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Abstract: As computational and functional brain model development are solely dependent upon the
data acquired from the neural interface, this device plays a vital role in both prosthetic developments
and neurological experiments. A wireless neural interface is preferred over a traditional wired
one because it can maximize the comfort of the subject and ensure the freedom of movement
while implemented. This paper describes the field programmable gate array (FPGA) prototype
design of a low-power multichannel neuron activity extraction unit suitable for a wireless neural
interface. To achieve the low-power requirement, we proposed a novel neural signal extraction
algorithm which can provide an up to 6000X transmission rate reduction considering the input signal.
Consequently, this technique offers at least 2X power reduction compared to the state-of-the-art
systems. We implemented this scheme in Xilinx Zynq-7000 FPGA, which can be used as an
intermediate transition towards the application specific integrated circuit (ASIC) design for on-chip
neural signal processing. The proposed FPGA prototype offers reconfigurable computability,
which means the model can be modified and verified according to prerequisites before the final ASIC
design. This prototype consists of a signal filtering unit and a signal extraction unit which can be used
either as stand-alone units or combined as a complete system. Our proposed scheme also provides a
provision to work as a single-channel or a scalable multichannel interface based on user’s demands.
We collected practical neural signals from rat brains and validated the efficacy of the implemented
system using in-silico signal processing.

Keywords: FPGA; signal processing; neural signal extraction

1. Introduction

A neural interface is used for gaining access to the brain’s circuits. It creates a direct information
pathway between the brain and the outside world [1] as a gateway component of neural devices.
With the recent drastic advancement in experimental neuroscience, the neural interface is becoming
sophisticated and miniaturized [2–6]. The longer-term procedure especially requires miniaturized and
wireless devices to ensure patients’ comfort and flexibility [7–9]. The wireless neural interface is also
suitable for preclinical experiments with nonhuman behaving animals [10–13]. The wireless nature
of the experiment ensures untethered movement during the procedure [14]; hence, more naturalistic
brain signal recording is possible.

As most of the brain signals are collected using multiple channels, the raw neural signal contains
a bulk-load of information which needs to be transmitted for further processing [15–17]. For example,
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if we consider 8 bits/sample for a 64-channel system, the required data transmission rate will be more
than 11 Mbps [18]. Traditional wired neural devices can transmit this high a volume of data with ease
using an appropriate serial or a parallel communication protocol. However, if we consider wireless
neural devices, this massive amount of data creates a bottleneck for the technology, as the system will
then consume significant battery power. Hence, a standalone wireless system would have to undergo
frequent battery replacement which would disrupt a continues procedure. Additionally, higher power
consumption is associated with a considerable amount of heat dissipation which may cause critical
tissue damage. Therefore, a systemic approach is needed to lower the transmission rate by filtering
out redundant parts of the signals. In this work, we developed a novel algorithm to ensure a lower
data transmission rate for wireless neural signal transmission.

To implement the proposed algorithm at the circuit level, we have incorporated a field
programmable gate array (FPGA) to design the hardware and verify the algorithm. A field
programmable gate array (FPGA) is an integrated circuit which can be reconfigured according to the
users’ requirements [19]. Besides, when it comes to the question of processing multiple signals at the
same time, a FPGA performs notably faster due to its inherent capacity of parallel computation [20,21].
As brain signals are typically collected using multiple channels, the FPGA presents itself as an optimum
candidate to design the system. We have used the development board ZedBoard for the implementation
of our design. This board utilizes Xilinx Zynq-7000 SoC as the FPGA chip for signal processing. In this
paper, we present this FPGA prototype design, and we checked in different configurations which
intermediary platform can be converted into an ASIC according to specific user demands.

The wireless neural interface is gaining popularity due to its convenience and flexibility.
Most studies are primarily concentrated on wireless communication technology [11,12], wireless power
transmission techniques [13,22] and compatible electrode development [23,24]. Only a few of them
focus on dedicated signal processing algorithms for neural data [25,26]. To the best of our knowledge,
none of these studies presented any design which is reconfigurable according to the end-user’s
demands. The major concern of this research was to develop circuit-level implementations of
algorithms for data reduction to reduce the data transfer rate, which would in turn decrease the
power consumption for wireless systems. Herein, we also introduce a digital filtering scheme that can
be incorporated with the signal extraction unit if the user wants to omit some signal preprocessing
steps. Besides, our prototype presents a design to serve as either a single-channel or a multichannel
(with scalable number of channels) scheme based on design requirements. Finally, we evaluated our
design with neural signals collected from rat brains to validate the prototype.

