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Abstract: We implement a cryptographic library using Web Assembly. Web Assembly is expected to
show better performance than Javascript. The proposed library provides comprehensive algorithm
sets including revised CHAM, Hash Message Authentication Code (HMAC), and ECDH using
the NIST P-256 curve to provide confidentiality, data authentication, and key agreement functions.
To optimize the performance of revised CHAM in the proposed library, we apply an existing method
that is a four-round combining method and additionally propose the precomputation method to
CHAM-64/128. The proposed revised CHAM showed an approximate 2.06 times (CHAM-64/128),
approximate 2.13 times (CHAM-128/128), and approximate 2.63 times (CHAM-128/256) performance
improvement in Web Assembly compared to JavaScript. In addition, CHAM-64/128 applying the
precomputation method showed an improved performance by approximately 1.2 times more than
the existing CHAM-64/128. For the ECDH using P-256 curve, the naive implementation of ECDH is
vulnerable to side-channel attacks (SCA), e.g., simple power analysis (SPA), and timing analysis (TA).
Thus, we apply an SPA and TA resistant scalar multiplication method, which is a core operation
in ECDH. We present atomic block-based scalar multiplication by revising the previous work.
Existing atomic blocks show a performance overhead of 55%, 23%, and 37%, but atomic blocks
proposed to use only P = (X, Y, Z) show 18%, 6%, and 11% performance overhead. The proposed
Web Assembly-based crypto library provides enhanced performance and resistance against SCA thus,
it can be used in various web-based applications.

Keywords: web; JavaScript; web assembly; crypto library; side channel analysis; fast implementation

1. Introduction

Recently, various types of Internet technology services, e.g., personal and business services,
are provided to users via web-based applications due to the accessibility of the web. Typically,
web-based applications comprised of servers and clients, and private information, e.g., private user
data and passwords, are exchanged between clients and servers. Data transmitted in plaintext form
are vulnerable to attackers thus, it is necessary to provide cryptographic operations to protect private
data and build secure web-based services. In other words, data confidentiality, data authentication,
and key establishment functions must be provided to develop secure web-based services [1].

JavaScript is a cross-platform script programming language that is used in various fields, e.g.,
server-side network programming, databases, and the Internet of Things (IoT) [2]. JavaScript is used
in web browsers to display web sites and can be accessed from another application’s built-in objects.
However, JavaScript is an interpreted language and is relatively slower than native languages such
as, e.g., C. In addition, it does not support the mathematical operations required for cryptographic
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operations, which incurs heavy overhead when executing such cryptographic operations. Therefore,
various web browser development companies have developed Web Assembly, which is a low-level
language for web environments that provides performance that is similar to native languages
(Web Assembly is being continuously extended) [3,4]. To date, several studies have investigated
implementing cryptographic algorithms using JavaScript. Since they are based on low-performance
JavaScript language, they do not provide sufficient performance. Furthermore, previous methods
implemented a limited number of algorithms rather than forming a complete crypto library. To build
secure communication between servers and clients in web applications, a crypto library that provides
confidentiality, data authentication, and key establishment functions is required.

Thus, we propose an efficient Web Assembly-based crypto library for secure communication
in various web applications. The proposed crypto library comprises of a block cipher, a message
authentication code, and a key exchange algorithm. We selected the revised CHAM [5], Hash Message
Authentication (HMAC) [6], and Elliptic-curve Diffie-Hellman (ECDH) using the National Institute
of Standards and Technology (NIST) [7] recommended P-256 curve [8], as a block cipher,
message authentication code, and key agreement method. The proposed Web Assembly-based
crypto library provides much improved performance compared to JavaScript-based implementations.
We apply several optimization techniques to further improve the performance of cryptographic
operations in the proposed library. We apply various methods to implement a safe and fast CHAM
algorithm. The original CHAM family algorithm is vulnerable to differential attacks, so the revised
CHAM algorithm is used. The revised CHAM algorithm [5] is an algorithm configured to be safe
from differential attacks by increasing the number of rounds from 80 to 88, 80 to 112, and 96 to 120 for
CHAM-64/128, CHAM-128/128, and CHAM-128/256 respectively. In the revised CHAM algorithm,
there is a process of changing the place of the word constituting the input value every round. We apply
existing 4-round combining method [9] to improve the performance of revised CHAM. The 4-round
combining method works faster by eliminating the unnecessary process of changing places by using
the word values used in each round flexibly. We propose an additional pre-computation method for
a faster operation in CHAM-64/128. The pre-calculation method is applied to the internal functions
ROL1, ROLS, and Keyschedule functions of CHAM-64/128 [10]. ROL1 and ROLS are functions
that rotate one word used as an input value by 1-bit and 8-bit, respectively, and Keyschedule is a
function that creates a round key. The three functions use 16-bit input values, and we apply the
method of pre-computation ROL1, ROLS, and Keyschedule from 0 x 0 ~ 0 x ffff. To a secure and
efficient implementation of the ECDH key agreement method, we implement scalar multiplication,
which is a core operation in the ECDH with the simple power analysis (SPA)-resistant and wNAF [11]
method. The naive implementation of scalar multiplication is vulnerable to side-channel attacks (SCA)
(e.g., simple power analysis (SPA) and timing analysis (TA)) [12,13]. In the case of scalar multiplication,
if 1-bit of a scalar integer is 1, ECADD and ECDBL are performed, and when 0, ECDBL is performed,
so the process is different. Therefore, it is divided into 1-bit units during analysis and eventually
scalar integer values, which are important information, can be attacked. Since scalar multiplication
is computationally intensive, a windowing method is used to compute it. Even though the wNAF
method is a representative windowing method for computing scalar multiplication efficiently, it is
vulnerable to SPA and TA. As an efficient countermeasure against SPA and TA, the concept of the
atomic block was presented previously [14]. An atomic block consists of *, +, —, + processes as one
block. A fake operation, which is an unnecessary operation, is added to the ECDBL and ECADD
operation process of scalar multiplication, and the structure is made so that it is calculated in the
order of *, +, —, +. Thus, it is safe for SPA and TA because 1-bit of a scalar integer value is calculated
in the order of ¥, +, —, + regardless of 1 or 0. We improved the atomic block assuming that scalar
multiplication is performed using only the basis point P = (X, Y, Z). Change is completed from the
existing atomic blocks *, +, —, + to *, +, —. Thus, 10 and 16 addition operations were reduced in ECDBL
and ECADD, respectively, compared to the existing atomic block. We apply wNAF and improved
atomic block to the ECDH algorithm of the proposed crypto library.
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Web Assembly and JavaScript are implemented algorithms, executed in Web browsers such as
Chrome, Firefox, and Microsoft Edge respectively to measure performance. Following performance
improvements that have been achieved in the order of Chrome, Firefox, and Microsoft Edge. In case
of block cipher, 2.1, 2.1, and 2 times for CHAM-64/128, 3, 1.6, and 1.8 times for CHAM-128/128,
and 3, 2.1, and 2.8 times for CHAM-128/256 shows performance improvement. CHAM-64/128 with
applied pre-computation method shows a performance improvement of 1.2 times than not applied to
the algorithm in three web browsers. For the key exchange algorithm, wNAF was applied to P-256.
The atomic block method, which is an algorithm corresponding against SPA and TA, was also applied.
When applying the existing atomic block and the proposed atomic block to wN AF, we check how much
performance overhead appears than the original wNAF due to the increased number of operations,
and how much the proposed atomic block is improved over the existing atomic block. For this purpose,
each algorithm implemented in Web Assembly and JavaScript was measured in Chrome, Firefox,
and Microsoft Edge. As a result, Web Assembly improved more than JavaScript, for the original wNAF
by respectively 11, 12, and 11 times, the existing atomic block wN AF by respectively 10, 10, and 14 times,
and the proposed wNAF by respectively 11, 12, and 14 times. Existing atomic block wNAF shows a
performance overhead of 55%, 23%, and 37% compared to the original wNAF. However, the atomic
block wNAF proposed to use only P = (X,Y,Z), showing performance overheads of 18%, 6%,
and 11%. The message authentication code is HMAC that uses SHA-256 to create a MAC. As a result of
measurement, Web Assembly showed a higher performance over JavaScript by 7.5, 10.8, and 11 times
for SHA-256, and 7.5, 24.8, and 7.1 times for HMAC.

Contribution
In this section, we propose the contributions of this paper.
1. First implementation of a crypto library using Web Assembly

Recently, web-based applications with various functions are being made in the cross-platform
language JavaScript. Web-based applications require confidentiality, integrity, and key exchange
algorithms to send and receive data. Cryptographic algorithms are made in JavaScript for use in
web-based applications. However, JavaScript is a heavy language and the nature of JavaScript
operations has disadvantages in implementing cryptographic algorithms that require many
mathematical operations. Therefore, Web Assembly was created due to the need for a performance
similar to that of low-level languages in the web environment. In this paper, we propose to build
a crypto library with cryptographic algorithms implemented using Web Assembly to implement
data security and faster cryptographic algorithms in web-based applications. The proposed crypto
library includes the block cipher CHAM family, the message authentication code HMAC, and the
key exchange algorithm ECDH. For each cryptographic algorithm, the code implemented by Web
Assembly shows a better performance than JavaScript. Our implementations are measured in
currently popular Web browsers such as Chrome, Firefox, and Microsoft Edge. As a result of the
measurement, on average, the CHAM family improved in speed by about 2.2 times, HMAC by
about 7.1 times, and ECDH scalar multiplication improved by 12.3 times.

