
electronics

Article

Malicious PowerShell Detection Using Attention
against Adversarial Attacks

Sunoh Choi

Department of Computer Engineering, Honam University, Gwangju 62399, Korea; suno@honam.ac.kr

Received: 14 September 2020; Accepted: 30 October 2020; Published: 2 November 2020
����������
�������

Abstract: Currently, hundreds of thousands of new malicious files are created daily. Existing pattern-based
antivirus solutions face difficulties in detecting such files. In addition, malicious PowerShell files are
currently being used for fileless attacks. To prevent these problems, artificial intelligence-based detection
methods have been suggested. However, methods that use a generative adversarial network (GAN)
to avoid AI-based detection have been proposed recently. Attacks that use such methods are
called adversarial attacks. In this study, we propose an attention-based filtering method to prevent
adversarial attacks. Using the attention-based filtering method, we can obtain restored PowerShell
data from fake PowerShell data generated by GAN. First, we show that the detection rate of the fake
PowerShell data generated by GAN in an existing malware detector is 0%. Subsequently, we show
that the detection rate of the restored PowerShell data generated by attention-based filtering is 96.5%.

Keywords: Malicious PowerShell detection; adversarial attack; GAN

1. Introduction

Every day, hundreds of thousands of new malicious files are generated, and there are currently
about 1 billion malicious files in circulation [1]. To detect these malicious files, malware analysts are
required to provide new malicious file patterns to existing pattern-based antivirus solutions. Thus,
most existing pattern-based antivirus solutions have difficulties in detecting new malicious files [2].
To solve these problems, artificial intelligence (AI)-based malicious file detection methods have been
proposed [3–11].

Recently, malicious PowerShell files have been observed [12,13]. Table 1 compares AI-based
detection methods. PowerShell, a scripting language used to manage Windows systems, has powerful
functions; however, it is being used in malicious endeavors. An example of a malicious PowerShell is
as follows: The dataset used in this study contains PowerShell scripts that were used in the Emotet
malware that was distributed in December 2018. Emotet malware [14] was first identified in 2014
and still appears as a variant malware. Recently, it has been distributed in the form of a malicious
document file attached to a phishing email that seems to convey information about the status of
coronavirus infection. The document file contains a PowerShell script for downloading Emotet
malware, and various techniques such as obfuscation are used to hide the contents of these scripts.

AI-based malware detection involves two steps. The first step is to extract the feature data from
malicious files. We can perform static analysis [3,4] or dynamic analysis [5–7] to extract feature data.
In malicious PowerShell data, we perform static analysis using PSParser [15]. The second step is to train
a deep learning model using training data and test the deep learning model using test data. We can
use the convolutional neural network (CNN)-based model, the long short-term memory (LSTM)-based
model, and the CNN–LSTM combined model for AI-based malware detection [9–11].

Electronics 2020, 9, 1817; doi:10.3390/electronics9111817 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/9/11/1817?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111817
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1817 2 of 14

Table 1. Comparison of AI-based Detection.

Reference File Type Feature Extraction Malware Detection Year

[3] PE Static DNN 2015
[4] PE Static CNN 2016
[5] PE Dynamic DNN 2013
[6] PE Dynamic RNN 2015
[7] PE Dynamic DNN 2016
[8] PE Dynamic LCS 2015
[9] PE Static SC-LSTM 2018

[10] PE Static Attention 2020
[11] PE Static TLSH + LSTM 2020
[12] PowerShell Static CNN + LSTM 2019
[13] PowerShell Static CNN 2018

However, methods to avoid these deep learning-based malware detections have been proposed
nowadays [16–18]. Fake data similar to normal data are generated from malicious data using GAN.
The GAN has a generator and a discriminator. The generator generates fake data similar to normal
data from malicious data, and the discriminator is trained to distinguish fake data from normal data.
By repeating this process, an attacker generates fake data similar to normal data from malicious data.
Therefore, the fake data is determined as normal in the existing AI-based detector. This is called an
adversarial attack.

In this study, we propose an attention-based filtering method to prevent adversarial attacks using
GAN, as shown in Figure 1. Attention [19] is a variant of the LSTM model, which computes the weights
of each token in the input data based on the output data. The attention-based filtering method is as
follows: First, we compute the weights of each token in the training data based on the output data
using attention and generate a malicious token list containing tokens with top k weights in each input
data. Second, when fake data generated by GAN are provided, we generate restored PowerShell data
using the attention-based filtering method. The fake data were similar to the normal data. However,
the restored data become similar to malicious data if they are originally malicious because the tokens
in the restored data are in the malicious token list. Hence, we prevent adversarial attacks using the
attention-based filtering method.

Electronics 2020, 9, x FOR PEER REVIEW 2 of 14

However, methods to avoid these deep learning-based malware detections have been proposed
nowadays [16–18]. Fake data similar to normal data are generated from malicious data using GAN.
The GAN has a generator and a discriminator. The generator generates fake data similar to normal
data from malicious data, and the discriminator is trained to distinguish fake data from normal data.
By repeating this process, an attacker generates fake data similar to normal data from malicious data.
Therefore, the fake data is determined as normal in the existing AI-based detector. This is called an
adversarial attack.

Table 1. Comparison of AI-based Detection.

Reference File Type Feature Extraction Malware Detection Year
[3] PE Static DNN 2015
[4] PE Static CNN 2016
[5] PE Dynamic DNN 2013
[6] PE Dynamic RNN 2015
[7] PE Dynamic DNN 2016
[8] PE Dynamic LCS 2015
[9] PE Static SC-LSTM 2018

[10] PE Static Attention 2020
[11] PE Static TLSH + LSTM 2020
[12] PowerShell Static CNN + LSTM 2019
[13] PowerShell Static CNN 2018

In this study, we propose an attention-based filtering method to prevent adversarial attacks
using GAN, as shown in Figure 1. Attention [19] is a variant of the LSTM model, which computes the
weights of each token in the input data based on the output data. The attention-based filtering
method is as follows: First, we compute the weights of each token in the training data based on the
output data using attention and generate a malicious token list containing tokens with top k weights
in each input data. Second, when fake data generated by GAN are provided, we generate restored
PowerShell data using the attention-based filtering method. The fake data were similar to the normal
data. However, the restored data become similar to malicious data if they are originally malicious
because the tokens in the restored data are in the malicious token list. Hence, we prevent adversarial
attacks using the attention-based filtering method.