2. Methodology

As a multichannel input with high sampling frequency, the neural signal acquires a large amount
of data per second which contains information that may be redundant for a specific application or
neural experiment. For designing the prototype, we have considered an experiment which collects
single-neuron activity signals from rat brain cells using a wireless neural interface.

As it is a standalone transmission system, the high data transmission rate consumes a large amount
of power and consequently lowers the battery life. Therefore, the total possible time for conducting
such a contentious experiment is short. To increase the duration of this procedure, we propose an
algorithm that can reduce the data transmission rate. We have considered three factors for this design.
Firstly, single-neuron activity in the rat brain is predominantly a high-frequency signal (>300 Hz) [27].
Secondly, due to the sparse nature of the neural signal, it is rare that all channels are activated at the
same time [28].

Finally, signal epochs containing neural activities can be detected with a threshold voltage.
This threshold is dependent on the noise level of the signal acquisition system [29]. Therefore, we only
need to transmit when a particular channel is recording a high-frequency signal above a certain voltage,
and we need to know the starting time and peak amplitude of that signal epoch. Considering these
parameters, we have designed our proposed system, as shown in Figure 1.
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Figure 1. Simplified block diagram of the proposed system.

This system has three subunits. At first, the signal goes through the high pass filter to drop
out the lower frequency signal. The filtered signal then passes through the signal extraction unit,
which excludes the insignificant low voltage signal. A signal higher than a predefined threshold
voltage can pass through this unit and the channel activation register unit records the relevant channel
identification remarks. The output contains the waveform when the neuron is activated. It also
includes the timestamp of the neuron activation, the peak amplitude during each activated epoch and
the credential of the channel associated. At this point, it should be noted that, as an FPGA prototype,
our design is easy to reconfigure as per the user’s demand before ASIC implementation. For example,
the filter parameter can be modified to select a desired passband, or the threshold value of the signal
extraction unit can be adjusted. Additionally, we can choose the number of channels of the system
to make it compatible with any distinct experiment parameters. This scalability is one of the unique
features of the proposed design.

3. System Architecture

For the ease of explanation, we divided the prototype into three subsystems—i, a neural signal
filter unit; ii, a neuron activity extraction unit; and iii, a channel activity register. The extraction unit
is the fundamental part of this system which cannot be omitted in any design. The other two units
can be excluded depending on the design requirements. For example, if there is a built-in analogue
filter available with the signal collecting electrode assembly, then the filter unit becomes redundant.
Similarly, if there is only one channel for signal acquisition, then the channel activation register is
not required.

For this research, we have incorporated all three subunits to facilitate our desired specifications.
Xilinx System Generator—a MathWorks Simulink toolbox—was used for FPGA programming.
The system architecture is described in the following three subsections. It should be noted that
this is a reconfigurable hardware model. Therefore, anyone can modify this FPGA design according to
their needs before the final ASIC implementation.

3.1. Neural Signal Filter Unit

As mentioned in the section methodology, we need to filter out the low-frequency (≤300 Hz)
components for extracting single-neuron activity from rat brain signals, as they do not contain any
significance. For this purpose, we designed a high-pass equiripple FIR filter. The design parameters
were selected as follows: stop-band frequency, Fstop = 300 Hz; pass-band frequency, Fpass = 400 Hz;
stop-band attenuation, Astop = 80 dB; pass-band attenuation, Apass = 1 dB; density factor, D = 16.
Considering a minimum order design, we get the frequency response of this filter as shown in Figure 2.
Here the cutoff frequency is approximately 375 Hz, which is sufficient [27] for neural activity extraction.
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Figure 2. Frequency response of the neural signal FIR filter.

3.2. Neuron Activity Extraction Unit

In this subsection, the design of a neural activity extractor is discussed. As mentioned in the
previous section, the brain signal indicates any neural activity only when it has a value greater than
the noise voltage level. In our experiment, the collected signals become significant when they cross the
40 µV voltage level. Therefore, we are only required to transmit the signal when the input crosses this
threshold voltage. There is a way of lowering the data transmission rate further—by transmitting only
timestamps and peak amplitudes of the neural activation events. This process can drastically reduce
the data transmission rate and power consumption. However, the processed data will contain only a
fraction of the information compared to the original signal. Depending on the application requirement,
the user can decide what type of output is needed.

