
electronics

Article

FPGA-Based Optical Surface Inspection of Wind
Turbine Rotor Blades Using Quantized
Neural Networks

Lino Antoni Giefer 1,2,* , Benjamin Staar 2 and Michael Freitag 2,3

1 Faculty of Mathematics and Computer Science, University of Bremen, Cognitive Neuroinformatics,
Enrique-Schmidt-Strasse 5, 28359 Bremen, Germany

2 BIBA-Bremer Institut für Produktion und Logistik GmbH, Hochschulring 20, 28359 Bremen, Germany;
sta@biba.uni-bremen.de (B.S.); fre@biba.uni-bremen.de (M.F.)

3 Faculty of Production Engineering, University of Bremen, Badgasteiner Strasse 1, 28359 Bremen, Germany
* Correspondence: l.giefer@uni-bremen.de

Received: 8 September 2020; Accepted: 28 October 2020; Published: 2 November 2020
����������
�������

Abstract: Quantization of the weights and activations of a neural network is a way to drastically
reduce necessary memory accesses and to replace arithmetic operations with bit-wise operations.
This is especially beneficial for the implementation on field-programmable gate array (FPGA)
technology that is particularly suitable for embedded systems due to its low power consumption.
In this paper, we propose an in-situ defect detection system utilizing a quantized neural network
implemented on an FPGA for an automated surface inspection of wind turbine rotor blades using
unpiloted aerial vehicles (UAVs). Contrary to the usual approach of offline defect detection, our
approach prevents major downtimes and hence expenses. To our best knowledge, our work is
among the first to transfer neural networks with weight and activation quantization into a tangible
application. We achieve promising results with our network trained on our dataset consisting
of 8024 good and defected rotor blade patches. Compared to a conventional network using
floating-point arithmetic, we show that the classification accuracy we achieve is only slightly reduced
by approximately 0.6%. With this work, we present a basic system for in-situ defect detection with
versatile usability.

Keywords: quantized neural networks; defect detection; field-programmable gate array; quality
inspection; parameter quantization

1. Introduction

Since 1992, the cumulative energy output, as well as the number of wind turbines, have
continuously increased By 2017, wind energy plants were responsible for approximately 49% of
renewable energy in Germany [1]. Further gains in efficiency and energy yield are achieved
by constructing increasingly large plants. This, in turn, increases the amount of environmental
stress these plants are exposed to, which entails regular inspection, maintenance and repair by the
operators. These cause considerable downtimes and expenses due to the manual inspection process.
The conventional approach consists of visual inspection by trained technicians. There also exists a
variety of support systems, e.g., man-carrying platforms, rope systems or cranes. However, manual
inspection is still costly and the automation of the inspection process has hence become a long-standing
goal of researchers and operators [2]. One such approach is the use of unpiloted aerial vehicles (UAV),
as they provide a fast and flexible platform for positioning sensors close to different areas of the
wind turbine. Multiple such approaches have hence been proposed and implemented [3–5]. A key
component for further automating such systems is automatic real-time defect detection. This would

Electronics 2020, 9, 1824; doi:10.3390/electronics9111824 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1992-3214
https://orcid.org/0000-0001-8781-7790
https://orcid.org/0000-0003-1767-9104
http://dx.doi.org/10.3390/electronics9111824
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/11/1824?type=check_update&version=2

Electronics 2020, 9, 1824 2 of 15

not only speed up the inspection process by decreasing the need for human intervention but also open
new possibilities for implementing more dynamic measurement routines. Particularly, if real-time
or close-to-real-time performance is achieved, the UAV could, e.g., automatically adapt to improper
lighting conditions or ambiguous defect detection results by changing the measurement angle or
taking multiple images from different perspectives.

To augment existing UAV-based approaches for wind turbine inspection, the defect detection
algorithm must be able to achieve high defect detection with a very low false alarm rate. Furthermore, it
has to be possible to run it in real-time on a low-weight and low-power hardware system. A promising
candidate for the development of such algorithms are convolutional neural networks (CNN) as
they have consistently found success in a variety of image processing tasks ranging from image
classification [6] to image segmentation and have hence also been successfully applied to surface
inspection tasks [7–9]. However, CNNs require suitable hardware to achieve real-time performance.
A common solution is to use GPU-based systems, e.g. NVIDIA’s Jetson boards, but recent advantages in
applying deep learning methods with limited numerical precision [10] and particularly the introduction
of binarized neural networks [11,12] have opened new possibilities to utilize alternative hardware
systems, such as field-programmable gate arrays (FPGA), to implement CNNs. While GPU-based
embedded systems are optimized in terms of achieving high performance at low power consumption,
FPGA-based systems hold the potential to further reduce power consumption by at least one order of
magnitude. Even for basic tasks, the power consumption of the commonly used Nvidia GeForce GTX
1080 TI graphic card alone is higher than that of the complete FPGA platform [13].