Figure 1. Malicious PowerShell Detection System Using Attention against Adversarial Attacks. Figure 1. Malicious PowerShell Detection System Using Attention against Adversarial Attacks.

Electronics 2020, 9, 1817 3 of 14

This study makes the following contributions: First, we show that the detection rate of
malicious PowerShell files was 93.5% in deep learning-based malicious PowerShell detection. Second,
we generated fake PowerShell data using a GAN generator and showed that its detection rate was
reduced to 0%. Third, we generated restored PowerShell data using the attention-based filtering
method and showed that its detection rate increased to 96.5%. Thus, we verify that we prevent
adversarial attacks using the attention-based filtering method.

The remainder of this paper is organized as follows. In Section 2, we introduce related work.
In Section 3, we present a malicious PowerShell detection deep learning model and provide adversarial
attacks using GAN for malicious PowerShell. In Section 4, we introduce the attention mechanism and
propose an attention-based filtering method to prevent adversarial attacks. In Section 5, we present the
experimental results. Finally, in Section 6, we conclude with a discussion.

2. Related Work

Malicious file analysis was performed using static and dynamic analyses. A static analysis
analyzes strings, import tables, byte n-grams, and opcodes [20]. However, the analysis is difficult
if files are obfuscated or packed [21]. Dynamic analysis is used to analyze files by running them.
Recently, AI-based malware detection has been widely used. In Saxe et al. [3] and Gibert [4], feature
data were extracted using static analysis, and a deep learning model was used to determine whether
the files were malicious. In Dahl et al. [5], Pascanu et al. [6], Huang et al. [7], and Ki et al. [8], feature
data were extracted using dynamic analysis. In Dahl et al. [5], a deep neural network-based deep
learning model was used. In Pascanu et al. [6], a recurrent neural network was used. In Huang et al. [7],
the authors proposed a deep learning model that simultaneously performs detection and classification.
In Ki et al. [8], API system calls were extracted, and the longest common subsequence (LCS) was used.

In addition, deep learning-based malicious PowerShell detection methods have been proposed.
In Song et al. [12], five tokens of the PowerShell script were selected to create a token combination for
feature extraction. We evaluated the performance using the CNN, LSTM, and CNN–LSTM combined
models. Hendler et al. [13] used natural language processing and a character-level CNN-based detector
with malicious PowerShell commands to detect malicious PowerShell commands. They focus only on
the PowerShell commands without considering the entire script.

The GAN was proposed by Goodfellow. In Goodfellow et al. [16], adding some small perturbations
to the original data makes a discriminator unable to classify them correctly. Grosse et al. [17] show
that fixed-dimensional feature-based malware detection is vulnerable under adversarial attacks.
In Hu et al. [18], to generate adversarial examples from API sequences, they consider adding other
APIs to the original sequences. In this study, we use the same method to generate fake PowerShell
data and verify that malicious PowerShell data are also not detected under adversarial attacks using
GAN. In addition, we propose an attention-based filtering method to prevent adversarial attacks.

Methods for preventing adversarial attacks have been previously proposed [22–24].
In Goodfellow et al. [22], adversarial training was used to augment the training data with adversarial
examples. However, if the attackers use other attack models, adversarial training does not work well.
In Papernot et al. [23], defensive distillation was used to train the classifier using distillation. However,
it does not prevent black box attacks. In Samangouei et al. [24], the Defense-GAN generator was used
to obtain restored sequences.

3. Adversarial Attacks on Deep Learning-Based Malicious PowerShell Detection

In this section, we introduce a deep learning-based malicious PowerShell detection method and
adversarial attacks using GAN.

Electronics 2020, 9, 1817 4 of 14

3.1. Deep Learning-Based Malicious PowerShell Detection

Deep learning-based malicious PowerShell detection involves two steps, as presented in Figure 2.
The first step is to extract feature data from PowerShell files, and the second step is to train a deep
learning model using training data and test it using test data to detect malicious PowerShell files.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 14

Deep learning-based malicious PowerShell detection involves two steps, as presented in Figure
2. The first step is to extract feature data from PowerShell files, and the second step is to train a deep
learning model using training data and test it using test data to detect malicious PowerShell files.

Figure 2. Deep Learning-based Malicious PowerShell Detection System.

The PowerShell feature data are extracted using the Tokenize method in the PSParser class [15].
PowerShells have 20 tokens, as follows:

{Attribute, Command, CommandArgument, CommandParameter, Comment, GroupEnd,
GroupStart, Keyword, LineContinuation, LoopLabel, Member, NewLine, Number, Operator,
Position, StatementSeparator, String, Type, Unknown, Variable}

Among the 20 token types, we use 6 token types as feature data [12].

{Command, CommandArgument, CommandParameter, Keyword, Member, Variable}

We can extract the PowerShell sequence data from a PowerShell file using PSParser as follows: 𝑥 , 𝑥 , … , 𝑥

Next, we train a CNN-based deep learning model [25] to detect malicious PowerShells using the
PowerShell sequence data extracted from the training data. Thereafter, we tested the CNN-based
deep learning model using test data. Thus, we determine whether the PowerShell file is malicious.

3.2. Adversarial Attack

In this section, we introduce a method to attack a deep learning-based malicious PowerShell
detection system. As shown in Figure 3, we generate fake PowerShell data from malicious PowerShell
data using GAN.