2. Optimized implementations of a crypto library on Web Assembly

Since web-based applications exchange data with various environments, encryption is an essential
function to send data confidentially. However, due to the advancement of technology and various
environments and communication, the amount of data exchanged has also increased. Since the
data to be communicated is encrypted in order, it is necessary to optimize for the environment
in which the algorithm is used in order to encrypt quickly. The block cipher, a component of
our proposed cipher library, is chosen as belonging to the CHAM family. However, the original
CHAM algorithm is vulnerable to differential attacks. Therefore, CHAM-64/128, CHAM-128/128,
and CHAM-128/256 use the revised CHAM algorithm which increases the number of rounds
from 80 to 88, 80 to 112, and 96 to 120, respectively. In the revised CHAM algorithm, there is
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a process of changing the place of the word constituting the input value for each round. For a
faster encryption operation, we apply a 4-round combining method, which is an existing
method, to eliminate the process of changing the word position to perform a flexible operation.
Additionally, we propose a pre-computation method for faster operation in CHAM-64/128.
The method we propose applies to the internal functions ROL1, ROLS, and Keyschedule functions
of CHAM-64/128. ROL1 and ROLS are operations that shift the input value by 1, 8-bit Rotation
Left Shift, and KeySchedule is a round key generation function. The input values of the three
functions are 16-bit, which is a method of storing and using the result values from 0 x 0 to
0 x ffff after pre-calculation. Thus, in the encryption process, the previously calculated values
are simply taken and used. As a result, the performance was improved about 1.2 times compared
to when the pre-computation method was not applied in Chrome, Firefox, and Microsoft Edge.

3. Providing improved method that resists side channel attacks

Until now, there have not been many studies of side-channel analysis on the web environment.
In particular, a secure key exchange protocol should be applied to provide a secure communication
protocol in a web environment. ECDH is used as the key exchange algorithm. There is scalar
multiplication, which is the main operation of ECDH. However, since the scalar multiplication
process performs the ECDBL, ECADD operation when the value of 1-bit of the scalar integer
is 1, and the ECDBL operation when it is 0, it is possible to attack the scalar value because each
bit is classified during an attack. We propose a secure key exchange protocol that is applied by
improving the previously studied atomic block to cope with TA and SPA, which are vulnerable
to side channel analysis attacks in the web environment. Existing atomic blocks consist of *, +, —,
and + in one block. Fake operations are added to the main operations of scalar multiplication,
ECDBL and ECADD, and are configured to operate in the order of *, +, —, +. Therefore, it becomes
difficult to distinguish because 1-bit values are calculated in the order of *, +, —, + regardless
of 1 or 0. We change the existing atomic block to *, +,— and make it into one block. Thus,
we reduced 10 and 16 addition operations in ECDBL and ECADD, respectively. The method we
are suggesting is a method used only with P = (X, Y, Z). In addition, we calculate by applying
wNAF and a proposed atomic block to P-256 for efficient scalar multiplication. The implemented
algorithms measured the results in web browsers Chrome, Firefox, and Microsoft Edge. As a
result of the measurement, compared to the original wNAF, wNAF applied with an existing
atomic block shows a performance overhead of about 33%, and wNAF with the proposed atomic
block shows a performance overhead of about 11%. As a result, the proposed atomic block,
compared to the existing method, reduced the performance overhead by %

The remainder of this paper is organized as follows. Section 2 provides a basic overview of the
web environment, Web Assembly’s description and conversion process, and the need for a crypto
library. Section 3 describes the architecture of the proposed crypto library and target cryptographic
algorithm. Section 4 describes related work. Section 5 describes the construction of a crypto library
using the proposed cryptographic algorithm. Section 6 describes the performance measurement results.
Finally, Section 7 concludes the paper.

2. Background

2.1. Overview of Web Environment

Users frequently make use of web applications and access web services for a long time. There is a
variety of web browsers, e.g., Chrome, Firefox and Microsoft Edge, to access the web. Web browsers
are created using HTML, CSS, and JavaScript. A web browser uses a rendering engine that works on
the content and data of a web page and a JavaScript engine to execute JavaScript code to drive the web
browser. Each web browser uses a different rendering engine and a JavaScript engine. For example,
Chrome uses Blink as the rendering engine and V8 as the JavaScript engine. Microsoft Edge uses
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EdgeHTML and Chakra, Firefox uses Gecko and Rhino. Web-based applications view the same content
on all devices, e.g., PCs and smartphones. Unlike native applications, web-based applications do not
communicate directly with the operating system but run within the browser. Web-based applications
can always keep up to date without downloading or upgrading, and operating systems do not require
a separate platform, so a standard web language is made. Thus, users can easily access their choice of
web using mobile devices, e.g., smartphones. The code in one web page does not affect the code in
other pages. No matter which function is executed by the JavaScript code on a web page, other web
pages are irrelevant to the result obtained from the previous web page. Due to the development of
the web environment and the need for various functions, various libraries are created continuously to
enable various functions in the web environment using JavaScript. In addition, web developers can
use these JavaScript libraries easily and such libraries can be further modified. This is why JavaScript
libraries and the web are constantly evolving.

The web page executes the HTML, CSS, and JavaScript code that makes up the web page, as shown
in Figure 1, the rendering engine reads the code, parses the code, and then creates a Document Object
Model (DOM) and CSS Object Model (CSSOM) tree. These trees create a render tree, which renders
the web page to a web browser. The JavaScript engine handles the operation and program codes.
The rendering engine stops working when it encounters JavaScript code. The JavaScript engine reads
JavaScript code and creates a tree by parsing. After processing all of the JavaScript code, the rendering
engine performs its own tasks again from the process where it stopped and processes the process.

Load Parse Create Rendering Engine
HTML HTML Dom tree
Create isol
Render tree Display
Load Parse | | Create
CSS CSS CSSOM tree

/

T 1

| DOM API
Load Parse Create

Javascript Javascript Syntax tree

Javascript Engine

Figure 1. JavaScript working process.

2.1.1. Overview of Web Assembly

JavaScript is primarily used in web-based applications however, the operation speed of JavaScript
is significantly slower than that of other native languages. Web-based applications cannot use native
languages, e.g., C/C++. With the various content available on the web, the computation of content has
become complicated or heavy, and implementing such operations in JavaScript is a disadvantage from
a performance perspective. A language is required for the web that can be implemented and operate at
a similar level of performance as a native language. Initially, Mozilla announced asm.js however, it has
not received much attention due to its performance inefficiency. In addition, asm.js is difficulty to use.
The need for native language-level performance in web environments continued, and Web Assembly
was created based on asm.js. Web Assembly is in constant development and web browser companies,
e.g., Google, Microsoft, and Mozilla, are involved in its development. Web Assembly is not intended
to replace JavaScript, but is designed to operate web-based applications efficiently with JavaScript.
Web Assembly implements code using languages that can identify existing variable types, e.g., C/C++,
Rust, Typescript, Assemblyscript, and Go, and then converts them to Web Assembly using Emscripten.
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Figure 2 shows the process of converting C/C++ code to Web Assembly code. After writing an
algorithm in C/C++, Emscripten enters the C/C++ code into the Clang + LLVM and receives the
compilation results to generate the Web Assembly extension (i.e., a WASM file). The WASM file is not
immediately accessible to the DOM thus, Emscripten can help print the results of the wasm execution
in HTML documents through JavaScript glue code to access the DOM.

C/C++ Emscripten WASM + HTML document
IS “glue: code

source code LLVM/Clang module

Figure 2. WebAssembly conversion process.

2.1.2. Necessity of Crypto Library for Secure Web Application

Web-based applications can easily be accessed by users through various devices, e.g., PCs and
smartphones therefore, various users, e.g., companies, institutions, and individuals, are using
web-based applications. Many users use web-based applications for information provision, collection,
search, or personal work. Web-based applications must show the same data on different platforms
thus, web-based applications are created using JavaScript (a cross-platform language). Therefore,
users obtain the same information on different platforms. JavaScript is also used in server-side network
programming, databases, and the IoT. Due to convenience and various features, web-based applications
communicate with various other environments and platforms. This is why web-based application
send and receive various data and store them on a server. To ensure the continuous development
of web-based applications and data security, a crypto library comprising of cryptographic and
authentication algorithms is required. For security, encryption is performed when data are stored
on a server and decryption is needed when data are used. In addition, authentication is required
to determine whether data transmitted and received during communication are intact. Therefore,
to securely communicate with other environments in web-based applications, ensuring confidentiality
and integrity is essential.

3. Secure Crypto Library Design

3.1. Design Motivation and Library Architecture

Crypto libraries created using JavaScript make it easy for users of other web environments
to obtain and use cipher algorithms, e.g., block ciphers, key agreement, key exchange algorithms,
and message authentication. Web-based application developers that use JavaScript enable users to
safely use applications by using a crypto library to protect user information, encrypt, and safely store
data created by the web-based application, and verify data integrity through message authentication.
Even if a 1-bit error occurs, users cannot obtain the correct data thus, when implementing an encryption
algorithm, it must be implemented carefully in the operation process.