We introduce a system for real-time defect detection of rotor blades utilizing a drone.
Our proposed approach deals with the application of an FPGA-based system for the classification
of damaged and undamaged rotor blades using binarized convolutional neural networks (BCNN).
An Arty Z7-20 development platform containing a Xilinx XC7Z020-1CLG400C FPGA and a Dual
ARM Cortex A9 microprocessor is used as the basic system. By using that combination, different
tasks can be distributed to one of the components to benefit from their particular special abilities.
The proposed subsystem represents the core element of our project, which is highly important for the
real-time capability.

Multiple approaches for utilizing UAVs for inspecting wind turbines have been proposed and
implemented. For example, the authors of [5] discussed the factors that influence measurement quality
when inspecting different structures with UAVs. Stokkeland et al. presented a routine based on the
Hough transform for detecting wind turbine towers, hub and blades as well as the Kalman filter
for tracking [4]. They also showed that their method can be executed in real-time on a single board
computer carried with the UAV. The authors of [3] used photogrammetry software to reconstruct
a 3D profile of rotor blades based on images captured with a UAV, which also contains defects,
discontinuities, and markings and can hence be used for surface inspection. As for the automatic
surface inspection of wind turbine rotor blades, Wang et al. proposed a method based on Haar-like
features and classification via an extended cascading classifier with LogitBoost, decision trees and
support vector machines to detect surface cracks on wind turbine rotor blades [14].

Over the last years, convolutional neural networks became the most commonly used approach
for image analyses such as classification, object detection and image segmentation, for both two- and
three-dimensional data [15–20]. Denhof et al. recently conducted an extensive investigation using
different pre-trained convolutional neural network (CNN) model architectures for the detection of
surface defects on wind turbine rotor blades [21]. Shihavuddin et al. also proposed a complete defect
detection pipeline based on CNNs [22]. As for the implementation of CNN-based defect detection in an
on-board solution, i.e., directly attached to the UAV, we could not find any previous work. However, a
growing number of studies investigates the implementation of CNNs on FPGAs. A key idea behind this
is the introduction of so-called binarized convolutional neural networks (BCNN) [12,23]. Using that,
the weights and activations of the network’s neurons are quantized to a defined amount of bits and,
in the extreme case, binarized, i.e., they only know two different states, and hence are representable by

Electronics 2020, 9, 1824 3 of 15

one bit. Thus, most arithmetic operations during the forward pass, i.e., when feeding the network with
data to be classified, are replaced by bit-wise operations, which greatly reduces memory consumption
and the number of memory accesses. Hence, the calculation can be done more power-efficiently [12].
Several studies confirm the efficiency of BCNNs on image classification tasks [11,12,23]. All of them
use common benchmarks like MNIST or CIFAR. Zhou et al. generalized the idea of training low
bit-width convolutional neural networks by introducing DoReFa-net [24], where they present methods
for the quantization of weights, activations and gradients and show the efficiency of their method on
the Street View House Numbers (SVHN) and the ImageNet datasets [25]. Sanaullah et al. presented
an FPGA-based implementation of a multilayer-perceptron for real-time data analysis for medical
diagnosis [26], showing the applicability of binarized neural networks in combination with FPGAs
in a real-world application. They highlighted the advantages of the possibility of direct interfacing
peripheral hardware such as sensors, actuators or memory blocks and achieve promising results with
a high increase of processing speed.

To our knowledge, our work is among the first to translate the used quantized neural networks
into a tangible image processing application. Through our work, we prove the suitability of low-power
embedded systems for surface inspection tasks.

2. Materials and Methods

In this section, we present our proposed methods. First, we explain the structural properties of
the binarized neural network. Afterwards, we elaborate on the training and the transformation into
the FPGA hardware.

2.1. Binarized Convolutional Neural Networks

BCNNs use binary weights and activation functions instead of real numbers such as their
standard floating-point counterparts. Floating-point arithmetic, especially multiplications that
are used in deep learning, e.g., during gradient calculation and parameter updating, is highly
computation-intensive, which complicates an implementation on hardware such as FPGAs.
Convolutional layers are more affected by that than fully-connected layers, which are in comparison
more memory-consuming [27]. Figure 1 illustrates the general difference between real-valued and
completely binarized neural networks.

Figure 1. Difference between real-valued (top) and binarized neural networks (bottom): Own representation
based on [28].