The GAN has a generator and a discriminator [16]. The GAN generator generates fake
PowerShell data, and the GAN discriminator is trained with the fake PowerShell data and normal
PowerShell data. In addition, the GAN generator is trained with the result of training the GAN
discriminator. By repeating this process, the generator generates fake PowerShell data similar to the
normal PowerShell data from the malicious PowerShell data. Finally, the deep learning-based
detection system determines that the fake PowerShell data generated from malicious PowerShells
using GAN is not malicious.

The GAN is used in various domains. In art, a picture similar to trained pictures, such as Van
Gogh, was generated [26]. In music, a song similar to trained songs, such as Beethoven, was generated
[27]. In malware detection, a fake malware similar to normal files was generated [18].

Figure 2. Deep Learning-based Malicious PowerShell Detection System.

The PowerShell feature data are extracted using the Tokenize method in the PSParser class [15].
PowerShells have 20 tokens, as follows:

{Attribute, Command, CommandArgument, CommandParameter, Comment, GroupEnd,
GroupStart, Keyword, LineContinuation, LoopLabel, Member, NewLine, Number, Operator,
Position, StatementSeparator, String, Type, Unknown, Variable}

Among the 20 token types, we use 6 token types as feature data [12].

{Command, CommandArgument, CommandParameter, Keyword, Member, Variable}

We can extract the PowerShell sequence data from a PowerShell file using PSParser as follows:

(x1, x2, . . . , xn)

Next, we train a CNN-based deep learning model [25] to detect malicious PowerShells using the
PowerShell sequence data extracted from the training data. Thereafter, we tested the CNN-based deep
learning model using test data. Thus, we determine whether the PowerShell file is malicious.

3.2. Adversarial Attack

In this section, we introduce a method to attack a deep learning-based malicious PowerShell
detection system. As shown in Figure 3, we generate fake PowerShell data from malicious PowerShell
data using GAN.Electronics 2020, 9, x FOR PEER REVIEW 5 of 14

Figure 3. Adversarial Attack about Deep Learning-based PowerShell Detection.

Fake PowerShell data are generated as follows. Suppose that a malicious PowerShell data
sequence is given. 𝑥 , 𝑥 , … , 𝑥

Using GAN, we generate a fake PowerShell sequence similar to a normal PowerShell sequence
as follows. 𝑥 ′, 𝑥 ′, … , 𝑥 ′

However, we should not replace the original PowerShell token with another token because we
should ensure that the original PowerShell tokens are contained in the fake PowerShell sequence data
and malicious behaviors occur [18]. Therefore, we generate fake PowerShell sequence data as follows,
ensuring that the original tokens are contained. 𝑔 , , … , 𝑔 , , 𝑥 , 𝑔 , , … , 𝑔 , , 𝑥 , … , 𝑔 , , … , 𝑔 , , 𝑥

New tokens 𝑔 , are added to the PowerShell sequence. The repeated training of the GAN
model generates a fake PowerShell sequence that is determined not to be malicious by the deep
learning-based detection system.

Note that L is the length of the new tokens, 𝑔 , and is added to the PowerShell sequence. L can
be random. However, for simplicity, we make L constant in Section 5.2.

4. Malicious PowerShell Detection Using Attention against Adversarial Attacks

In this section, we introduce an attention mechanism [19] and propose a malicious PowerShell
detection method that uses attention against adversarial attacks.

4.1. Attention

Attention is a variant of the LSTM model [28]. We trained the sequence data using the LSTM
model. In addition, using the LSTM model, we translate a language and make a chatbot [29].
Attention is a deep learning model used to find a part of the input that has a greater impact on the
output. Using attention, we compute the weight 𝑎 , of each token 𝑥 of input based on the output 𝑦 , as shown in Figure 4.

Note that in the LSTM model, the output can be as follows. 𝑦 , 𝑦 , … , 𝑦

However, in malware detection systems, the output is only whether or not the input is malicious.
Therefore, in malware detection systems, t is set to 1.

Figure 3. Adversarial Attack about Deep Learning-based PowerShell Detection.

Electronics 2020, 9, 1817 5 of 14

The GAN has a generator and a discriminator [16]. The GAN generator generates fake PowerShell
data, and the GAN discriminator is trained with the fake PowerShell data and normal PowerShell
data. In addition, the GAN generator is trained with the result of training the GAN discriminator.
By repeating this process, the generator generates fake PowerShell data similar to the normal PowerShell
data from the malicious PowerShell data. Finally, the deep learning-based detection system determines
that the fake PowerShell data generated from malicious PowerShells using GAN is not malicious.

The GAN is used in various domains. In art, a picture similar to trained pictures, such as Van Gogh,
was generated [26]. In music, a song similar to trained songs, such as Beethoven, was generated [27].
In malware detection, a fake malware similar to normal files was generated [18].

Fake PowerShell data are generated as follows. Suppose that a malicious PowerShell data sequence
is given.

(x1, x2, . . . , xn)

Using GAN, we generate a fake PowerShell sequence similar to a normal PowerShell sequence
as follows. (

x′1, x′2, . . . , x′n
)

However, we should not replace the original PowerShell token with another token because we
should ensure that the original PowerShell tokens are contained in the fake PowerShell sequence data
and malicious behaviors occur [18]. Therefore, we generate fake PowerShell sequence data as follows,
ensuring that the original tokens are contained.

(g1,1, . . . , g1,L, x1, g2,1, . . . , g2,L, x2, . . . , gn,1, . . . , gn,L, xn)

New tokens gi, j are added to the PowerShell sequence. The repeated training of the GAN model
generates a fake PowerShell sequence that is determined not to be malicious by the deep learning-based
detection system.

Note that L is the length of the new tokens, gi, j and is added to the PowerShell sequence. L can be
random. However, for simplicity, we make L constant in Section 5.2.

4. Malicious PowerShell Detection Using Attention against Adversarial Attacks

In this section, we introduce an attention mechanism [19] and propose a malicious PowerShell
detection method that uses attention against adversarial attacks.

