 2 for re-execution.

In order to reduce the number of hidden layer neurons and improve the generalization performance
of the neural network, the global optimization capability of the DE algorithm is applied to the reasonable
selection of the input weights and the hidden layer biases of the ELM.

Figure 7 shows the algorithm flow of the DE-ELM. Then, the optimization problem to be solved is
to perform min f (x), where f (x) is the fitness function. Suppose that the cost function (E) is root mean
squared error (RMSE) [46]:

E =

√√∑N
j=1

∑L
i=1

∣∣∣∣∣∣∣∣βig
(
wi · x j + b j

)
− t j ||

2
2

N ×m
(28)

The RMSE on the whole training dataset is used as the fitness function. In the following section,
we will carry out experiments to compare the classification effect of ELM, DE-ELM and SVM on the
fatigue driving dataset.

Remark 1: Before training, we need to determine the parameters of the DE algorithm and the
corresponding parameter selection criteria is given as follows. (i) The population size NP refers to
the number of individuals in the population. When the population is large, the entire population
exhibits diversity, which makes a larger search space and greater possibility of searching for the
optimal solution, but the convergence rate will be reduced. On the other hand, when the population
is small, the convergence rate is fast, but sometimes the global optimal solution cannot be obtained.
(ii) The scaling parameter F is used to control the amplification of the differential variation, which plays
a moderating role in the local search and global search of the algorithm. When F has large value,
differential variation will have big impact on the mutation individual seen from (25) resulting in
large disturbances, which is beneficial to maintain population diversity and global search capabilities.
However, the search efficiency will be lower and the accuracy of the global optimal solution obtained
will be lower. Smaller value of F may lead to loss of population diversity and the algorithm is prone
to fall into a local optimum causing early convergence. (iii) Crossover probability CR can determine
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whether members in a population perform crossover operations, which has an important impact on
population diversity.
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5. Results

In the experiments, after many trials and comparisons, the following parameters for the DE
algorithm were determined: NP = 20, F = 0.7, CR = 0.8, gmax = 30. The experimental results are
listed in Table 2. As seen from Table 2, with the increase in the hidden layer nodes number, the training
accuracy and the testing accuracy of both the ELM and the DE-ELM are well improved. For the
DE-ELM, when the number of hidden layer nodes is 150, it has better performance than the ELM with
200 nodes, in terms of both the training accuracy and the testing accuracy. It can also be seen that
the DE-ELM using fewer hidden layer nodes can achieve better classification results than the ELM
with more hidden layer nodes. The DE-ELM not only reduces network complexity, but also achieves
stronger generation ability. Moreover, when the number of hidden layer nodes increases to 150 and
200, the training and test accuracies of SVM cannot compete with those of ELM and DE-ELM.

Table 2. Classification accuracy of ELM, DE-ELM and support vector machine (SVM).

Classification Model Hidden Layer
Nodes Number Training Accuracy (%) Testing Accuracy (%)

ELM
100 89.09 87.96
150 94.25 90.28
200 95.04 91.20

DE-ELM
100 90.08 89.35
150 95.24 91.67
200 95.83 93.06

SVM - 90.87 89.35

In order to further verify the effects of three approaches on the test set, the classification results on
each fatigue state are shown in Figures 8–14, where the category labels of 1–4 represent the driver’s
sober state, first-level fatigue state, second-level fatigue state and third-level fatigue state, respectively.
The classification results of the ELM and the DE-ELM for 100, 150, and 200 hidden layer nodes are
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shown in Figures 8–13, while the classification results of the SVM are shown in Figure 14. It can be
seen that, for the test set samples, the DE-ELM prediction outputs match with the actual outputs
much better than the ELM and the SVM. In order to clearly evaluate the classification accuracy of the
fatigue state, Table 3 shows the classification accuracy of three approaches for each state on the test
set when the number of hidden layer nodes is 200. It is worth noting that the recognition rate of the
DE-ELM for various fatigue states all exceed 90%, which achieves the best classification performance.
In detail, although the ELM obtains similar performance to the DE-ELM for the first and second level
fatigue state, its classification accuracy for sober state and third-level fatigue state are not as good as
DE-ELM. In addition, the classification accuracies of the DE-ELM are a lot better than the ones of the
SVM for third-level fatigue states, except for the sober state in which similar accuracy is obtained.
It clearly demonstrates that the developed DE-ELM method in this paper exhibits the most excellent
classification performance of fatigue driving dataset compared to its ELM and SVM counterparts.
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Figure 9. DE-ELM (100 nodes)-based fatigue state detection results.
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Figure 10. ELM (150 nodes)-based fatigue state detection results.
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Figure 11. DE-ELM (150 nodes)-based fatigue state detection results.
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Figure 12. ELM (200 nodes)-based fatigue state detection results.
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Figure 13. DE-ELM (200 nodes)-based fatigue state detection results.
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Table 3. Classification accuracy of ELM, DE-ELM (200 nodes) and SVM for each state.

Level of Driver Fatigue ELM Accuracy (%) DE-ELM Accuracy (%) SVM Accuracy (%)

Sober state 88.89 94.44 96.30
First-level fatigue state 92.59 92.59 90.74

Second-level fatigue state 90.74 90.74 79.63
Third-level fatigue state 92.59 94.44 90.74

Please note that the criterion for determining the level of fatigue driving in this article is based on
the evaluation method of facial video experts. This method only subjectively recognizes and judges
the facial expression movement characteristics of the tester. It may not accurately and objectively
determine the driver’s fatigue state, which also leads to a lower recognition rate of fatigue level in this
experiment. The more input feature values and training samples of a classification model we have,
the higher the classification accuracy we will obtain. Due to the limited conditions of this experiment,
fewer input feature values and insufficient training samples have limited the recognition rate of fatigue
level in this paper. Further studies on determining the fatigue level and the selection of input feature
values will be carried out to obtain a higher recognition rate for fatigue driving.
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6. Conclusions

In this paper, the ELM-based FDD algorithm has been developed to determine the driver’s fatigue
status. Considering that the input weights and hidden layer biases are randomly obtained in the ELM
leading to the degraded generalization performance, the weights and biases are optimized via the
DE algorithm, such that the sensitivity of neurons is increased and the classification accuracy can be
improved. The driver’s respiratory and heartbeat signals are collected by Doppler radar and the smart
bracelet in this work, which has little impact on the driver’s normal operation. Experimental studies
have demonstrated that the DE-ELM has significantly improved the accuracy of driver’s fatigue state
detections compared to the traditional ELM and SVM approaches.

Author Contributions: Conceptualization, L.C.; data curation, G.W.; formal analysis, Z.Z.; funding acquisition,
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