Electronics 2020, 9, 1824 4 of 15

While real-valued networks are based on multiplications and accumulations, these calculations
are replaced by simple XNOR operations and a bit count. The output of the XNOR operation is
true when both bits have the same sign and false otherwise. Afterwards, the number of set bits is
counted. A detailed overview of the involved operations can be found in [29]. The quantization
of the weights and the activations is essential for the function of BCNNs. Quantization means the
process of constraining continuous values to a discrete set with a finite number of elements. We use
the following quantization function, which quantizes a real number ri ∈ [0, 1] to a number of k bits
r0 ∈ [0, 1] according to [24]:

quant(ri) = r0 =

0 i f ri < 0

2k − 1 i f ri > 2k − 1

round(ri) else

(1)

To obtain the quantized weights for our neural network, we apply the equation:

f k
w(ri) = 2× quant

(tanh(ri)

2×max(| tanh(ri)|)
+

1
2

)
− 1 (2)

Using a bit width of one reduces the function to:

r0 = sgn(ri)× E(|ri|) (3)

i.e., we take the sign of the real-valued weights and scale it by the scaling factor E(|ri|), which increases
the value range. The resulting fixed-point integer allows the calculation of convolutions by means
of fixed-point integer dot products, which can be performed on FPGAs in a highly efficient manner.
For the quantization of the activations, we apply the function:

f k
a (ri) = quant(ri) (4)

The parameter k represents the number of the bits that should be used for the quantization of the
activation r. By means of that, a discrete set of values is obtained, which replaces the floating-point
convolutions by bit convolutions.

The binarization of the weights and activation and thus the switch from floating-point to
fixed-point arithmetic can be implemented by bit shifts and basic logic operations on an FPGA,
which speeds the calculations up significantly while additionally saving logic gates. Since the first
convolutional layer represents the interface to the image, we do not apply quantization to its weights.
It was shown that the quantization of the first layer leads to massively degraded prediction accuracy.
Hence, we keep the first layer weights real-valued to keep the balance between computation complexity
and prediction accuracy.

2.2. Dataset

For our experiments, we built a dataset containing 1046 color images of different wind turbine
rotor blades, taken at a resolution of 4608× 3456 pixels. From these images, we cut out windows
of 224× 224 pixels containing relevant areas. This resulted in 8024 images of two classes: defective
and non-defective. We included different classes of defects containing scratches, cracks, fractures and
chippings. The defect types were selected by an expert to ensure a highly accurate differentiation
between images of rotor blades with real defects and those which only seem to be defects. We did
not classify the images into different classes but only into defective and non-defective ones. For each
class, there are equal numbers of samples, i.e., 4012. To ensure proper training of all relevant
scenarios, we oversampled difficult cases such as bird droppings, markings and color changes.
Figures 2 and 3 show different samples for each of these two classes. To limit the resource utilization

Electronics 2020, 9, 1824 5 of 15

of the FPGA, we converted the images to 80× 80 pixels and averaged the three color channels to one
grayscale channel.

Figure 2. Example of rotor blades with defects: (a) fracture; (b) crack; and (c) chipping.

Figure 3. Example of rotor blades without defects: (a) bird droppings; (b) sticker leftovers; (c) dirt;
(d) material change; (e) color change; and (f) shadow.

During the training, we applied different techniques for data augmentation, which have been
shown to increase model accuracy. We implemented this by using the AugmentImageComponent
class of the training interface Tensorpack based on Tensorflow. The interface allows a fast and flexible
training of Tensorflow models by, e.g., providing classes for dataset streaming and data augmentation.
We set-up a list with the parameters shown in Table 1.

Table 1. Augmentation parameters.

Parameter Name Parameter Value

Horizontal flip True (probability 0.5)
Vertical flip True (probability 0.5)
Transpose True (probability 0.5)

Shift Horizontal and vertical fraction 0.2

The parameter values for the horizontal and vertical flip and the transpose were set to 0.5 to
augment the images with a probability of 50%. The horizontal and vertical fraction parameters for the
shift augmentation were set to 20% so that not too much of the image content is lost. Since most of the
defects are located in the center of the images, this value is appropriate.

Electronics 2020, 9, 1824 6 of 15

2.3. Neural Network Configuration

In the first step of the development of the binary neural network, the Convolutional Neural
Network model was described in software, where we used Tensorflow as Python-framework.
We implement ed a structure according to Figure 4. Five convolutional layers followed by max-pooling
layers reduced the image size from 80 × 80 pixels and one channel (grayscale) to a feature tensor
of dimensions 5 × 5 × 256. In the last convolutional layer, the feature maps were reduced to two
channels to represent the two detectable classes. In the end, a global average pooling was applied to
the two channels followed by a softmax layer to get the probability for each class of the image input.
In that way, fully-connected layers, which are commonly used as the last layers for the classification
task, were kept out of the network. These are much more memory-intensive than convolutional layers,
and, by avoiding them, a great part of the FPGA memory could be saved for other operations such as
additional convolutional layers or a higher number of feature maps.

Figure 4. Structure of the CNN.