4.1. Attention

Attention is a variant of the LSTM model [28]. We trained the sequence data using the LSTM
model. In addition, using the LSTM model, we translate a language and make a chatbot [29]. Attention
is a deep learning model used to find a part of the input that has a greater impact on the output.
Using attention, we compute the weight at,i of each token xi of input based on the output yt, as shown
in Figure 4.Electronics 2020, 9, x FOR PEER REVIEW 6 of 14

Figure 4. Attention.

When the weight of a token is large, the token is important. Attention is used in text
summarization [19]. For example, consider a sentence as follows:

Russian defense minister Ivanov, called Sunday for the creation of a joint front to combat
global terrorism

It can be summarized using attention as follows.

Russia called for a joint front for terrorism

The RNN model is used in neural machine translation (NMT) [29]. For example, a German
sentence is translated into an English sentence. NMT encodes a source sentence to a vector and
decodes an output sentence based on the vector. Attention allows the decoder to refer to each part of
the input sentence based on the output sentence. In Figure 4, x is a source sentence and y is an output
sentence. An output word 𝑦 depends on the combination of the weights 𝑎 , of input words 𝑥 . 𝑎 , is a weight that shows how large each input word impacts the output word. For example, when 𝑎 , is large, the third word in the output sentence refers to the second word in the input sentence.

4.2. Malicious PowerShell Detection Using Attention

In this section, we propose a malicious PowerShell detection method that uses attention against
adversarial attacks. It has two steps. The first step is to generate a malicious token list using attention
from the PowerShell training data, as shown in Figure 5. The second step is to generate the restored
PowerShell data from the fake PowerShell data using the malicious token list.

In the first step, we first suppose that the following PowerShell data sequence is given. 𝑥 , 𝑥 , … , 𝑥

Second, we compute the weights 𝑎 of each token 𝑥 in the PowerShell sequence data using
attention.

Third, we find the k-th largest weight 𝑎 in each PowerShell sequence and add tokens whose
weight is larger than 𝑎 to a malicious token list if the PowerShell sequence is malicious. In contrast,
if the PowerShell sequence is normal, we add tokens whose weight is larger than 𝑎 to a normal
token list. Thus, we generate two token lists as follows:

{Normal_token_list, Malicious_token_list}

The intersection of the two token lists is a common token list. Using the two token lists, we
generate three token lists as follows:

{Normal_only_token_list, Malicious_only_token_list, Common_token_list}

Figure 4. Attention.

Electronics 2020, 9, 1817 6 of 14

Note that in the LSTM model, the output can be as follows.

y1, y2, . . . , yt

However, in malware detection systems, the output is only whether or not the input is malicious.
Therefore, in malware detection systems, t is set to 1.

When the weight of a token is large, the token is important. Attention is used in text
summarization [19]. For example, consider a sentence as follows:

Russian defense minister Ivanov, called Sunday for the creation of a joint front to combat
global terrorism

It can be summarized using attention as follows.

Russia called for a joint front for terrorism

The RNN model is used in neural machine translation (NMT) [29]. For example, a German
sentence is translated into an English sentence. NMT encodes a source sentence to a vector and decodes
an output sentence based on the vector. Attention allows the decoder to refer to each part of the input
sentence based on the output sentence. In Figure 4, x is a source sentence and y is an output sentence.
An output word yt depends on the combination of the weights at,i of input words xi. at,i is a weight that
shows how large each input word impacts the output word. For example, when a3,2 is large, the third
word in the output sentence refers to the second word in the input sentence.

4.2. Malicious PowerShell Detection Using Attention

In this section, we propose a malicious PowerShell detection method that uses attention against
adversarial attacks. It has two steps. The first step is to generate a malicious token list using attention
from the PowerShell training data, as shown in Figure 5. The second step is to generate the restored
PowerShell data from the fake PowerShell data using the malicious token list.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 14

In the second step, we perform attention-based filtering using the malicious_only_token_list.
We suppose that a fake PowerShell sequence generated by an adversarial attack is given as follows: 𝑔 , , … , 𝑔 , , 𝑥 ′, 𝑔 , , … , 𝑔 , , 𝑥 ′, … , 𝑔 , , … , 𝑔 , , 𝑥 ′

First, we generate a restored PowerShell sequence containing tokens that exist in the
malicious_only_token_list from the fake PowerShell sequence as follows: 𝑔 , , … , 𝑔 , , 𝑥 ′, … , 𝑔 , , … , 𝑔 , , 𝑥 ′

Second, we determine whether the restored PowerShell sequence is malicious using the existing
deep learning-based malicious PowerShell detection system.

Figure 5. Malicious Token List Generation and Attention-based Filtering.

The advantages of the attention-based filtering method are analyzed as follows. We define the
difference, difffake, between the fake PowerShell sequence generated by GAN and the original
malicious PowerShell sequence. 𝑑𝑖𝑓𝑓 = |𝑥 − 𝑥 |⁄ + 𝑔 , − 𝑥 ,⁄

On the other hand, the difference, diffrestored, between the original malicious PowerShell sequence
and the restored PowerShell sequence generated by the attention-based filtering method is as follows. 𝑑𝑖𝑓𝑓 = |𝑥 − 𝑥 | + 𝑔 , − 𝑥 ,

Because 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 /(L + 1) and 1 ≤ 𝑢 ≤ 𝑣 ≤ 𝑛 /(L + 1), and 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝐿 , the following
condition is always satisfied. 𝑑𝑖𝑓𝑓 ≤ 𝑑𝑖𝑓𝑓

Therefore, we conclude that the attention-based filtering method reduces the difference between
the fake PowerShell sequence generated by GAN and the original malicious PowerShell sequence.
This means that even if the fake PowerShell sequence is determined as normal in the existing malware
detector, the restored PowerShell sequence generated by attention-based filtering is determined as
malicious.

Figure 5. Malicious Token List Generation and Attention-based Filtering.