In the case of JavaScript, data types are not divided into char, short, and int according to bit size
like C/C++, and there are no dividing negative and positive numbers, e.g., unsigned and signed.
With C/C++, the bit size of the value that can be stored for each data type is determined thus, parts that
exceed the bit size are cut automatically when calculating integers, which is useful for parts that require
subtraction after computation, e.g., modular addition, in the computation of cryptographic algorithms.
It can express negative and positive numbers as unsigned and signed and there are many useful parts
in the finite field operation of cryptographic algorithms. However, JavaScript is not divided into data
type, unsigned, and signed, so each cryptographic algorithm has different word sizes, and additional
operations must be used to obtain the desired result. JavaScript is a heavy language, and it is slower
because it requires additional operations when performing the same operations as C/C++. Thus,
JavaScript is less efficient when implementing cryptographic algorithms.
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Converting existing programming languages, such as C/C++, Rust, etc., to Web Assembly is
used via Emscripten to allow them to operate in a web environment. Data types can be divided and
operated for each size, and positive and negative numbers can be distinguished, such as unsigned
and signed, so that a user can get the desired value without additional operations, unlike JavaScript.
For cryptographic algorithms with many mathematical operations, Web Assembly can be implemented
and operated faster and more efficiently in a web environment. If users use a Web Assembly-based
crypto library when communicating with the web environment and other environments, the web-based
application can perform faster computations and encryptions than when using a JavaScript-based
crypto library.

3.2. Target Block Ciphers

Revised CHAM

In ICISC 2017, National Security Research Institute Koo et al. proposed the lightweight CHAM
crypto family [10], which is divided into CHAM-64/128, CHAM-128/128, and CHAM-128/256
depending on the parameters. Table 1 shows the CHAM parameters. It also features a stateless
on-the-fly key schedule, which reduces key storage space and provides lightweight cryptography with
the ARX structure, which is suitable for limited environments. The key scheduling process in CHAM
is shown in Figure 3. The ROL1, ROL11, ROL8, and XOR operations generate n1/k x 2 round keys.
Then, it encrypts all rounds with an n/k x 2 round key. The encryption process comprises of odd and
even rounds, and each round function comprises of ROL1, ROL8, and XOR operations, as well as
modular addition. After each round, a cyclic left shift is performed in the word unit. The odd and even
round encryption process of CHAM is shown in Figure 4.

In ICISC 2019 [5], it was suggested that the original CHAM was vulnerable to differential attacks
by discovering the differential characteristics in the reduced round. CHAM-64/128, CHAM-128/128,
and CHAM-128/256 found some differential characteristics in rounds 56, 72, and 78, respectively.
Thus, for the revised CHAM the numbers of rounds are increased to defend against differential attacks.
The revised CHAM-64/128 increases the number of rounds from 80 to 88, the revised CHAM-128/128
increases the number of rounds from 80 to 112, and the revised CHAM-128/256 increases the number
of rounds from 96 to 120 rounds. Despite increasing the number of rounds, the revised CHAM showed
efficient performance in both software and hardware, and was faster and safer against differential
attacks than the lightweight SIMON and SPECK.

Table 1. Parameters of CHAM family (n: Block size, k: Key size, r: Round number, and w: Word size).

Cipher n k T w klw
CHAM-64/128 64 128 80 16 8
CHAM-128/128 128 128 80 32 4
CHAM-128/256 128 256 96 32 8
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Figure 3. CHAM keyschedule.
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Figure 4. CHAM round function.

3.3. Target Message Authentication Code (MAC) Algorithm

3.3.1. Overview of HMAC

Web-based applications send and receive a lot of data in real time. To establish a secure
communication environment, it is necessary to authenticate whether a message has been tampered
with due to an intermediate attack, or whether the data have been transmitted from the correct user.
MAC is used to confirm this and provides message integrity and authentication by generating a MAC
by inputting a key shared with each other between the message sender and receiver. Various MAC,
e.g., GCM, CCM, and HMAC have been proposed to provide message integrity and authentication.
HMAC is classified into HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512
according to the SHA-2 family used in the message compression process [6]. We use HMAC-SHA-256
as the target message authentication code by using SHA-256, which is the most frequently used in the
message compression process. The overall process of HMAC-SHA-256 is shown in Figure 5. The MAC
value is generated through two SHA-256 processes. IPAD and OPAD repeat 0x36 for IPAD and 0x5¢
for OPAD as much as the block length of the hash function. First, if the key length is greater than
512-bit, the key value is hashed. The remaining space is padded with zeros to adjust the length of the
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key to 512-bit. If the length of the key is less than 512 bits, the remaining space is padded with zeros to
adjust the length of the key to 512-bit. Then, the input of the hash function is set by applying the XOR
operation to each 512-bit IPAD and OPAD and then, the message value for authentication is added
after the IPAD and padded XOR result value to form a single message, and a 256-bit hash value is
generated through the SHA-256 process. Finally, the generated hash value is pasted after the OPAD
and padded K-value XOR result to form a single message, and then set as the input data for SHA-256.
Finally, the generated hash value becomes the MAC value for message authentication.

Message Key

OPAD

n

H' « HASH(K,|[M)

| H'" « HASH(K;||H")
MAC

Figure 5. Hash Message Authentication Code (HMAC) process.
3.3.2. Overview of SHA-256

SHA-256 Internal functions: SHA-256 use six logical functions, where each function operates on
32-bit words, which are represented as x, y, and z. The result of each function is a new 32-bit word.
The six logical functions are expressed as follows [15].

Definition 1. SHA-256 logical function:

Ch(x,y,z) = (x ANy) ® (-x Az) 1)
Maj(x,y,z) = (x A\y) @ (x Az) © (y A z) ()

Y 5°°(x) = ROTR?(x) & ROTR"™(x) & ROTR*(x) (3)
Y "#°(x) = ROTR®(x) ® ROTR" (x) ® ROTR®(x) (4)
0% (x) = ROTR’ (x) ® ROTR®(x) @ (x > 3) (5)
03%(x) = ROTRY (x) @ ROTRY (x) @ (x > 10) (6)

SHA-256 Padding the Message: The SHA-256 block has a 512-bit size, and the block operation is
performed in 32-bit units. The SHA-256 function stores the length of the input data in the last block
64-bit. Therefore, the padding process must be included in the SHA-2 family for storing the message
length, the padding process is summarized as follows.

- Padding process

Step 0 Let !/ is the length of the message;
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Step 1 Append the bit “1” to the end of the message;

Step 2 Followed by k zero bits, where k is the smallest, non-negative solution to the equation / + 1 + k
=448 mod 512;

Step 3 Then append the 64-bit that is equal to the message length [ expressed using a
binary representation.

Padding can be inserted before hash computation begins on a message or any other time during
the hash computation prior to processing the block(s) that will contain the padding [15].

SHA-256 Message Compression: The block operation in SHA-256 repeats the same process for
64 rounds. In the block operation, each round uses padded message data. Thus, SHA-256 must expand
the data using message padding, this process is the message expansion process. Algorithm 1 shows
the pseudocode of the SHA-256 message expansion process.

Algorithm 1 SHA-256 Message expansion process

Require: 32-bit word Message M = (M[0], M[1],...... , M[15])
Ensure: Expansion Data W = (W[0], W[1],...... ,W[63])

1: fori=0to15do

2. WIi] = M[i];

3: end for

4: fori=161to 63 do

5. WIil=0(W[i —2]) BW[i — 7] B o3 (W[i — 15]) B W[i — 16]
6: end for
7: return W

In Algorithm 1, blocks the size of 512 bits are labeled M. An M block is divided into 16 32-bit
words, each divided data are labeled M[i], and the output of the message expansion process is labeled
W(0 < i < 16). Message compression updates the digest value through the extended W and eight
initialized 32-bit working variables. The eight working values are a, b, ¢, d, ¢, f, g, and h, respectively.
Algorithm 2 shows the pseudocode for the SHA-256 message compression process. In Algorithm 2,
Ktz56 is the round constant defined in the literature [15]. Then, Algorithm 2 is executed, the digest
is updated using the eight working values. In SHA-256, the digest comprises eight 32-bit words.
When the SHA-256 algorithm is called, the digest is initialized to a defined value [15]. After the
message compression process, the digest is updated with the eight working values. The digest updates
the 32-bit word and working value with 232 modular addition (B). When message compression uses the
last padding block, the SHA-256 digest is updated through a working value. Finally, SHA-256 returns
a 256-bit digest.