The network size was restricted due to the limited amount of block RAM of the FPGA. More
neurons and layers lead to more parameters that have to be stored. As common for classification
tasks, we used the sparse softmax cross-entropy as a loss function to be minimized and the ADAM
optimizer as an optimization algorithm [30,31]. Among the hyperparameters that define the training
of a neural network, the learning rate is one of the most important. Several recommendations for the
optimal learning rate were proposed in different publications, while it is mostly stated to be chosen
between 10−6 and 0.1 [30]. Instead of using standard parameter values, the authors of [32] developed
a systematic approach for finding the optimal one by sweeping the rate from a small lower to a high
upper bound and by plotting the loss development. Figure 5 shows the result of that technique applied
to our dataset. The optimal learning rate range can be found at the steepest slope of the plot, in this
case between approximately 4× 10−5 and 9× 10−5. Below that range, the loss decreases at a very slow
rate, which would lead to a too long training time. A higher learning rate than the upper bound of
the optimal range causes an increase of the loss and a divergent and unstable behavior. Due to these
results, we set the initial learning rate of our training to 9× 10−5 and applied a step decay function to
it, which dropped the rate by a factor after a particular number of steps. The equation of the learning
rate decay can be represented by:

learningrate = learningrateinitial × dropb
1+epochs
decaystep c (5)

Electronics 2020, 9, 1824 7 of 15

where the quotient 1+epochs
decaystep states after how many training steps the decay should be applied.

The brackets b c represent the floor-function that gives the greatest integer less than or equal to
a given real number. We chose a drop of 0.1 and a decay every 50 epochs.

Figure 5. Optimal learning rate range.

The correct quantization of the neuron weights and their activation functions is essential for
the quality of the neural network. Quantization means the digitalization of analog floating-point
values; in this case, the analog values are represented by the weights and activations. We evaluated the
performance of different weights and activation quantizations and chose the best compromise between
accuracy and computational complexity for our final model. The first convolutional layer was left
real-valued without quantization at first due to the important role within the feature extraction and
quantized in a second step to see if we could get reliable results in that way.

2.4. Training

The training and validation of the binarized neural network were performed within the Python
environment on a PC equipped with an NVIDIA GeForce GTX 1060 6 GB. To ensure that our results
are repeatable, we used k-fold cross-validation for each experiment. As a value of k = 10 is most
commonly used in the literature, we adopted that scheme, i.e., we split the data into ten equally sized
subsets and used nine of the folds for training/validation and the remaining fold for evaluation [33].
The model accuracy was determined on the validation set using the weights after 120 epochs of
training. This process was repeated ten times until each fold had served as evaluation data.

2.5. Field-Programmable Gate Arrays (FPGA)

FPGAs represent a type of integrated digital circuits, which can be loaded with logic circuits to
perform certain tasks. These consist of arrays of logic blocks that can be interconnected with each other
in different configurations to produce simple logic gates, such as AND, OR and XOR, more complex
combinational functions or memory elements. The behavior of an FPGA is described directly through a
hardware description language, e.g. VHDL (Very High Speed Integrated Circuit Hardware Description
Language) or Verilog, or using high-level synthesis tools using higher programming languages such
as C [34]. In comparison to microcontrollers, FPGAs work in parallel instead of a sequential manner.
Thus, every computation within one clock cycle is performed at the same time without any time
scheduling as is done by a CPU of a microcontroller, which can lead to massive speed gains for tasks
benefiting from parallelism. Many modern machine learning tasks require high-performance hardware
setups that imply high power consumption and hence are expensive to operate. FPGAs are known for
their power efficiency and, because of that, have aroused interest from machine learning researchers
within the last years, especially from those using neural networks [35].

Electronics 2020, 9, 1824 8 of 15

To run a quantized neural network on an FPGA, the structure and weights have to be transformed
into a bit-file, in which the logic gates are described to perform the desired task. The weights and
activations of the layers calculated during the training are exported into a C-header-file and build,
together with a C-implementation of the network structure, the final model for the hardware. Internally,
the FPGA communicates with the Cortex A9 microprocessor over a 512-bit wide Advanced eXtensible
Interface (AXI) for data transmission between the two devices. Due to the gray-scaling of the input
images, one pixel consists of 8 bit. To determine the maximal amount of pixels that can be transmitted
in parallel, the following minimization problem has to be solved.

J = argmin(512− 8x) ∀x ∈ N, x ≤ 64 (6)

with the constraint:
(height× width) mod x = 0 (7)

Using a dimension of 80 × 80 pixels for our input images, we obtained a number of 40 pixels,
represented by 320 bits, that can be transmitted over the bus within one clock cycle. The total number
of clock cycles needed for one image transmission can be calculated by the quotient of the total number
of pixels and the number of pixels transmitted per clock, which resulted in 160 clocks.

The input data are passed through the layers of the network by means of streams. Those layers
consist of the necessary operations such as convolution, max-pooling or global average pooling.
For a detailed overview of the particular algorithms, we refer to the work of Kaara [36]. For the
transformation of the C-Code into the register transfer level (RTL) and the following bit-file generation,
the Xilinx Vivado High-Level-Synthesis (HLS) environment is used to translate the network into the
FPGA-specific configuration. We used ready-to-use Vivado HLS scripts to perform that task, which
were provided by Kaara [36]. Those define, among others, the destination platform and the desired
clock period. The generated RTL is represented by a so-called intellectual property (IP), which is
afterwards instantiated in Vivado to create the final bit-stream. Additionally, a Tcl file describing the
overlay needs to be generated, which can be directly exported from the Vivado project.