Electronics 2020, 9, 1817 7 of 14

In the first step, we first suppose that the following PowerShell data sequence is given.

(x1, x2, . . . , xn)

Second, we compute the weights ai of each token xi in the PowerShell sequence data using attention.
Third, we find the k-th largest weight a j in each PowerShell sequence and add tokens whose

weight is larger than a j to a malicious token list if the PowerShell sequence is malicious. In contrast,
if the PowerShell sequence is normal, we add tokens whose weight is larger than a j to a normal token
list. Thus, we generate two token lists as follows:

{Normal_token_list, Malicious_token_list}

The intersection of the two token lists is a common token list. Using the two token lists, we generate
three token lists as follows:

{Normal_only_token_list, Malicious_only_token_list, Common_token_list}

In the second step, we perform attention-based filtering using the malicious_only_token_list.
We suppose that a fake PowerShell sequence generated by an adversarial attack is given as follows:(

g1,1, . . . , g1,L, x′1, g2,1, . . . , g2,L, x′2, . . . , gn,1, . . . , gn,L, x′n
)

First, we generate a restored PowerShell sequence containing tokens that exist in the
malicious_only_token_list from the fake PowerShell sequence as follows:(

gi,p, . . . , gi,q, x′i , . . . , g j,r, . . . , g j,s, x′j
)

Second, we determine whether the restored PowerShell sequence is malicious using the existing
deep learning-based malicious PowerShell detection system.

The advantages of the attention-based filtering method are analyzed as follows. We define the
difference, difffake, between the fake PowerShell sequence generated by GAN and the original malicious
PowerShell sequence.

di f f f ake =

n/(L+1)∑
a=1

∣∣∣x′a − xa
∣∣∣+ n/(L+1)∑

b=1

L∑
c=1

∣∣∣gb,c − xb,c
∣∣∣

On the other hand, the difference, diffrestored, between the original malicious PowerShell sequence
and the restored PowerShell sequence generated by the attention-based filtering method is as follows.

di f frestored =

j∑
a=i

∣∣∣x′a − xa
∣∣∣+ v∑

b=u

q∑
c=p

∣∣∣gb,c − xb,c
∣∣∣

Because 1 ≤ i ≤ j ≤ n/(L + 1) and 1 ≤ u ≤ v ≤ n/(L + 1), and 1 ≤ p ≤ q ≤ L, the following condition
is always satisfied.

di f frestored ≤ di f f f ake

Therefore, we conclude that the attention-based filtering method reduces the difference between
the fake PowerShell sequence generated by GAN and the original malicious PowerShell sequence.
This means that even if the fake PowerShell sequence is determined as normal in the existing malware
detector, the restored PowerShell sequence generated by attention-based filtering is determined
as malicious.

5. Experimental Results

In this section, we present the experimental results. First, in Section 5.1, we introduce the
experiment environment. Second, in Section 5.2, we present the performance metric. Third, in Section 5.3,

Electronics 2020, 9, 1817 8 of 14

we describe the experimental result of an adversarial attack. Finally, in Section 5.4, we show
the experimental results of malicious PowerShell detection using attention-based filtering against
adversarial attacks.

5.1. Setup

We used 1000 normal PowerShell data files and 1000 malicious PowerShell data files provided by
the Information Security Research Division of Electronics and Telecommunications Research Institute
(ETRI) [30]. We generated PowerShell sequence data by extracting six types of PowerShell tokens
from each PowerShell file, as shown in Figure 6. We set the length of the PowerShell sequence to 800.
We used 5-fold cross validation [31]. Thus, 80% of the data were used for training, and 20% of the
data were used for testing. We used 800 normal PowerShell data and 800 malicious PowerShell data
for training, and 200 normal PowerShell data files and 200 malicious PowerShell data files for testing.
We performed the experiments five times by changing the training data and test data.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 14

5. Experimental Results

In this section, we present the experimental results. First, in Section 5.1, we introduce the
experiment environment. Second, in Section 5.2, we present the performance metric. Third, in Section
5.3, we describe the experimental result of an adversarial attack. Finally, in Section 5.4, we show the
experimental results of malicious PowerShell detection using attention-based filtering against
adversarial attacks.

5.1. Setup

We used 1000 normal PowerShell data files and 1000 malicious PowerShell data files provided
by the Information Security Research Division of Electronics and Telecommunications Research
Institute (ETRI) [30]. We generated PowerShell sequence data by extracting six types of PowerShell
tokens from each PowerShell file, as shown in Figure 6. We set the length of the PowerShell sequence
to 800. We used 5-fold cross validation [31]. Thus, 80% of the data were used for training, and 20% of
the data were used for testing. We used 800 normal PowerShell data and 800 malicious PowerShell
data for training, and 200 normal PowerShell data files and 200 malicious PowerShell data files for
testing. We performed the experiments five times by changing the training data and test data.

Figure 6. PowerShell Sequence Data.

We performed two experiments. In the first experiment, we performed adversarial attacks
against deep learning-based malicious PowerShell detection by generating fake PowerShell data
using GAN introduced in Section 3.2. In the second experiment, we detected the restored PowerShell
sequence data using attention-based filtering from the fake PowerShell data proposed in Section 4.2.

These two experiments were performed on a Windows 10 system. We implemented the GAN
and attention-based filtering method using Keras [32]. The detailed experimental conditions are listed
in Table 2.

Table 2. Experimental Environment.

Name Specification
OS Windows 10 Pro

CPU Intel i7 2.2 GHz
RAM 16 GB
GPU GeForce RTX 2060
Cuda 8.0

5.2. Performance Metric

In this section, performance evaluation indicators are described before presenting the
experimental results. The indicators used in this study are accuracy, precision, recall (detection rate),
F1 score, and false positive rate (FPR). The confusion matrix used to calculate these values is
presented in Table 3.

Figure 6. PowerShell Sequence Data.