Algorithm 2 SHA-256 Message Compression

Require: Expansion Data W = (W[0],..., W[63])

Require: Working variables (a,b,c,d, e, f, g, ) in hash state

Ensure: Updated working variables (a,b,c,d, e, f,g,h) in hash state
1: fort=0to 63 do

2 Ty=h+09%e)BCh(e, f,g) BKFPCBHWIH

3 Tp=05°(a) B Maj(a,b,c)

4 h=gg=ff=ee=dBT,d=cc=bb=aa=T1HT
5

6

: end for
: return Hash value (a,b,c,d,e, f,g,h)
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3.4. Target Key Agreement Algorithm

ECDH with P-256 Curve

P-256 is a NIST curve amongst the 15 elliptic curves recommended by NIST [8]. It is an elliptic
curve defined over a 256-bit prime field that offers approximately 128-bit security. This elliptic curve is
defined by the following equation:

v =x>-3x+b (7)

where b is a constant in a finite field F,. The prime p is a 256-bit prime selected for easy modular
reduction. This elliptic curve has an Abelian group structure with identity element O called the point
of infinity. Scalar multiplication calculates kP using the 256-bit scalar value integer k and base point
P = (Xj,Y7) to obtain Q = (X3, Y3) values. Here, the algorithms used for scalar multiplication are
ECADD and ECDBL. The input value points used for ECDBL and ECADD are affine coordinate
systems P = (X1,Y1), Q = (X»,Y2). ECDBL calculates P+ Q = 2P when P = Q and ECADD
performs P + Q when P # Q. The security of ECC is based on the difficulty of computing the elliptic
curve discrete logarithm problem (ECDLP), i.e., it is very difficult to find scalar value k when Q and k
are given by Q = kP.

The prime curve’s equation is y?> = x> + ax + b. The prime curve is divided into P-256, P-384,
and P-521 for each parameter. Here, scalar multiplication is performed using the affine coordinate
system. ECADD is performed whenever the 1-bit value of scalar k, i.e., the input value of scalar
multiplication, is 1. ECADD includes inverse circle arithmetic. Among the finite field operations
(addition, subtraction, multiplication, and inverse), inverse operations are the heaviest. Therefore,
rather than performing inverse calculation through ECADD whenever the 1-bit value is 1 by extending
to the projective coordinate system, the load on the inverse calculation is reduced by performing
the inverse calculation once after the scalar multiplication operation. This method calculates scalar
multiplication quickly using a more optimized method than projective coordinate by implementing
scalar multiplication with a Jacobian coordinate system fixed at a = —3. After converting the
affine coordinate system to the Jacobian coordinate system, the ECDBL and ECADD operations
are performed as shown in Table 2. After the scalar multiplication operation is completed, the value of
kP can be obtained by converting the Jacobian coordinate system to the affine coordinate system [8].

Table 2. Jacobian ECDBL, ECADD.

ECDBL ECADD
P=(Xy,Y1,Z
P = (Xl,yl,Z]) Q = ((X12 Y12 le))
P+ Q=2P=(X3,Y37Z3) P+ Q= (X3Y3,Z3)
U1 = Xlz%
_ 2
M =3X2 + aZ} vy
S =4X;Y? a=nz
= 4%,V _
T — 8y* 2
1 H=U-U
R=5 -5
X3 = M? - 25 X3 = R? — H3 - 2U; H?
Y3=M(S—X3)—T  Ys=R(UH?— X3) — S H
Z3 =217 Z3 = HZ,1Z

ECDH is a Diffie-Hellman key exchange protocol that uses elliptic curve-based operations [7].
Elliptic curve cryptography is a public key method based on an elliptic curve and security in the
discrete logarithm problem. In addition, as an alternative to RSA, it provides security with a much
shorter key length than RSA. The elliptic curve-based operation comprises ECADD and ECDBL.
ECADD is an operation that adds two points, and ECDBL is an operation that doubles a point.
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The dP for scalar d, i.e., a point on the elliptic curve at the point at base point P, is calculated as scalar
multiplication using two elliptic curve operations.

The Diffie-Hellman key exchange is security with the difficulty of the discrete logarithm problem.
Here, Alice and Bob calculate g” mod p and g¥ mod p with the private keys a and b, respectively,
in the cyclic group < g > with order p. Then, after sending ¢* mod p and g’ mod p to Bob and Alice
respectively, by exponentially multiplying each private key to the transmitted value, private keys
as g% mod p can be exchanged safely without revealing key information to an attacker. In DH,
the key lengths of a and b are long, which is a disadvantage however, ECDH, which combines elliptic
curve cryptography and DH, provides efficient security with a short key length using elliptic curve
cryptography. The entire process of ECDH is shown in Figure 6. Here, Alice and Bob generate private
keys a and b, respectively, and, after generating private keys, Alice and Bob set the base point G on the
elliptic curve to calculate public keys aG and bG, respectively, and send the public keys aG and bG to
each other. Finally, Alice and Bob calculate point abG on the elliptic curve through scalar multiplication
of their private key values on the transmitted public key.

Base Point : P = (x, y)
Secret key of Alice : scalar a
Secret key of Bob : scalar b

setpl. aP

stepl. bP
step2. a*bP step2. b*aP

a*bP = b*aP = Public key

Figure 6. ECDH Process.

3.5. Providing Side Channel Resistance

Atomic Block-Based ECDH Implementation

The scalar multiplication operation of elliptic curve cryptography is vulnerable to simple power
analysis (SPA). This is because the scalar multiplication operation operates ECDBL and ECADD when
the 1-bit of the scalar integer is 1, and calculates only ECDBL when the 1-bit of the scalar integer
is 0, resulting in different power consumption. In addition, ECADD is only performed when the
scalar multiplication operation is 1 thus, the use of branch statements is vulnerable to timing attacks.
Countermeasures for side-channel analysis against scalar multiplication of elliptic curve cryptography
have been proposed [12-14].

In [14], an atomic block, an algorithm for countering SPA, which is a side-channel attack method of
RSA and elliptic curve cryptography, was proposed. In the Scalar multiplication operation, an atomic
block is applied to ECDBL and ECADD to be safe against SPA, which is a side-channel attack,
and the existing atomic block operation repeats in the order of multiplication, addition, subtraction,
and addition operations to perform a Scalar multiplication operation. ECADD and ECDBL to which
the atomic block is applied are shown in Table 3. In order to safely perform ECDBL and ECADD
through an atomic block, a fake operation must be added. For the existing atomic block, 17 fake
operations were added for ECDBL and 32 for ECADD. If ECDBL and ECADD are configured
through the calculation process shown in Table 3, the same power waveform is repeated when
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an attacker measures the power consumption for scalar multiplication, so it is safe for SPA. In addition,
it is safe for TA because branch statements are not required when implementing atomic blocks.
When exchanging keys between web environment and another environment, using a branch statement
in scalar multiplication inside ECDH is vulnerable to TA. Therefore, we present a secure key exchange
protocol to users when using crypto libraries by applying an atomic block which is a security method
for TA and SPA to scalar multiplication.

Table 3. Existing atomic block method.

ECDBL ECADD
Ty < a, T1+ X1, T + Y1, T3 <+ Z4
Tl(*Xl,Tzkyl,Tg,(—Zl T7%X2,T8<—Y2,T9(—Zz
1. 6. 1. 9.
Ty Th-Th T+ T T Ty Ty Ty T3+ T3 Ty
Ts—Ty+Ty To+—Th+T * *
* * * *
T5 — T4+T4 * * *
2. 7. 2. 10.
T5 < T3 - T3 T5 < T3 - T3 Ty« Ty - Ty T3 < T5-Ts
Tl < T1 + Tl * * *
* T5 < —T5 * *
* * * *
3. 8. 3. 11.
T5FT5~T5 T5<—T5~T5 T4<—T4-T9 T6<—T5~T5
* Tl — Tl + T5 * *
* * * *
* Tl +— Tl -+ T5 * *
4. 9. 4. 12.
T5<*TO'T5 T+ T T Tz(—Tz-T4 T1%T1-T6
Ty Ty+Ts Th+—Th+T, * *
* * * Ty —T4
Ts—Th+T, Ts5+T1+T5 = *
5. 10. 5. 13.
T3+ T3 Ts Ty < Ty Ts Ty < T3-T3 T5 < T5 - Ty
* I+ To+Ty * Te<—Th+ T
* T+ —T, * T« —Tp
* * * Te < Tr + Tg
6. 14.
T5<—T4~T7 Ty« Ty Ty
* T1<+—Th1+Ts
T5 — 7T5 T6 — 7T6
Is+—T1+T5 T+ Ti+Tg
7. 15.
T4<—T4'T8 TQFTQ-TS
* T+ T+ T
Ty < —Ty *
T4<*T2+T4 T6%T1+T6
8. 16.
Ty < Ty Tg Ty < Ty Tg
* Th+— T+ Ty
Ty < —Ty *

Ty T +Ty =

4. Previous Crypto Implementations in Web Environment

4.1. CHAM Algorithm in JavaScript and Web Assembly

The original CHAM algorithm (Figure 4) is divided into odd and even rounds, and swaps the
position of the word at the end of each round. Use 2 x k/w round keys repeatedly. The words of
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the original CHAM algorithm return to their original positions every four rounds. Thus, as shown
in Figure 7, it is possible to maintain the position of each word by calculating the necessary values
for each round without performing a swap. This method is faster because the swap process in the
original CHAM algorithm is not used [9]. The CHAM and AES algorithms are implemented with Web
Assembly and demonstrate faster performance than JavaScript implementation [16].

o»++++|Odd Round | ++++., OddRound

Q

W3 > W3 —> 4: Vv’sér "-'$W3
: t \.+3\
: =" RK[i+2 mod 2k/w] =» m<[.+3 modzkw] D E

W, > W, — Wz—>€E->EE->-:rW2 I,
: : [i+2 :

i RK[i+1 mod 2k/w] =

W1 :: W1_'?_>E'>-—’W1 .5%’1 :' W1
: 1 : : :
RK[i mod 2k/w] = T
Wo —>@>ec> = Wy =W, >Wo » Wo

Figure 7. CHAM 4-round combining process.