We configured the weights and activations of the network to be placed by the optimizer either in
distributed or in block RAM to be more flexible with the memory utilization. During the transformation
process, several optimizations were performed to meet the necessary parameters such as timing.
The timing of the FPGA logic has to be kept as small as possible and directly influences the achievable
clock frequency and hence the inference time of the classification. It has to be guaranteed that every
connection between logic gates is short enough to transmit a signal within one clock cycle. Several
constraints such as clock skew, the arriving of the same clock signal at different components at different
times or propagation delay, i.e., the time of a signal to reach its destination, have to be taken into
consideration. For detailed information on the optimization methodology, we refer to the work of
Kilts [37].

3. Results

We carried out a test series consisting of 400 different weights and activation quantization
combinations to find a good compromise between classification accuracy and computation complexity,
and thus computation time. The computation complexity of the dot product between two fixed-point
integers, which is the basis of bit convolution, is directly proportional to the bit width of the two
particular numbers [24]. Thus, the bit widths should be chosen as small as possible while keeping
a good level of accuracy. Therefore, we trained the same network structure one after the other with
quantizations reaching from 1 to 20 bits for weights and activations. Figure 6 shows the classification
accuracy of our network tested on a test dataset depending on the bit width of weights and activation.

Electronics 2020, 9, 1824 9 of 15

Figure 6. Accuracy depending on quantization of weights and activation.

While the accuracy shows a high dependency on the number of bits used for activation
quantization, the weight quantization seems to have no recognizable impact. As long as the bit
width of the activations is greater than two, the classification accuracy remains approximately at the
same level without improvement at higher bit widths. According to that result, we chose a quantization
of 1 bit for the weights and three bits for the activations.

The results of the 10-fold cross-validation of the two network configurations are illustrated in
Figure 7. The boxplot shows the comparison of the network with 80 × 80 pixels input between
the real-valued (BCNNquant0), the 1-bit weight and 3-bit activation quantization (BCNNquant13) and
the 1-bit quantization for both weights and activations (BCNNquant11) (from left to right). It can be
observed that, as expected, the network BCNNquant0 without quantization shows the best performance.
The median of all folds is approximately 1 percentage point higher than the BCNNquant13 (97.7%
versus 96.4%). With a median of approximately 90.4%, the completely binarized network BCNNquant11

performs worst during the cross-validation. It is noticeable that both the interquartile range (0.58%
versus 0.94% [BCNNquant0] and 0.81% [BCNNquant11]) and the absolute range between maximum and
minimum (1.2% versus 2.1% [BCNNquant0] and 1.9% [BCNNquant11]) of the network BCNNquant13 with
3-bit activations quantization is the smallest among the configurations, which implies less dispersion
over the folds.

In conclusion, it can be stated that the network BCNNquant13 shows the best compromise between
calculation complexity and classification performance. We furthermore compared the true positive
rate (TPR), called sensitivity and the true negative rates (TNR), called specificity, of the network
BCNNquant13 over the ten folds of the cross-validation, which is shown by the boxplot in Figure 8.

Electronics 2020, 9, 1824 10 of 15

Figure 7. Classification accuracies of BCNNquant0 (blue), BCNNquant13 (green) and BCNNquant11 (red)
based on 10-fold cross-validation.

Figure 8. Boxplots of true positive (TPR) and true negative rates (TNR) based on 10-fold cross-validation.

True positive in our case means a defect that was correctly detected, while a true negative
means a correctly detected not defected input image. First, it can be ascertained that the median of
the TNR is around 1% higher than the TPR (97.9% [TNR] compared to 96.8% [TPR]), which means
that the classifier detects rotor blades without defects more accurately than it detects defected ones.
The interquartile range of the TNR is furthermore approximately half the size of the TPR (∼1.1%
compared to ∼2.3%) and also the absolute range of the TNR is much narrower (∼3.0% compared to
∼5.5% range). These observations mean that the TNR is more constant over the ten folds than the
TPR. The receiver operating characteristic curves (ROC curve) in Figure 9 illustrates graphically the
diagnostic ability of our classifier network over the ten folds. Thereby, the diagonal red line at 45
degrees represents a classifier that would do random guessing, also called the line of no-discrimination.
Overall, our classification network shows the desired curve with a vertical rise at the beginning and
near the upper left corner of the graph representing the perfect classification (100% sensitivity and
100% specificity). The analysis of the ROC curve results in an optimal cut-point value, i.e., the optimal
threshold for our classifier, which can mathematically be found by the highest Youden-index defined
by [38]:

J = TPR− FPR (8)

Electronics 2020, 9, 1824 11 of 15

Figure 9. ROC-curves for ten folds.