We performed two experiments. In the first experiment, we performed adversarial attacks against
deep learning-based malicious PowerShell detection by generating fake PowerShell data using GAN
introduced in Section 3.2. In the second experiment, we detected the restored PowerShell sequence
data using attention-based filtering from the fake PowerShell data proposed in Section 4.2.

These two experiments were performed on a Windows 10 system. We implemented the GAN and
attention-based filtering method using Keras [32]. The detailed experimental conditions are listed in
Table 2.

Table 2. Experimental Environment.

Name Specification

OS Windows 10 Pro
CPU Intel i7 2.2 GHz
RAM 16 GB
GPU GeForce RTX 2060
Cuda 8.0

5.2. Performance Metric

In this section, performance evaluation indicators are described before presenting the experimental
results. The indicators used in this study are accuracy, precision, recall (detection rate), F1 score,
and false positive rate (FPR). The confusion matrix used to calculate these values is presented in Table 3.

True positive (TP) indicates that a file has been correctly evaluated by the system as malicious,
and true negative (TN) indicates that the system has correctly determined that a benign file is normal.
Furthermore, false positive (FP) indicates that a normal file has been incorrectly assessed by the system

Electronics 2020, 9, 1817 9 of 14

as malicious, and false negative (FN) indicates that the system incorrectly identified a malicious file as
normal. Each indicator is calculated as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN)

Precision = TP/(TP + FP)

Recall (Detection Rate) = TP/(TP + FN)

F1 score = 2 × Precision × Recall/(Precision + Recall)

FPR = FP/(FP + TN)

Table 3. Confusion Matrix.

- Malware Normal File

Predicted Malware TP FP

Predicted Normal File FN TN

5.3. Adversarial Attack

First, we trained a malicious PowerShell detection deep learning model with 800 normal PowerShell
data and 800 malicious PowerShell data. Second, we generated a fake PowerShell data sequence using
the GAN generator. As mentioned in Section 3.2, we varied the value of L from 0 to 4. When L was set
to 0, the fake PowerShell sequence was the same as the original PowerShell sequence.

As shown in Figure 7, when L was set to 0, the detection rate of 200 malicious PowerShell data was
93.5%. When L was set to 1, the detection rate was 93%. However, when L was set to 2, the detection
rate was 53.5%, and when L was 3, it was 36%. Finally, when L was 4, it decreased to 0%. Through this
experiment, we verified that an adversarial attack on malicious PowerShell data is possible using GAN.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 14

Table 3. Confusion Matrix.

- Malware Normal File
Predicted Malware TP FP

Predicted Normal File FN TN

True positive (TP) indicates that a file has been correctly evaluated by the system as malicious,
and true negative (TN) indicates that the system has correctly determined that a benign file is normal.
Furthermore, false positive (FP) indicates that a normal file has been incorrectly assessed by the
system as malicious, and false negative (FN) indicates that the system incorrectly identified a
malicious file as normal. Each indicator is calculated as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN)
Precision = TP/(TP + FP)

Recall (Detection Rate) = TP/(TP + FN)
F1 score = 2 × Precision × Recall/(Precision + Recall)

FPR = FP/(FP + TN)

5.3. Adversarial Attack

First, we trained a malicious PowerShell detection deep learning model with 800 normal
PowerShell data and 800 malicious PowerShell data. Second, we generated a fake PowerShell data
sequence using the GAN generator. As mentioned in Section 3.2, we varied the value of L from 0 to
4. When L was set to 0, the fake PowerShell sequence was the same as the original PowerShell
sequence.

As shown in Figure 7, when L was set to 0, the detection rate of 200 malicious PowerShell data
was 93.5%. When L was set to 1, the detection rate was 93%. However, when L was set to 2, the
detection rate was 53.5%, and when L was 3, it was 36%. Finally, when L was 4, it decreased to 0%.
Through this experiment, we verified that an adversarial attack on malicious PowerShell data is
possible using GAN.

Figure 7. Adversarial Attack Results.

Subsequently, we measured the fake PowerShell data generation time using the GAN as shown
in Figure 8. We varied the number of training PowerShell data from 400 to 1600 by increments of 400.
Epoch was set to 100. Fake PowerShell generation time includes the time to detect 200 test PowerShell
data in each epoch. When the number of training data was 400, the fake PowerShell generation time
was 438 s, and when the number was 1600, the generation time was 720 s. We think that the fake
PowerShell data generation time is reasonable.

Figure 7. Adversarial Attack Results.

Subsequently, we measured the fake PowerShell data generation time using the GAN as shown in
Figure 8. We varied the number of training PowerShell data from 400 to 1600 by increments of 400.
Epoch was set to 100. Fake PowerShell generation time includes the time to detect 200 test PowerShell
data in each epoch. When the number of training data was 400, the fake PowerShell generation time
was 438 s, and when the number was 1600, the generation time was 720 s. We think that the fake
PowerShell data generation time is reasonable.

Electronics 2020, 9, 1817 10 of 14
Electronics 2020, 9, x FOR PEER REVIEW 10 of 14

Figure 8. Fake PowerShell Data Generation Time.

5.4. Malicious PowerShell Detection Using Attention against Adversarial Attack

In the second experiment, we generated restored PowerShell sequence data using attention-
based filtering from 200 fake PowerShell data that were generated by GAN, and we measured the
detection rate of the restored PowerShell sequence data in the existing malicious PowerShell
detection system, as indicated in Figure 9. As stated in Section 4.2, we varied the value of k from 1 to
5. Note that we computed the weights of each token in the PowerShell sequence data using attention.
Then, we found the k-th largest weight in each PowerShell sequence and added tokens whose weights
were larger than the k-th largest weight to a malicious token list.

When L was 4, the detection rate of the fake PowerShell data was 0%. However, when k was set
to 1, the detection rate of the restored PowerShell data was 91%, and when k was set to 2, the detection
rate was 93%. When k was 3, 4, or 5, the detection rate increased to 96.5%. This was higher than the
original detection rate of 93.5%. We show that the attention-based filtering method improves the
detection rate of the existing malicious PowerShell detection system and prevents adversarial attacks.