4.2. Crypto Implementations on Web Assembly Environment

In [17], HACL™ [18], libsodium [19], and the proposed WHACL" [17] libraries are converted to
Web Assembly to compare performance. HACL" is a verified library of cryptographic primitives that
is implemented in Low* and compiled to C via KreMLin [20]. Libsodium is a modern, easy-to-use
software library for encryption, decryption, signatures, password hashing, and more. WHACL" is
the library proposed in [17]. In Table 4, (A) is a HACL* library compiled with C using KreMLin
and then compiled as Web Assembly through Emscripten, (B) is libsodium compiled with Web
Assembly through Emscripten, and (C) is WHACL* compiled with KreMLin. Looking at Table 4,
HACL” is slower than libsodium in Curve25519 and Ed25519. HACL* depends on 128-bit arithmetic
in C compilers such as gcc and clang. Libsodium converts to 32-bit implementation and operates.
Web Assembly also encodes 128-bit integers into 64-bit integer pairs. Due to these characteristics,
there is a difference in performance when converting HACL* and libsodium libraries to Web Assembly.
As a result, when using a cryptographic algorithm by converting the code implemented in a web-based
application into a Web Assembly, implementing a cryptographic algorithm in consideration of the
characteristics of such Web Assembly helps to improve performance.

In [21], the official implementation of Picnic [22], which was NIST’s second round candidate
for the standardization of quantum tolerance encryption, was converted into Web Assembly, and its
performance was measured in Chrome, Firefox, and Microsoft Edge. Comparing Tables 5 and 6, as a
result, Web Assembly shows a result that is about 2 ~ 3 times slower than that of C.
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Table 4. Performance evaluation of HACL*. (A) is HACL* /C, (B) is libsodium, and (C) is WHACL".
(1k : 1000, B : Byte) [17].

Algorithm (Blocksize, #Rounds) (A) (B) ©
Curve25519 (1 k) 0.83s 0.15s 4.05s
Chacha20 (4 kB, 100 k) 1.86s 1.74s 6.62 s
Salsa21 (4 kB, 100 k) 1.55s 224 s 5.52s
Ed25519 sign (16 kB, 1 k) 3.01s 0.27 s 15.6s
Ed25519 verify (16 kB, 1 k) 3.07s 0.24 s 15.6s

Poly1305_32 (16 kB, 10 k) 0.27 s 0.19s -

Poly1305_64 (16 kB, 10 k) 1.93s 0.19s 11.5s
SHA2_256 (16 kB, 10 k) 1.64s 1.84s 3.5s
SHA2_512 (16 kB, 10 k) 1.16s 1.21s 3.2s

Table 5. Performance of picnic (C implementation) [22].

Parameters Sign Verify
Picnic-L1-FS 2.82 ms 2.34 ms
Picnic-L1-UR 3.49 ms 2.87 ms
Picnic2-L1-FS 106.91 ms 42.64 ms
Picnic-L3-FS 6.74 ms 5.66 ms
Picnic-L3-UR 8.64 ms 7.12 ms
Picnic2-L3-FS 328.68 ms 99.27 ms
Picnic-L5-FS 12.37 ms 10.59 ms
Picnic-L5-UR 15.02 ms 12.64 ms
Picnic2-L5-FS 708.82 ms 178.63 ms

Table 6. Performance of picnic (Web Assembly implementation) [21].

Firefox Edge Chrome
Parameters Sign Verify Sign Verify Sign Verify
Picnic-L1-FS 6.67 ms 4.97 ms 8.22 ms 6.56 ms 6.62 ms 6.86 ms
Picnic-L1-UR 8.36 ms 6.36 ms 9.64 ms 7.70 ms 9.61ms 7.82ms

Picnic-L3-FS 15.57 ms 12.98 ms 18.54 ms 15.78 ms 18.38 ms 15.56 ms
Picnic-L3-UR 20.11 ms 16.47 ms 22.86 ms 19.08 ms 22.58 ms 19.10 ms
Picnic-L5-FS 27.25 ms 23.01 ms 32.93 ms 29.45 ms 32.62 ms 28.34 ms
Picnic-L5-UR 33.92 ms 28.70 ms 39.91 ms 34.72 ms 38.84 ms 33.12 ms
Picnic-L1-full 5.64 ms 3.82 ms 5.05 ms 3.35ms 5.01 ms 3.26 ms
Picnic-L3-full 10.06 ms 7.32 ms 8.94 ms 6.66 ms 8.75 ms 6.38 ms
Picnic-L5-full 16.49 ms 13.00 ms 16.12 ms 12.61 ms 16.02 ms 12.26 ms

Picnic3-L1 21.90 ms 17.58 ms 19.63 ms 16.02 ms 19.54 ms 15.46 ms

Picnic3-L3 48.57 ms 38.26 ms 43.74 ms 35.32 ms 43.80 ms 34.58 ms

Picnic3-L5 80.54 ms 59.59 ms 75.38 ms 55.75 ms 73.57 ms 54.30 ms

5. Proposed Web Assembly-Based Crypto Library Implementation

5.1. Proposed Implementation of Revised CHAM

The revised CHAM algorithm is an ARX-based lightweight cipher, and is an algorithm that is safer
for differential attacks than the original CHAM. The revised CHAM algorithm is safe for differential
attacks because it increases the number of rounds of the original CHAM algorithms, CHAM-64/128,
CHAM-128/128, and CHAM-128/256. With this method, we implement the revised CHAM algorithm
to be safe for differential attacks by implementing it using Web Assembly. The number of words in
the plaintext entering the input value from the original CHAM algorithm is 4. The original CHAM
algorithm swaps the place of four words that make up the plaintext at the end of one round.

Rather than swapping four words for each round [9], as shown in Figure 7, it uses a feature
that returns to the original words every four rounds to improve performance. At the end of each
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round, the round algorithm is calculated using the necessary values while maintaining the position of
each word without swapping by removing the word swapping process from the existing algorithm
to induce a faster round operation. In CHAM algorithms, the plaintext and 1-word of the key
are 16-bit in CHAM-64/128. In Figures 3 and 4, 16-bit word is used as the input to ROL8, ROL1,
and Keyschedule. Algorithms 3 and 4 present a method to pre-compute the input values of ROLS,
ROL1, and Keyschedule, through which the resultant values are 16-bit and are calculated in advance
from 0 x 0to 0 x ffff, the number of all 16-bit inputs. Whenever the ROL1, ROLS, and Keyschedule
functions were required, they used a method of taking and using the result values based on the input
computed in the pre-built table rather than the operation.

Algorithm 3 Generation of Rotation Left Shift Table
Output: ROL1-Table[0 x ffff], ROR8-Table[0 x ffff], ROR1-Table[0 x ffff]

1: fori=0x0to0 x ffff do

2: ROLl-Table[ ] — ROngi;
2: 1§OL8-Tab1e <~ ROLS(i
en

Algorithm 4 Generation of Keyschedule Table

Output: Keyl-Table[0 x ffff], Key2-Table[0 x ffff]

1: fori=0x0to0 x ffff do

2: Ke 1-Table[i] < i ® RO i OL8 i
3: y -Table[(] +k/w) (<—) L?(i) @ ROL11(Y)
4 en

First, Algorithm 3 is used to create the precomputation table for ROL1 and ROLS. Then,
the Keyschedule table is created using Algorithm 4. For the ROL1 and ROLS operations in Algorithm 4,
the Keyschedule table can be created faster by using the table created in Algorithm 3.

5.2. Proposed Implementation of ECDH with Side Channel Resistance

In the literature [11], the NAF algorithm used a negative representation to reduce the number of
1s for scalar k. As the number of ECADD decreases as much as the number of 1, scalar multiplication is
possibly faster than before. The wN AF algorithm processes ECADD for w-bit at once thus, the wNAF
algorithm realizes a faster scalar multiplication than the binary left to right scalar multiplication
algorithm. To process w-bit, pre-computation is required for odd values in the range [—2%,2¢~1 — 1].
It can be used at variable points due to the relatively low cost of pre-computation.

To use wNAF, conversion from scalar k to NAF, (k) is required, which is realized in the same
manner as Algorithm 5. The NAF,(k) can be up to 1 bit longer than the existing k, and the maximum
nonzero density will be _; +1 Multiplication for the overall scalar k is performed in the same manner
as Algorithm 6. In the pre-calculation, one ECDBL and 2% — 2 ECADD operations are required, and,
in the scalar multiplication process, | ECDBL and -4 ECADD operations are required. The wNAF
algorithm is safe for SPA because it uses the number of holes in the range [—2%,2%~! — 1]. Depending on
the bit size of Scalar k, the number of pre-computed ECAD Ds varies. Therefore, it is vulnerable to TA,
and it is implemented to be safe for TA using atomic blocks.
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Algorithm 5 Computing the width-wNAF of a positive integer

Input : Window width w, positive integer k.
Output: NAF, (k)

1: i+ 0.