We calculate the median of the maximal Youden-indices of all ten folds resulting in a value
of approximately 0.95, which represents the median of the maximal vertical distance between the
ROC curve and line of no-discrimination. The training of the completely quantized network reaches,
as expected, a much lower accuracy of approximately 82% and an unstable behavior during the
training. A small learning rate has shown to be useful to prevent the loss function from diverging and
from reaching stable values. We generate the bit-file for the FPGA with the weights and activations
calculated during the training of the neural network with non-quantized first convolutional layer
and otherwise 1-bit quantization for the weights and 3-bit quantization for activations. The resource
utilization can be seen in Table 2.

Table 2. Resource utilization of BCNNquant13.

Resource Type Used Available Utilization (%)

Slices 11,172 13,300 84.00
Look-up tables 27,132 53,200 51.00

Block RAM 117.5 140 83.93
DSPs 84 220 38.18

MUXes 73 26,600 0.27

Slices represent the configurable logic blocks of the FPGA and look-up-tables store predefined
outputs for every combination of input, which allows a fast calculation. The utilization amounts
to almost 85% and approximately 50%, respectively. Thus, not many resources are left for logic
operations, which limits possible extensions of the network with the current configuration. Increased
input size of the images would lead to more calculations being necessary and hence would cause
exhaustion of resources. The Block RAM enables the possibility to save data and contains inter alia
the weights and activations of the neurons. The utilization amounts to approximately 2/3. The DSP
(Digital Signal Processing) slices perform complex calculations and speed up the performance of the
FPGA. Almost half of them are used by the network which leaves space for extension. It can be seen
that almost no Muxes (multiplexers) are needed as they are avoided due to the binarized network
structure. During the continuous test classification, we measured the median power consumption of the
FPGA board utilizing a USB power meter Crazepony UM24C and observed a value of approximately
1.2 Watts. The currently leading low-power embedded platform NVIDIA Jetson AGX Xavier consumes
up to 15 Watts on average during GPU-intensive operations, which is more than 10 times higher.
Even though the power consumption of a drone setup is many times higher than the consumption

Electronics 2020, 9, 1824 12 of 15

of an embedded platform, over time the additional required power can have a noticeable impact.
In our case, we use a drone with a power consumption of approximately 880 Watts, which leads to an
average flight time of 18 min when using a 12000 mAh battery with an output voltage of 22.2 Volts
(manufacturer specifications). By using a NIVIDA AGX as an image processing board with an average
power consumption of 15 Watts including necessary cooling, the flight time would be reduced by
approximately 1% compared to almost no loss with the FPGA board. An additional factor is the small
weight of the FPGA board, which is, with a value of 70 g, approximately three and a half times lighter
than the NIVIDA AGX.

We achieve an inference time of approximately 4.6 ms at a clock rate of 200 MHz, which means
that approximately 217 images can be classified per second by our quantized convolutional neural
network. Denhof et al. tested the inference times of different pre-trained neural network structures and
found the best result with the VGG16 network with an inference time of approximately 26 ms, which
is about five times higher than our result. Table 3 compares the inference times and corresponding
accuracies of the BCNNquant13 run on an Nvidia Jetson AGX Xavier, the BCNNquant13 run on a Xilinx
XC7Z020-1CLG400C FPGA and the VGG16 implementation presented in [21] run on an Nvidia GeForce
GTX 1060 TI.

Table 3. Performance comparison.

Network Model Inference Time (ms) Accuracy (%)

BCNNquant13 (FPGA) 4.6 96.4
BCNNquant13 (Jetson) 6.9 96.4

VGG16 (GPU) 26 97.0

Due to the deep structure of the VGG16 model, the inference time is approximately 5.6 times
higher than our model run on the FPGA while gaining only six per mil in classification accuracy.
The inference time of our model run on the Jetson is approximately 50% higher than on the FPGA,
which proves the speed improvement of our system.

4. Conclusions

In this paper, we present an FPGA implementation of a quantized convolutional neural network
for the detection of surface defects on wind turbine rotor blades. Through that, we show that the
classification accuracy on our dataset compared to a real-valued neural network with the same
dimension is only slightly reduced. We obtain promising results with grayscale images and low
resolution of 80 × 80 pixels and a network with few layers, which can be optimized to increase
the accuracy and probably to reduce the inference time, which is already low compared to an
Nvidia Jetson AGX. By using bigger devices, e.g. the Xilinx XC7Z100 FPGA, much deeper neural
networks could be implemented to achieve a higher accuracy similar to those running in software.
Conceivable is also a connection of multiple FPGAs and the distribution of the network layers over
them. By using techniques of the so-called ensemble learning, such as bootstrap aggregation or
boosting and meta-ensembling, called stacking, high-performance neural networks could also be built
despite the limited FPGA resources [39]. Thereby, small classifiers, with low performance on their
own, can be clustered together to create more powerful networks. Generally, it can be said that the
classification accuracy and the inference time are still improvable. Much higher performance with
much lower inference time might be possible by optimizing the timing closure. That can be achieved
by focusing on the optimization of the place and route algorithms of the network logic on the grid
of the FPGA. If the inference time can be reduced to approximately 160 µs, we can scan complete
images of 1645× 1234 pixels by an 80× 80 grid in real-time with a frame rate of 20 fps. With the
availability of higher clock rates, an optimized place and route routine, as well as generally a bigger
device, the necessary low inference time could be possible.