Figure 9. Attention Filtering Results.

Next, we measured the attention-based filtering time, as shown in Figure 10. When there were
50 fake PowerShell data, the attention-based filtering time was 131 ms, and when there were 200 fake
PowerShell data, the filtering time was 452 ms. It is approximate 2.5 ms per fake PowerShell data on
average. We think that the attention-based filtering time against adversarial attacks is reasonable [33].

Figure 8. Fake PowerShell Data Generation Time.

5.4. Malicious PowerShell Detection Using Attention against Adversarial Attack

In the second experiment, we generated restored PowerShell sequence data using attention-based
filtering from 200 fake PowerShell data that were generated by GAN, and we measured the detection
rate of the restored PowerShell sequence data in the existing malicious PowerShell detection system,
as indicated in Figure 9. As stated in Section 4.2, we varied the value of k from 1 to 5. Note that we
computed the weights of each token in the PowerShell sequence data using attention. Then, we found
the k-th largest weight in each PowerShell sequence and added tokens whose weights were larger than
the k-th largest weight to a malicious token list.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 14

Figure 8. Fake PowerShell Data Generation Time.

5.4. Malicious PowerShell Detection Using Attention against Adversarial Attack

In the second experiment, we generated restored PowerShell sequence data using attention-
based filtering from 200 fake PowerShell data that were generated by GAN, and we measured the
detection rate of the restored PowerShell sequence data in the existing malicious PowerShell
detection system, as indicated in Figure 9. As stated in Section 4.2, we varied the value of k from 1 to
5. Note that we computed the weights of each token in the PowerShell sequence data using attention.
Then, we found the k-th largest weight in each PowerShell sequence and added tokens whose weights
were larger than the k-th largest weight to a malicious token list.

When L was 4, the detection rate of the fake PowerShell data was 0%. However, when k was set
to 1, the detection rate of the restored PowerShell data was 91%, and when k was set to 2, the detection
rate was 93%. When k was 3, 4, or 5, the detection rate increased to 96.5%. This was higher than the
original detection rate of 93.5%. We show that the attention-based filtering method improves the
detection rate of the existing malicious PowerShell detection system and prevents adversarial attacks.

Figure 9. Attention Filtering Results.

Next, we measured the attention-based filtering time, as shown in Figure 10. When there were
50 fake PowerShell data, the attention-based filtering time was 131 ms, and when there were 200 fake
PowerShell data, the filtering time was 452 ms. It is approximate 2.5 ms per fake PowerShell data on
average. We think that the attention-based filtering time against adversarial attacks is reasonable [33].

Figure 9. Attention Filtering Results.

When L was 4, the detection rate of the fake PowerShell data was 0%. However, when k was set
to 1, the detection rate of the restored PowerShell data was 91%, and when k was set to 2, the detection
rate was 93%. When k was 3, 4, or 5, the detection rate increased to 96.5%. This was higher than
the original detection rate of 93.5%. We show that the attention-based filtering method improves the
detection rate of the existing malicious PowerShell detection system and prevents adversarial attacks.

Next, we measured the attention-based filtering time, as shown in Figure 10. When there were 50
fake PowerShell data, the attention-based filtering time was 131 ms, and when there were 200 fake
PowerShell data, the filtering time was 452 ms. It is approximate 2.5 ms per fake PowerShell data on
average. We think that the attention-based filtering time against adversarial attacks is reasonable [33].

Electronics 2020, 9, 1817 11 of 14
Electronics 2020, 9, x FOR PEER REVIEW 11 of 14

Figure 10. Attention Filtering Time.

Next, we measured the false positive rate (FPR) as shown in Figure 11. We used 200 normal
PowerShell data and performed attention-based filtering and measured the FPR in the existing deep
learning-based detection model. When k was 1 or 2, the FPR was 1.5%. However, when k was 3, it
increased to 32%. When k was 4, it decreased to 7.5%, and when k was 5, it was 3.5%. When k increases,
the length of the malicious token list increases. We discover that FPR depends on the length of the
malicious_only_token_list.

Table 4 shows the size of the malicious only token list according to k. As k increases, the size of
the malicious only token list increases. This means that when the size of the list was 93, the attention-
based filtering method extracted tokens among the 93 malicious tokens only from the fake PowerShell
sequence. Generally, if the malicious only token list is longer, the FPR decreases. However, in some
cases (e.g., k = 3), some restored normal PowerShell sequences in the attention-based filtering can be
determined as malicious. Only a few tokens are not enough for the restored normal PowerShell
sequence to be determined as normal.

Table 4. Size of malicious only token list.

 Top-1 Top-2 Top-3 Top-4 Top-5
Size of Malicious Only Token List 93 165 183 213 233

Figure 11. False Positive Rate.

Finally, we compared the attention-based filtering method with adversarial training [22].
Adversarial training trains the fake PowerShell sequence data generated by the GAN. When we
trained 800 normal PowerShell data and 800 malicious PowerShell data, we additionally added fake
PowerShell data to the training data from 200 to 800. As shown in Figure 12, the detection rate of

Figure 10. Attention Filtering Time.

Next, we measured the false positive rate (FPR) as shown in Figure 11. We used 200 normal
PowerShell data and performed attention-based filtering and measured the FPR in the existing deep
learning-based detection model. When k was 1 or 2, the FPR was 1.5%. However, when k was 3,
it increased to 32%. When k was 4, it decreased to 7.5%, and when k was 5, it was 3.5%. When k
increases, the length of the malicious token list increases. We discover that FPR depends on the length
of the malicious_only_token_list.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 14

Figure 10. Attention Filtering Time.