2: whilek > 1 do
3 if k is odd then

4: ki < kmods 2,k < k —k;
5 else

6 ki< 0

7 end if

8 k< k/2,i+—i+1

9: end while

10: return (k;_1, ki_>, - -+, k1, ko)

Algorithm 6 Window NAF method for point multiplication

Input : Window width w, positive integer k, P € E(F)
Output : kP

1: Use Algorithm 5 to compute NAF, (k) = Y/ Zk;2!
2: Compute P; = iP fori € {1,3,5,. o pwel 1?

3 Q<4

4: forifrom ! — 1 downto 0 do
5 Q<+ 20

6: ifk; # 0 then

7 if k; > 0 then

8 Q+Q+ Pki
9: else
10: Q< Q—Py
11: end if
12:  end if
13: end for

14: return (Q)

Atomic block is safe for SCA by repeating the same process regardless of 0 or 1 in scalar
multiplication operation. Atomic block provides safety for SCA by making it difficult to distinguish
between ECDBL and ECADD by adding fake operations to make calculations in a regular order.
In this paper, we present the operation process of a new atomic block by reducing the fake operation
in the previous atomic block [14].

As seen in Table 3, the existing atomic blocks in the literature [14] consist of *, +, —, and +.
The method we propose is an improved method, assuming that only P = (X, Y, Z) is used. We propose
a method to reduce the number of fake operations by changing the block configuration of the existing
atomic block to the configuration of *, +, —. The proposed atomic block composes ECDBL and ECADD
into 10 and 16 blocks by removing one addition in one block process, respectively.

Therefore, 10 and 16 addition operations in ECDBL and ECADD are reduced compared to the
existing atomic block. As for the existing atomic block, ECDBL has nine fake additions and eight fake
subtractions, and ECADD has 22 fake additions and 10 fake subtractions. In the proposed atomic
block, ECDBL has six fake subtractions, ECADD has nine fake additions and nine fake subtractions.
Finally, the proposed atomic block reduced nine fake additions and two fake subtractions in ECDBL
and 13 fake additions and one fake subtraction in ECADD compared to the existing atomic block.
The proposed atomic block operation process is shown in Table 7.

Table 8 lists the number of additions, subtractions, and multiplications of the original wNAF,
the existing atomic block, and the proposed atomic block.
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Table 7. Proposed atomic block method.

18 of 23

ECDBL ECADD
T0<—ll, Tl%Xl,TZFYl,T:‘,(—Zl
T+ X1, T, <—Y1,T3<—Zl T10<—X2,T11 <—Y2,T12(—Zz
1. 6. 1. 9.
Ty« Ty-Tq Ty < Ty Ty Ty < Ty - Tyn T5 < Ty - Ty
Ts—Ty+Ty Ty Ty+T;, *
* * * *
2. 7. 2. 10.
Ty T3 T3 Ts5 <+ T3 - T3 T+ Ty Th Te < T5-Th
Ty Ts5+Ty Ts+T7+T;, x Ty <+ Ts + Tg
* T5 < —T;5 Ty« —Th T+ -1
3. 8. 3. 11.
T5<—T2-T2 T6<—T4~T4 T5<—T3~T3 T4<—T8~T8
Tg+—T5+T5 T < Tg+T5 = *
* Ty < —Tg * *
4. 9. 4. 12.
Tg < T, T3 Tg < Tg- Ty T7(—T5-T10 T5 < T7 - Ts
T3 To+Ty Ty T7+Ty T+ T/+T 90 Th+Ty+T
* Tg — —Tg * T5 — —T5
5. 10. 5. 13.
Ty T;- Ty T4<*T7~T4 T4(*T4'T12 T3<*T3~T12
To«Tg+Tg Tr+—Ty+Tg Ty T +T5
* * Ty < —Th T+ -1y
6. 14.
Tz(—T2~T4 T2<—T5-T2
* Te < To+ 1y
* *
7. 15.
T5 < T5- T3 Tg < Tg - Tg
* T+ Tg+ T,
T« —T, *
8. 16.
Tg(*T5'T11 T3<*T3~T7
Tg < Tg+ 1> *
T —T, *

Table 8. Operation count comparison (M: Field multiplication, A: Field addition, and S:

Field subtraction).

ECDBL ECADD
M A S M A S
wNAF 8 5 4 16 1
Existing Atomic Block
ONAF 10 20 10 16 32 16
Proposed Atomic Block
WNAFE 10 10 10 16 16 16

5.3. Proposed Implementation of HMAC

When a web-based application communicates with other environments, it encrypts the data
using various cryptographic algorithms, and then sends the encrypted data. For the sent encrypted
data, it is necessary to determine whether it was sent without damage. Encrypted data can be
confirmed whether it has been transmitted normally using HMAC, which is MAC made using SHA-256.
Implementing HMAC as Web Assembly allows web-based applications to authenticate faster than

JavaScript [6,15].
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6. Performance Analysis

In the environment of Table 9, the proposed crypto library was implemented as Web Assembly
and JavaScript, was compared in Web browsers Chrome, Firefox, and Microsoft Edge to evaluate
the performance. Tables 10-18 show the results of the implementation of existing algorithms and the
proposed methods, i.e., the revised CHAM algorithm, wNAF, SHA-256, and HMAC.

Table 9. Running environment.

Operating System Window 10 Education
CPU Intel i5-8250U 1.60 GHz
RAM 8.00 GB

(1) Chrome 85.0.4183.83

SW (2) Firefox 79.0

(3) Microsoft Edge 84.0.522.63
(1) JavaScript
Languages (2) Web Assembly
wNAF Window width w 4

Table 10. Revised CHAM algorithm performance in Chrome (CPB : Cycle Per Byte).

Algorithm Language Optimization Techniques  Average Timing CPB
revised CHAM-64/128 JavaScript 4-round combining 0.0000013 s 260
revised CHAM-128/128 JavaScript 4-round combining 0.0000018 s 180
revised CHAM-128/256 JavaScript 4-round combining 0.0000021 s 210
This work CHAM-64/128  Web Assembly 4-round combining 0.0000006 s 120 (2.1 times)
This work CHAM-128/128 Web Assembly 4-round combining 0.0000006 s 60 (3 times)
This work CHAM-128/256  Web Assembly 4-round combining 0.0000007 s 70 (3 times)
This work CHAM-64/128 ~ Web Assembly 4-round combining 0.0000005s 100 (1.2 times)
precomputation table
Table 11. Revised CHAM algorithm performance in Firfox (CPB : Cycle Per Byte).
Algorithm Language Optimization Techniques Average Timing CPB
revised CHAM-64/128 JavaScript 4-round combining 0.0000013 s 260
revised CHAM-128/128 JavaScript 4-round combining 0.0000010 s 100
revised CHAM-128/256 JavaScript 4-round combining 0.0000015 s 150
This work CHAM-64/128  Web Assembly 4-round combining 0.0000006 s 120 (2.1 times)
This work CHAM-128/128 Web Assembly 4-round combining 0.0000006 s 60 (1.6 times)
This work CHAM-128/256  Web Assembly 4-round combining 0.0000007 s 70 (2.1 times)
This work CHAM-64/128 ~ Web Assembly 4-round combining 0.0000005s 100 (1.2 times)

precomputation table

Table 12. Revised CHAM algorithm performance in Microsoft Edge (CPB : Cycle Per Byte).

Algorithm Language Optimization Techniques  Average Timing CPB
revised CHAM-64/128 JavaScript 4-round combining 0.0000012 s 240
revised CHAM-128/128 JavaScript 4-round combining 0.0000013 s 130
revised CHAM-128/256 JavaScript 4-round combining 0.0000020 s 200
This work CHAM-64/128  Web Assembly 4-round combining 0.0000006 s 120 (2 times)
This work CHAM-128/128 Web Assembly 4-round combining 0.0000007 s 70 (1.8 times)
This work CHAM-128/256 ~ Web Assembly 4-round combining 0.0000007 s 70 (2.8 times)
This work CHAM-64/128 ~ Web Assembly 4-round combining 0.0000005 s 100 (1.2 times)

precomputation table

Tables 10-12 are the results of measuring the implemented CHAM family algorithm in Chrome,
Firefox, and Microsoft Edge. The revised CHAM family algorithm has a 4-round combination method,
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and additionally, CHAM-64/128 is implemented with JavaScript and Web Assembly by applying
a pre-computation method. As a result, the revised CHAM algorithm with the applied 4-round
combining method showed an improved performance, in Chrome, Firefox, and MicrosoftEdge, by 2.1,
2.1, and 2 times for CHAM-64/128, 3, 1.6, and 1.8 times for CHAM-128/128, and 3, 2.1, and 2.8
times for CHAM-128/256. Pre-computation applied to CHAM-64/128 shows a 1.2 times performance
improvement than existing revised CHAM-64/128 in three web browsers.

Table 13. wNAF algorithm performance in Chrome (CPB: Cycle Per Byte), (w = 4).

Algorithm Language Average Timing CPB Performance Overhead
original WNAF JavaScript 0.000012 s 300 -
Existing Atomic Block WNAF JavaScript 0.0000179 s 447 49%
Proposed Atomic Block wNAF JavaScript 0.0000146 s 365 21%
original WNAF Web Assembly 0.0000011 s 27 (11 times) -
Existing Atomic Block wWNAF ~ Web Assembly 0.0000017 s 42 (10 times) 55%
Proposed Atomic Block wNAF ~ Web Assembly 0.0000013 s 32 (11 times) 18%

Table 14. wN AF algorithm performance in Firefox (CPB: Cycle Per Byte), (w = 4).