Algorithm 1 characterizes the proposed methodology of neural activity extraction with three
output components which are computed under a loop: (i) the time-stamp (OP_Time) is represented
by lines 5 and 6; (ii) the peak amplitude (OP_Amp) is found by lines 7–13; and (iii) the brain wave
throughput (OP_Wave) is presented by lines 3 to 9. At first, the input signal is compared with the
threshold voltage. We have chosen 40 µV as the threshold voltage for this research. If the input voltage
is higher than this level, the signal is passed, and the starting time of this event is recorded. A separate
memory block is initialized during each episode, to keep track of the peak amplitude.

The system architecture of this subsystem is shown in Figure 3. Here, the input signal (Signal_In)
of this subsystem is the filtered neural signal. This signal may come directly from an analog filter or
from the filter described in the previous subsection. The signal extraction process starts by comparing
the input signal with the threshold voltage. When the input signal becomes higher than that voltage,
it is allowed to produce the output signal (OP_Wave). At the same time, a count-up timer circuit
is used to keep track of time, and the starting time of each neural event is transmitted (OP_Time).
Subsequently, a memory block is activated in every epoch to record the peak amplitude (OP_Amp).
This value is computed throughout a neural activity, and this block only updates its stored data if
the incoming neural signal possesses a greater value than its predecessor. The final value is then
transmitted right after each epoch completion.
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Figure 3. System architecture of the neuron activity extraction unit.

Algorithm 1: Neuron activity extraction.
Input: Signal_In
Output: OP_Time, OP_Amp, OP_Wave

1 Op_Amp_Temp← 0
2 for t← 0 to t do
3 if absolute (Signal_In(t)) > 40 then
4 OP_Wave(t)← Signal_In(t)
5 if absolute (Signal_In(t− 1)) > 40 then OP_Time← t
6 else OP_Time← 0
7 if absolute (Signal_In(t)) > absolute (OP_Amp_Temp) then

OP_Amp_Temp← Signal_In(t)
8 else
9 OP_Wave(t)← 0

10 if absolute (Signal_In(t− 1)) > 40 then
11 OP_Amp← OP_Amp_Temp
12 OP_Amp_Temp← 0
13 else OP_Amp← 0

14 return OP_Time, OP_Amp, OP_Wave

3.3. Channel Activity Register

For a multichannel system, we need to include an additional component—a channel activation
register. It records the channel identity during a neural activation epoch. This register enables the user
to find out from which electrode the neural signal is recorded during an activity epoch. Algorithm 2
presents the working principle of this subsystem. If the signal from any channel exceeds the predefined
threshold (in this case 40 µV), this unit displays that channel number once per epoch—at the beginning
of each neural event. This subsystem also passes the input signal when it is higher than that threshold.
This signal will act as the input of the extraction subsystem in a multichannel system.

Figure 4 illustrates the proposed channel activation register architecture for a two-channel system.
Nonetheless, this design can be replicated for any number of input channels specified by the user.
The proposed subsystem takes the filtered signal as its input, and if it has a value higher than the
threshold, the subsystem passes the associated channel identification information (Ch_ID) to the buffer
register for transmission. Additionally, this unit works as a multiplexer, as it takes multichannel inputs
and produces single-channel output (Ch_Out). As previously mentioned, a neural signal is sparse
in nature—only one channel is activated during a neural epoch. Here, this single-channel output
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(Ch_Out) is the activated neural signal which works as the input for the neural activity extraction
subsystem of a complete multichannel system.
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Figure 4. System architecture for a channel activation register unit with 2 input channels.

Algorithm 2: Channel activation register.
Input: Ch_In
Output: Ch_Out, Ch_ID

1 for i← 0 to N do
2 for t← 0 to t do
3 if absolute (Ch_In(t)) > 40 then
4 Ch_Out(t)← Ch_In(t)
5 if absolute (Ch_Out(t− 1)) <= 40 then Ch_ID ← i
6 else Ch_ID ← 0
7 else
8 Ch_Out(t)← 0
9 Ch_ID = 0

10 return Ch_Out, Ch_ID

3.4. Complete Model

We have already discussed the design of three subsystems which are essential components of the
complete model of the prototype. There are four possible configurations for the complete setup based
on the input parameters-

1. Single-channel filtered (SCF) input;
2. Single-channel unfiltered (SCUF) input;
3. Multichannel filtered (MCF) input;
4. Multichannel unfiltered (MCUF) input.