Electronics 2020, 9, 1824 13 of 15

Future work should also cover the differentiation between different kinds of defects instead of
only distinguishing between good and defected rotor blades. Through that, particular repair methods
can be organized and controlled. The use of FPGA-based machine learning platforms represents a
promising alternative for mobile systems that have a limitation of power supply, due to the very low
power consumption.

Author Contributions: Conceptualization, L.A.G.; methodology, L.A.G.; software, L.A.G.; validation, L.A.G.and
B.S.; formal analysis, L.A.G.; investigation, L.A.G.; resources, B.S. and M.F.; data curation, L.A.G. and B.S.;
writing—original draft preparation, L.A.G.; writing—review and editing, L.A.G., B.S. and M.F.; visualization,
L.A.G.; supervision, M.F.; project administration, B.S. and M.F.; and funding acquisition, M.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This article presents first results of the research project “InspectionCopter-Development of a drone with
an attached device for the inspection of wind turbines”, funded by the German Federal Ministry of Economic
Affairs and Energy (BMWi), grant number 16KN069933.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. AG Energiebilanzen. Erneuerbare Energien. 2018. Available online: https://www.bmwi.de/Redaktion/DE
/Dossier/erneuerbare-energien.html (accessed on 30 October 2020).

2. Elkmann, N.; Felsch, T.; Förster, T. Robot for rotor blade inspection. In Proceedings of the 2010 1st
International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October
2010; pp. 1–5.

3. Zhang, D.; Burnham, K.; Mcdonald, L.; Macleod, C.; Dobie, G.; Summan, R.; Pierce, G. Remote inspection of
wind turbine blades using UAV with photogrammetry payload. In Proceedings of the 56th Annual British
Conference of Non-Destructive Testing-NDT, Telford, UK, 5–7 September 2017.

4. Stokkeland, M.; Klausen, K.; Johansen, T.A. Autonomous visual navigation of unmanned aerial vehicle
for wind turbine inspection. In Proceedings of the 2015 International Conference on Unmanned Aircraft
Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 998–1007.

5. Morgenthal, G.; Hallermann, N. Quality assessment of unmanned aerial vehicle (UAV) based visual
inspection of structures. Adv. Struct. Eng. 2014, 17, 289–302. [CrossRef]

6. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

7. Staar, B.; Lütjen, M.; Freitag, M. Anomaly detection with convolutional neural networks for industrial surface
inspection. Procedia CIRP 2019, 79, 484–489. [CrossRef]

8. Agour, M.; Falldorf, C.; Staar, B.; von Freyberg, A.; Fischer, A.; Lütjen, M.; Bergmann, R.B. Fast Quality
Inspection of Micro Cold Formed Parts using Telecentric Digital Holographic Microscopy. In MATEC Web of
Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 190, p. 15008.

9. Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J.; Fricout, G. Steel defect classification with max-pooling
convolutional neural networks. In Proceedings of the 2012 International Joint Conference on Neural
Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–6.

10. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 1737–1746.

11. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on Computer Vision; Springer: Cham, Switzerland,
2016; pp. 525–542.

12. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

13. Angelini, C. Nvidia GeForce GTX 1080 Ti 11GB Review. 2017. Available online: https://www.tomshardwa
re.com/reviews/nvidia-geforce-gtx-1080-ti,4972-6.html (accessed on 30 October 2020).

14. Wang, L.; Zhang, Z. Automatic detection of wind turbine blade surface cracks based on UAV-taken images.
IEEE Trans. Ind. Electron. 2017, 64, 7293–7303. [CrossRef]

https://www.bmwi.de/Redaktion/DE/Dossier/erneuerbare-energien.html
https://www.bmwi.de/Redaktion/DE/Dossier/erneuerbare-energien.html
http://dx.doi.org/10.1260/1369-4332.17.3.289
http://dx.doi.org/10.1016/j.procir.2019.02.123
https://www.tomshardware.com/reviews/nvidia-geforce-gtx-1080-ti,4972-6.html
https://www.tomshardware.com/reviews/nvidia-geforce-gtx-1080-ti,4972-6.html
http://dx.doi.org/10.1109/TIE.2017.2682037

Electronics 2020, 9, 1824 14 of 15

15. Giefer, L.A.; Lütjen, M.; Rohde, A.K.; Freitag, M. Determination of the Optimal State of Dough Fermentation
in Bread Production by Using Optical Sensors and Deep Learning. Appl. Sci. 2019, 9, 4266. [CrossRef]