Algorithm Language Average Timing CPB Performance Overhead
original WNAF JavaScript 0.0000146 s 365 -
Existing Atomic Block WNAF JavaScript 0.0000162 s 405 10%
Proposed Atomic Block wNAF JavaScript 0.0000155 s 387 6%
original WNAF Web Assembly 0.0000012 s 30 (12 times) -
Existing Atomic Block wWNAF ~ Web Assembly 0.0000015 s 37 (10 times) 23%
Proposed Atomic Block WNAF ~ Web Assembly 0.0000013 s 32 (12 times) 6%

Table 15. wN AF algorithm performance in Microsoft Edge (CPB: Cycle Per Byte), (w = 4).

Algorithm Language Average Timing CPB Performance Overhead
original WNAF JavaScript 0.0000129 s 322 -
Existing Atomic Block WNAF JavaScript 0.0000209 s 522 62%
Proposed Atomic Block wNAF JavaScript 0.0000175 s 437 35%
original WNAF Web Assembly 0.0000011 s 27 (11 times) -
Existing Atomic Block wWNAF ~ Web Assembly 0.0000015 s 37 (14 times) 37%
Proposed Atomic Block WNAF ~ Web Assembly 0.0000012 s 30 (14 times) 11%

Tables 13-15 are the result tables measured in Chrome, Firefox, and Microsoft Edge after
implementing the original wNAF, the existing atomic block wNAF, and the proposed atomic
block wNAF with JavaScript and Web Assembly. As a result of measurement in Chrome, Firefox,
and Microsoft Edge, Web Assembly improved more than JavaScript, for the original wNAF by 11, 12,
and 11 times, the existing atomic block wNAF by 10, 10, and 14 times, and the proposed wNAF by 11,
12, and 14 times. As shown in Table 8, the atomic block increases the number of operations compared
to the existing ECDBL and ECADD, resulting in performance overhead. Therefore, in the case of the
existing atomic block wN AF, performance overhead of 55, 23, and 37% occurs. However, in the case of
the atomic block wNAF proposed in P = (X, Y, Z), the number of operations is reduced, resulting in
a performance overhead of 18%, 6%, and 11%, and scalar multiplication is possible faster than the
conventional atomic block.

Table 16. HMAC algorithm performance in Chrome (CPB: Cycle Per Byte).

Algorithm Language Average Timing CPB
SHA-256 JavaScript 0.0000163 s 203
HMAC JavaScript 0.0000558 s 697

This work SHA-256 Web Assembly 0.0000022 s 27 (7.5 times)

This work HMAC Web Assembly 0.0000074 s 92 (7.5 times)
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Table 17. HMAC algorithm performance in Firefox (CPB: Cycle Per Byte).

Algorithm Language Average Timing CPB
SHA-256 JavaScript 0.0000173 s 216
HMAC JavaScript 0.0001852 s 2315
This work SHA-256 Web Assembly 0.0000016 s 20 (10.8 times)
This work HMAC Web Assembly 0.0000075 s 93 (24.8 times)

Table 18. HMAC algorithm performance in Microsoft Edge (CPB: Cycle Per Byte).

Algorithm Language Average Timing CPB
SHA-256 JavaScript 0.0000177 s 221
HMAC JavaScript 0.0000555 s 693
This work SHA-256 Web Assembly 0.0000016 s 20 (11 times)
This work HMAC Web Assembly 0.0000078 s 97 (7.1 times)

Tables 16-18 are the results of measuring HMAC, a MAC made using SHA-256 and SHA-256
implemented with JavaScript and Web Assembly in Chrome, Firefox, and Microsoft Edge. As a result,
Web Assembly showed a higher performance by 7.5, 10.8, and 11 times for SHA-256, and 7.5, 24.8,
and 7.1 times for HAMC, over JavaScript in Chrome, Firefox, and Microsoft Edge.

7. Conclusions

In this paper, we proposed a crypto library by implementing a cryptographic algorithm using
Web Assembly to improve the performance of cryptographic algorithms in web-based applications.
The block cipher, key exchange algorithm, and MAC algorithm were implemented directly in JavaScript
and Web Assembly and were compared. As the block cipher, we employed a lightweight cipher
(i.e., the CHAM algorithm), applied the four-round combining method, and applied revised CHAM
algorithm method, which is secure against differential attacks. Algorithms implemented in Web
Assembly and JavaScript were measured in Chrome, Firefox, and Microsoft Edge. In case of block
cipher, 2.1, 2.1, and 2 times for CHAM-64/128, 3, 1.6, and 1.8 times for CHAM-128/128, and 3, 2.1,
and 2.8 times for CHAM-128/256 showed improvement in performance. CHAM-64/128 to which
the pre-computation method was applied showed a performance improvement of 1.2 times in three
web browsers than when the algorithm was not applied. For the key exchange algorithm, wNAF was
applied to P-256. The atomic block method, which is an algorithm corresponding against SPA and
TA, was also applied. When applying the existing atomic block and proposed atomic block to wNAF,
we checked how much the performance overhead appeared in comparison to the original wNAF due
to the increased number of operations, and how much the proposed atomic block improved over the
existing atomic block. For this purpose, each algorithm implemented in Web Assembly and JavaScript
was measured in Chrome, Firefox, and Microsoft Edge. As a result, Web Assembly improved over
JavaScript, for the original wNAF by 11, 12, and 11 times, the existing atomic block wNAF by 10,
10, 14 times, and the proposed wNAF by 11, 12, and 14 times. Existing atomic block wNAF shows a
performance overhead of 55%, 23%, and 37% compared to the original wNAF. However, the atomic
block wNAF was proposed to be used at P = (X, Y, Z) showing performance overheads of 18%,
6% and 11%. The message authentication code was HMAC, which uses SHA-256 to create a MAC.
As a result of the measurement, Web Assembly showed higher performance over JavaScript by 7.5,
10.8, and 11 times for SHA-256, and 7.5, 24.8, and 7.1 times for HMAC.

Web Assembly will continue to evolve through several web browser companies. Web Assembly is
intended to be used together, not as a replacement for JavaScript. Therefore, with the development of
Web Assembly in future, the function call time between Web Assembly and JavaScript will gradually
decrease. Thus, from a cryptographic algorithm perspective in future, Web Assembly will be an
appropriate language to use. Cryptographic algorithms with a lot of mathematical operations use
Web Assembly, and additionally, it will be more efficient from a Web-based application perspective if
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it is configured using a JavaScript library of various functions. Web Assembly works in a SISD way,
and therefore, there is a disadvantage that Web Assembly is slower when processing the same amount
of data than the cryptographic algorithm using SIMD which is currently being studied. However,
Web Assembly is being developed to support the SIMD method, supporting quite a few intrinsic
functions, and is continuously evolving. In addition, an API called WebGPU is being created that
can use the functions of a graphic card in a web environment. WebGPU enables the SIMD operation
using a graphic card in a web environment. In addition, WebGPU is evolving to support use with
Web Assembly. Eventually, we will be able to encrypt and decrypt large amounts of data at high
speed when we can use high-performance functions in the web environment such as Web Assembly
and WebGPU in future. Currently, there are various attack methods for cryptographic algorithms,
but our proposed crypto library only applied a differential attack for block ciphers and SPA and TA
for key exchange. We plan to investigate possible attack methods for cryptographic algorithms in the
web environment in future and study to improve response algorithms suitable for attack methods.
In addition, we will study further because it will be possible to optimize cryptographic algorithms
in web-based applications through the support of Web Assembly’s SIMD and WebGPU. As such,
research on cryptographic libraries used in web-based applications through the development of Web
Assembly and support for various functions in the future will be of valuable study.

Author Contributions: Writing—original draft, B.P. and J.S.; Writing—review and editing, S.C.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF), grant funded by the
Korea government (MSIT) (No. 2019R1F1A1058494).

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1.  Telecommunications Technology Association. Security Management Guidelines for Web Environment
Establishment & Operation. 2006. Available online: http://www.tta.or.kr/data/ttas_view.jsp?rn=1&
by=asc&order=publish_date&totalSu=16253&pk_num=TTAS.KO-10.0090/R1&nowSu=5594 (accessed on
2 November 2020).

2. Zakas, N.C. Professional Javascript for Web Developers; John Wiley & Sons: Hoboken, NJ, USA, 2009.

3. Rossberg, A ; Titzer, B.L.; Haas, A.; Schuff, D.L.; Gohman, D.; Wagner, L.; Zakai, A.; Bastien, J.F.; Holman, M.
Bringing the web up to speed with WebAssembly. Commun. ACM 2018, 61, 107-115. [CrossRef]

4. Rossberg, A. WebAssembly Specification Release 1.1. 2020. Available online: https:/ /webassembly.github.
io/spec/core/ (accessed on 30 October 2020).

5. Roh, D,; Koo, B.; Jung, Y.; Jeong, I; Lee, D.; Kwon, D.; Kim, WH. Revised Version of Block Cipher CHAM.
In Proceedings of the Information Security and Cryptology—ICISC 2019—22nd International Conference,
Seoul, Korea, 4-6 December 2019; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 11975, pp. 1-19.