We can reconfigure the FPGA to choose from any of these configurations and test the efficacy
of the system before the final ASIC implementation. If the system has one channel with a filtered
input, only the signal extractor unit will be adequate as the complete model. Figure 5 illustrates this
design setup.
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Figure 5. Design of a single-channel filtered input system (SCF) in SysGen.

For a single-channel system with an unfiltered input, we need to concatenate the filter unit with
the signal extractor unit, as presented in Figure 6.

Figure 6. Design of a single-channel unfiltered input system (SCUF) in SysGen.

For multichannel systems, we need to include the channel activation register to record the channel
identity during a neural activation epoch. Two-channel systems are presented here as examples of
multichannel systems. The configuration of a multichannel system with filtered input is demonstrated
in Figure 7.

Figure 7. Design of a multichannel filtered input system (MCF) in SysGen.

The design of the multichannel system with unfiltered input is similar to its filtered counterpart
except for the addition of the filtering subsystems as shown in Figure 8.
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Figure 8. Design of a multichannel unfiltered input system (MCUF) in SysGen.

4. Implementation and Results

We have implemented the prototype system in Xilinx Zynq-7000 (Artix-7) FPGAs on ZedBoard.
Although this FPGA development board provides a cost-effective [30] solution for our system
implementation, the design is not limited to this board only; it can be implemented in any modern
FPGAs. As described in the previous section, there are four possible configurations (SCF, SCUF,
MCF and MCUF shown respectively in Figures 5–8) from which the user can select their required
design. Table 1 shows the hardware resources required for each of these setups. In this table LUT,
LUTRAM, FF, BRAM and DSP stand for look up table, look up table RAM, flipflop, block RAM and
digital signal processing blocks respectively.

Table 1. System resource utilization.

Configuration LUT LUTRAM FF BRAM DSP

SCF 34 0 1 0.5 0
SCUF 778 465 1353 0.5 26
MCF 35 0 1 0.5 0

MCUF 1500 930 2703 0.5 52

From the Table 1 it is evident that the systems with unfiltered inputs require more resources
than the systems with filtered inputs. This is because the neural filter subsystem requires additional
LUT, RAM and DSP blocks for signal processing. As more system resources consume more power
and require extra floor space for the ASIC chip implementation [31], we suggest using filtered input
for better performance if the design permits. Since analogue filters are inexpensive and have the
capability of real-time filtering [32], they are suitable for the proposed neural signal extraction system.
However, the performances of the digital filters are predominantly better than those of their analogue
counterparts [33]. Therefore, in our reconfigurable design, the user can decide which configuration is
the most suited for any specific system requirement.

It should be noted that we have used two-channel systems as representatives of multi-channel
models. To analyze the consequences of additional input channels on resource utilization, we have
also implemented four, eight, sixteen, thirty-two and sixty-four channel filtered input systems.

Figure 9 demonstrates this resource evaluation. Here, IO represents the number of input–output
blocks in the FPGA. To explain the comparative resource utilization of the systems with a different
number of input channels, we need to focus on their design. As discussed in the previous section,



Electronics 2020, 9, 1834 9 of 13

the prime difference between a single-channel filtered input system and a two-channel filtered input
system is the inclusion of a channel activity register unit. Additionally, the two-channel filtered input
system has an additional input and output (channel ID) compared to its single-channel counterpart.
Therefore, the two-channel system needs to employ one extra LUT and two IO blocks to facilitate its
design. However, when the number of input channels increases from two to sixty-four, no further logic
components are needed; only the usage of IO blocks is gradually increased. This analysis indicates
that we can effectively increase the number of input channels based on our requirement without
overwhelming our system’s resources. This ensures the scalability of the implemented prototype.
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Figure 9. Comparative resource utilization for different numbers of channels.

To assess the FPGA prototype, we recorded spontaneous neural activity from rat CA1 region of
the hippocampus using acutely implanted microelectrodes at the Biomedical Engineering Department
of USC. We used these signals to formulate in-silico datasets for our experiment. The original neural
signals include the broadband raw data from multichannel recordings along with the filtered output
from a high-pass filter with 300 Hz cut-off frequency.