16. Giefer, L.A.; Arango Castellanos, J.D.; Babr, M.M.; Freitag, M. Deep Learning-Based Pose Estimation of
Apples for Inspection in Logistic Centers Using Single-Perspective Imaging. Processes 2019, 7, 424. [CrossRef]

17. Giefer, L. A.; Arango, J. D.; Faghihabdolahi, M.; Freitag, M. Orientation detection of fruits by means
of convolutional neural networks and laser line projection for the automation of fruit packing systems.
Procedia CIRP 2020, 88, 533–538. [CrossRef]

18. Bullock, J.; Cuesta-Lázaro, C.; Quera-Bofarull, A. XNet: A convolutional neural network (CNN)
implementation for medical X-ray image segmentation suitable for small datasets. In Medical Imaging
2019: Biomedical Applications in Molecular, Structural, and Functional Imaging; International Society for Optics
and Photonics: Bellingham, WA, USA, 2019; Volume 10953, p. 109531Z.

19. Cai, Z.; Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation.
arXiv 2019, arXiv:1906.09756.

20. Zhao, B.; Feng, J.; Wu, X.; Yan, S. A survey on deep learning-based fine-grained object classification and
semantic segmentation. Int. J. Autom. Comput. 2017, 14, 119–135. [CrossRef]

21. Denhof, D.; Staar, B.; Lütjen, M.; Freitag, M. Automatic Optical Surface Inspection of Wind Turbine Rotor
Blades using Convolutional Neural Networks. Procedia CIRP 2019, 81, 1166–1170. [CrossRef]

22. Shihavuddin, A.S.M.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.;
Reinhold Paulsen, R. Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection
Analysis. Energies 2019, 12, 676. [CrossRef]

23. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. Finn: A framework for
fast, scalable binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 65–74.

24. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. Dorefa-Net: Training Low Bitwidth Convolutional Neural
Networks with Low Bitwidth Gradients. arXiv 2016, arXiv:1606.06160.

25. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with
Unsupervised Feature Learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, Granada, Spain, 12–17 December 2011.

26. Sanaullah, A.; Yang, C.; Alexeev, Y.; Yoshii, K.; Herbordt, M.C. Real-time data analysis for medical diagnosis
using FPGA-accelerated neural networks. BMC Bioinform. 2018, 19, 490. [CrossRef] [PubMed]

27. Li, H.; Acceleration of Deep Learning on FPGA. Electronic Theses and Dissertations. 2017. Available online:
https://scholar.uwindsor.ca/etd/5947 (accessed on 30 October 2020).

28. Jain, M. Paper Explanation: Binarized Neural Networks: Training Neural Networks with Weights and
Activations Constrained to +1 or −1. 2018. Available online: https://mohitjain.me/2018/07/14/bnn/
(accessed on 30 October 2020).

29. Kim, M.; Smaragdis, P. Bitwise Neural Networks. arXiv 2016, arXiv:1601.06071.
30. Bengio, Y. Practical recommendations for gradient-based training of deep architectures. In Neural Networks:

Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 437–478.
31. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
32. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter

Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017;
pp. 464–472.

33. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. Encycl. Database Syst. 2009, 5, 532–538.
34. Nane, R.; Sima, V.M.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Anderson, J. A survey and evaluation of FPGA

high-level synthesis tools. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 35, 1591–1604. [CrossRef]
35. Abdelouahab, K.; Pelcat, M.; Serot, J.; Berry, F. Accelerating CNN Inference on Fpgas: A Survey. arXiv 2018,

arXiv:1806.01683.
36. Kaara, K. Fpgasystems. SpooNN. 2018. Available online: https://github.com/fpgasystems/spooNN

(accessed on 30 October 2020).
37. Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization; John Wiley & Sons: Hoboken,

NJ, USA, 2007.
38. Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [CrossRef]

http://dx.doi.org/10.3390/app9204266
http://dx.doi.org/10.3390/pr7070424
http://dx.doi.org/10.1016/j.procir.2020.05.092
http://dx.doi.org/10.1007/s11633-017-1053-3
http://dx.doi.org/10.1016/j.procir.2019.03.286
http://dx.doi.org/10.3390/en12040676
http://dx.doi.org/10.1186/s12859-018-2505-7
http://www.ncbi.nlm.nih.gov/pubmed/30577751
https://scholar.uwindsor.ca/etd/5947
https://mohitjain.me/2018/07/14/bnn/
http://dx.doi.org/10.1109/TCAD.2015.2513673
https://github.com/fpgasystems/spooNN
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3

Electronics 2020, 9, 1824 15 of 15

39. Zhang, C.; Ma, Y. (Eds.) Ensemble Machine Learning: Methods and Applications; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2012.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Binarized Convolutional Neural Networks
	Dataset
	Neural Network Configuration
	Training
	Field-Programmable Gate Arrays (FPGA)

	Results
	Conclusions
	References