6.  Federal Information Processing Standards Publications 198-1(FIPS PUBS). In The Keyed-Hash Message
Authentication Code (HMAC); Technical Report; National Institute of Standards and Technology (NIST):
Gaithersburg, MD, USA, 2008.

7.  Barker, E.; Chen, L.; Roginsky, A.; Vassilev, A.; Davis, R. Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography; Technical Report; National Institute of Standards and
Technology(NIST): Gaithersburg, MD, USA, 2018.

8.  Federal Information Processing Standards Publications 186-4(FIPS PUBS). In Digital Signature Standard (DSS);
Technical Report; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2013.

9. Park, C; Park, T; Seo, H.; Kim, H. Optimization of CHAM Encryption Algorithm Based on Javascript.
In Proceedings of the Tenth International Conference on Ubiquitous and Future Networks, ICUFN 2018,
Prague, Czech Republic, 3-6 July 2018; pp. 774-778.


http://www.tta.or.kr/data/ttas_view.jsp?rn=1&by=asc&order=publish_date&totalSu=16253&pk_num=TTAS.KO-10.0090/R1&nowSu=5594
http://www.tta.or.kr/data/ttas_view.jsp?rn=1&by=asc&order=publish_date&totalSu=16253&pk_num=TTAS.KO-10.0090/R1&nowSu=5594
http://dx.doi.org/10.1145/3282510
https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/

Electronics 2020, 9, 1839 23 of 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Koo, B.; Roh, D.; Kim, H,; Jung, Y.; Lee, D.; Kwon, D. CHAM: A Family of Lightweight Block Ciphers
for Resource-Constrained Devices. In Proceedings of the Information Security and Cryptology—ICISC
2017—20th International Conference, Seoul, Korea, 29 November—1 December 2017; Revised Selected Papers;
Kim, H., Kim, D.C,, Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10779, pp. 3-25.
Hankerson, D.; Menezes, A.].; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2006.

Moller, B. Securing Elliptic Curve Point Multiplication against Side-Channel Attacks. In Proceedings of the
Information Security, 4th International Conference, ISC 2001, Malaga, Spain, 1-3 October 2001; Davida, G.I.,
Frankel, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2200, pp. 324-334.

Izu, T.; Méller, B.; Takagi, T. Improved Elliptic Curve Multiplication Methods Resistant against Side Channel
Attacks. In Proceedings of the Progress in Cryptology—INDOCRYPT 2002, Third International Conference
on Cryptology in India, Hyderabad, India, 16-18 December 2002; Menezes, A., Sarkar, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 2002; Volume 2551, pp. 296-313.

Chevallier-Mames, B.; Ciet, M.; Joye, M. Low-Cost Solutions for Preventing Simple Side-Channel Analysis:
Side-Channel Atomicity. IEEE Trans. Comput. 2004, 53, 760-768. [CrossRef]

Federal Information Processing Standards Publications 180-4(FIPS PUBS). In Secure Hash Standard (SHS);
Technical Report; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2015.
An, K; Kwon, H.; Kim, H.; Seo, H. Implementation of Ultra-Light Block Cipher CHAM Optimization Using
Web Assembly. J. Korea Inst. Inf. Secur. 2019. Available online: https://github.com/solowal /PUBLICATION/
blob/master/2019/%EC%9B%B9%20%EC %96%B4%EC %85%88%EB%B8%94%EB%A6%AC%EB%A5%
BC%20%ED%99%9C%EC%9 A %A9%ED%95%9C%20%EC%B4%88%EA %B2%BD%EB%9F%89%20%EB%
B8%94%EB%A1%9ID%EC%95%94%ED%98%B8%20CHAM %20%EC%B5%9C%EC%A0%81%ED%99%
94%20%EA%B5%AC%ED%98%84_%EB%85%BC%EB%AC%B8.pdf (accessed on 2 November 2020).
Protzenko, J.; Beurdouche, B.; Merigoux, D.; Bhargavan, K. Formally Verified Cryptographic Web
Applications in WebAssembly. In Proceedings of the 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, 19-23 May 2019; pp. 1256-1274.

Zinzindohoué, ] K.; Bhargavan, K.; Protzenko, J.; Beurdouche, B. HACL*: A Verified Modern Cryptographic
Library. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, 30 October—3 November 2017; pp. 1789-1806.

Bernstein, D.J.; Denis, F. Libsodium-A Modern, Portable, Easy to Use Crypto Library. 2019. Available online:
https:/ /github.com/lemonsn/libsodium (accessed on 30 October 2020).

Protzenko, J.; Zinzindohoué, ].K., Rastogi, A., Ramananandro, T Wang, P; Béguelin, S.Z;
Delignat-Lavaud, A.; Hritcu, C.; Bhargavan, K.; Fournet, C.; et al. Verified low-level programming embedded
in F. Proc. ACM Program. Lang. 2017, 1, 17:1-17:29. [CrossRef]

Rosch, J. Efficient implementation of Picnic. Available online: https:/ /is.muni.cz/th/pbn05/ (accessed on
30 October 2020).

Chase, M.; Derler, D.; Goldfeder, S.; Katz, J.; Kolesnikov, V.; Orlandi, C.; Ramacher, S.; Rechberger, C.;
Slamanig, D.; Wang, X.; et al. The Picnic Signature Scheme Design Document. 2020. Available online:
https:/ / github.com /microsoft/Picnic/blob/master /spec/design-v2.2.pdf (accessed on 2 November 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TC.2004.13
https://github.com/solowal/PUBLICATION/blob/master/2019/%EC%9B%B9%20%EC%96%B4%EC%85%88%EB%B8%94%EB%A6%AC%EB%A5%BC%20%ED%99%9C%EC%9A%A9%ED%95%9C%20%EC%B4%88%EA%B2%BD%EB%9F%89%20%EB%B8%94%EB%A1%9D%EC%95%94%ED%98%B8%20CHAM%20%EC%B5%9C%EC%A0%81%ED%99%94%20%EA%B5%AC%ED%98%84_%EB%85%BC%EB%AC%B8.pdf
https://github.com/solowal/PUBLICATION/blob/master/2019/%EC%9B%B9%20%EC%96%B4%EC%85%88%EB%B8%94%EB%A6%AC%EB%A5%BC%20%ED%99%9C%EC%9A%A9%ED%95%9C%20%EC%B4%88%EA%B2%BD%EB%9F%89%20%EB%B8%94%EB%A1%9D%EC%95%94%ED%98%B8%20CHAM%20%EC%B5%9C%EC%A0%81%ED%99%94%20%EA%B5%AC%ED%98%84_%EB%85%BC%EB%AC%B8.pdf
https://github.com/solowal/PUBLICATION/blob/master/2019/%EC%9B%B9%20%EC%96%B4%EC%85%88%EB%B8%94%EB%A6%AC%EB%A5%BC%20%ED%99%9C%EC%9A%A9%ED%95%9C%20%EC%B4%88%EA%B2%BD%EB%9F%89%20%EB%B8%94%EB%A1%9D%EC%95%94%ED%98%B8%20CHAM%20%EC%B5%9C%EC%A0%81%ED%99%94%20%EA%B5%AC%ED%98%84_%EB%85%BC%EB%AC%B8.pdf
https://github.com/solowal/PUBLICATION/blob/master/2019/%EC%9B%B9%20%EC%96%B4%EC%85%88%EB%B8%94%EB%A6%AC%EB%A5%BC%20%ED%99%9C%EC%9A%A9%ED%95%9C%20%EC%B4%88%EA%B2%BD%EB%9F%89%20%EB%B8%94%EB%A1%9D%EC%95%94%ED%98%B8%20CHAM%20%EC%B5%9C%EC%A0%81%ED%99%94%20%EA%B5%AC%ED%98%84_%EB%85%BC%EB%AC%B8.pdf
https://github.com/solowal/PUBLICATION/blob/master/2019/%EC%9B%B9%20%EC%96%B4%EC%85%88%EB%B8%94%EB%A6%AC%EB%A5%BC%20%ED%99%9C%EC%9A%A9%ED%95%9C%20%EC%B4%88%EA%B2%BD%EB%9F%89%20%EB%B8%94%EB%A1%9D%EC%95%94%ED%98%B8%20CHAM%20%EC%B5%9C%EC%A0%81%ED%99%94%20%EA%B5%AC%ED%98%84_%EB%85%BC%EB%AC%B8.pdf
https://github.com/lemonsn/libsodium
http://dx.doi.org/10.1145/3110261
https://is.muni.cz/th/pbn05/
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.2.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Overview of Web Environment
	Overview of Web Assembly
	Necessity of Crypto Library for Secure Web Application


	Secure Crypto Library Design
	Design Motivation and Library Architecture
	Target Block Ciphers
	Target Message Authentication Code (MAC) Algorithm
	Overview of HMAC
	Overview of SHA-256

	Target Key Agreement Algorithm
	Providing Side Channel Resistance

	Previous Crypto Implementations in Web Environment
	CHAM Algorithm in JavaScript and Web Assembly
	Crypto Implementations on Web Assembly Environment

	Proposed Web Assembly-Based Crypto Library Implementation
	Proposed Implementation of Revised CHAM
	Proposed Implementation of ECDH with Side Channel Resistance
	Proposed Implementation of HMAC

	Performance Analysis
	Conclusions
	References