The resultant outputs from the single-channel unfiltered input system (Figure 6) and the
multi-channel filtered input system (Figure 7) are shown in Figures 10 and 11 respectively.
To demonstrate the outcome of the filtering subsystem, an internal signal (filter output) is added
in Figure 10. The practical output consists of the waveform during neural activity, its timestamp and
peak amplitude. Here, the threshold is for triggering transmission, not for spike sorting, although
depending on applications, the timestamp and peak amplitude can be used as a simple spike sorting
method. However, complete spike sorting can be performed after wireless transmission of the signal
during neural activity; see Figure 10c. Figure 11 illustrates the signals from a multichannel system
with two inputs. It has an additional channel identification output to display the associated channel
number of any neural activity. This output is illustrated in Figure 11f.
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Figure 10. Waveforms from the single-channel unfiltered input system: (a) the input signal (Signal_In),
(b) filter output (internal signal), (c) output wave during neural activity (Op_Wave), (d) timestamp
(Op_Time) and (e) peak amplitude (Op_Amp).

Figure 11. Waveforms from the multichannel (two-channel) filtered input system: (a) input signal
from Channel-1 (Ch_In_1), (b) input signal from Channel-2 (Ch_In_2), (c) output wave during
neural activity (Op_Wave), (d) timestamp (Op_Time), (e) peak amplitude (Op_Amp) and (f) channel
identification (Ch_ID).

If a wireless neural interface continuously transmits the raw signal collected from the brain, it will
reduce the duration of an uninterrupted experiment by rapidly draining the battery. As previously
mentioned, an 8 bits/sample sixty-four channel system requires an 11 Mbps transmission rate [18].
However, reference [34] reports that the average neural signal spiking rate is less than 0.5 Hz for awake
rats. We programmed the neural interface to transmit only when the neural activity is occurring. Thus,
our system can lower the transmission up to 1.6 Kbps for a 64-channel system (considering a 10 kHz
sampling rate)—a 6000X transmission rate reduction comparing with the input.

According to the post-implementation report from Xilinx Vivado simulator, the on-chip dynamic
power consumption of the prototype (a 64-channel filtered input system) is 3 mW—an at least 2X
power reduction compared with state-of-the-art systems. As FPGA consumes more energy than
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an application-specific IC, it is estimated that the power consumption will further reduce after
ASIC implementation.

A comparative study between the implemented prototype and related previous works is presented
in Table 2. Several research groups across the world are working on the development of wireless
neural interfaces. Due to various components being required to build up the complete system,
there are multiple aspects to contributions in this field, as seen in Table 2. Only a few research
groups ([26,35]) worked on the signal processing perspective of the wireless neural interface. Among
these works, our implemented system offers the minimum data transmission rate at the lowest
power consumption. Moreover, apart from our proposed method, none of these previous works are
reconfigurable and scalable. Therefore, our prototype’s neural activity extraction unit is suitable for
customizable system-level applications in wireless neural interfaces.

Table 2. Comparison with previous works.

Reference Primary Focus Implement Reconfigurability Scalability Channel
Count

Transmission/
Data Rate Power

Farshchi et al. [8] Communication technique PCB No No 6 9.6 Kbps 66 mW
Borton et al. [12] Communication technique PCB No No 100 24 Mbps 90.6 mW

Lee et al. [11] Communication technique ASIC No No 32 9 Mbps 18.9 mW
Kim et al. [22] Wireless power transmission ASIC No No 16 15 Kbps -
Lee et al. [13] Wireless power transmission ASIC No No 32 9 Mbps 35 mW
Lo et al. [23] Electrode development ASIC No No 160 2 Mbps 18 mW

Kang et al. [24] Electrode development PCB No No 5 2 Mbps -
Bonfanti et al. [25] Data compression ASIC No No 64 1.25 Mbps 16.6 mW

Shahrokhi et al. [35] Signal conditioning ASIC No No 128 - 7 mW
Chae et al. [26] Spike Sorting ASIC No No 128 90 Mbps 6 mW

This work Neuron activity extraction FPGA Yes Yes User Defined 1.6 Kbps 3 mW

5. Conclusions

As wireless devices ensure prolonged procedures without compromising the movement and
comfort of a subject, their usage in both clinical rehabilitation and experimental research is expanding.
In this research, we introduced a novel algorithm that can reduce the data transmission rate by
up to 6000 times, which in turn consumes only 3 mW of dynamic power. This design presents an
FPGA-based reconfigurable hardware framework which is a transitional step to the future ASIC chip
that integrates a complete wireless neural interface system which can work for a longer duration
without any interruption.
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