Next, we measured the false positive rate (FPR) as shown in Figure 11. We used 200 normal
PowerShell data and performed attention-based filtering and measured the FPR in the existing deep
learning-based detection model. When k was 1 or 2, the FPR was 1.5%. However, when k was 3, it
increased to 32%. When k was 4, it decreased to 7.5%, and when k was 5, it was 3.5%. When k increases,
the length of the malicious token list increases. We discover that FPR depends on the length of the
malicious_only_token_list.

Table 4 shows the size of the malicious only token list according to k. As k increases, the size of
the malicious only token list increases. This means that when the size of the list was 93, the attention-
based filtering method extracted tokens among the 93 malicious tokens only from the fake PowerShell
sequence. Generally, if the malicious only token list is longer, the FPR decreases. However, in some
cases (e.g., k = 3), some restored normal PowerShell sequences in the attention-based filtering can be
determined as malicious. Only a few tokens are not enough for the restored normal PowerShell
sequence to be determined as normal.

Table 4. Size of malicious only token list.

 Top-1 Top-2 Top-3 Top-4 Top-5
Size of Malicious Only Token List 93 165 183 213 233

Figure 11. False Positive Rate.

Finally, we compared the attention-based filtering method with adversarial training [22].
Adversarial training trains the fake PowerShell sequence data generated by the GAN. When we
trained 800 normal PowerShell data and 800 malicious PowerShell data, we additionally added fake
PowerShell data to the training data from 200 to 800. As shown in Figure 12, the detection rate of

Figure 11. False Positive Rate.

Table 4 shows the size of the malicious only token list according to k. As k increases, the size of the
malicious only token list increases. This means that when the size of the list was 93, the attention-based
filtering method extracted tokens among the 93 malicious tokens only from the fake PowerShell
sequence. Generally, if the malicious only token list is longer, the FPR decreases. However, in some
cases (e.g., k = 3), some restored normal PowerShell sequences in the attention-based filtering can
be determined as malicious. Only a few tokens are not enough for the restored normal PowerShell
sequence to be determined as normal.

Table 4. Size of malicious only token list.

Top-1 Top-2 Top-3 Top-4 Top-5

Size of Malicious Only Token List 93 165 183 213 233

Electronics 2020, 9, 1817 12 of 14

Finally, we compared the attention-based filtering method with adversarial training [22].
Adversarial training trains the fake PowerShell sequence data generated by the GAN. When we
trained 800 normal PowerShell data and 800 malicious PowerShell data, we additionally added fake
PowerShell data to the training data from 200 to 800. As shown in Figure 12, the detection rate of
attention-based filtering was slightly lower than that of adversarial training. However, as shown
in Figure 13, the false positive rate of attention-based filtering was significantly lower than that of
adversarial training. Therefore, we think that attention-based filtering is better than adversarial training.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 14

attention-based filtering was slightly lower than that of adversarial training. However, as shown in
Figure 13, the false positive rate of attention-based filtering was significantly lower than that of
adversarial training. Therefore, we think that attention-based filtering is better than adversarial
training.

Figure 12. Detection Rate Comparison.

Figure 13. False Positive Rate Comparison.

6. Discussion

In this study, we generated a fake PowerShell data sequence using GAN and showed that its
detection rate decreased to 0% when using an existing detection method. Then, we first generated a
malicious only token list using attention. Second, we generated a restored PowerShell data sequence
using attention-based filtering and verified that its detection rate increased to 96.5%. We showed that
adversarial attacks are prevented using attention-based filtering.

In contrast, research has been conducted to generate adversarial attacks against intrusion
detection systems [34]. We think that attention-based filtering is also useful to prevent adversarial
attacks against intrusion detection. In future work, we will research a method to prevent adversarial
attacks against intrusion detection systems.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No.2019R1G1A11100261) and was supported by the HPC support project by MSIT
and NIPA.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. AV-TEST. Available online: https://www.av-test.org (accessed on 9 September 2020).

Figure 12. Detection Rate Comparison.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 14

attention-based filtering was slightly lower than that of adversarial training. However, as shown in
Figure 13, the false positive rate of attention-based filtering was significantly lower than that of
adversarial training. Therefore, we think that attention-based filtering is better than adversarial
training.

Figure 12. Detection Rate Comparison.

Figure 13. False Positive Rate Comparison.

6. Discussion

In this study, we generated a fake PowerShell data sequence using GAN and showed that its
detection rate decreased to 0% when using an existing detection method. Then, we first generated a
malicious only token list using attention. Second, we generated a restored PowerShell data sequence
using attention-based filtering and verified that its detection rate increased to 96.5%. We showed that
adversarial attacks are prevented using attention-based filtering.

In contrast, research has been conducted to generate adversarial attacks against intrusion
detection systems [34]. We think that attention-based filtering is also useful to prevent adversarial
attacks against intrusion detection. In future work, we will research a method to prevent adversarial
attacks against intrusion detection systems.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No.2019R1G1A11100261) and was supported by the HPC support project by MSIT
and NIPA.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. AV-TEST. Available online: https://www.av-test.org (accessed on 9 September 2020).

Figure 13. False Positive Rate Comparison.

6. Discussion

In this study, we generated a fake PowerShell data sequence using GAN and showed that its
detection rate decreased to 0% when using an existing detection method. Then, we first generated a
malicious only token list using attention. Second, we generated a restored PowerShell data sequence
using attention-based filtering and verified that its detection rate increased to 96.5%. We showed that
adversarial attacks are prevented using attention-based filtering.

In contrast, research has been conducted to generate adversarial attacks against intrusion detection
systems [34]. We think that attention-based filtering is also useful to prevent adversarial attacks against
intrusion detection. In future work, we will research a method to prevent adversarial attacks against
intrusion detection systems.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No.2019R1G1A11100261) and was supported by the HPC support project by MSIT
and NIPA.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2020, 9, 1817 13 of 14

References

1. AV-TEST. Available online: https://www.av-test.org (accessed on 9 September 2020).
2. Gavrilut, D.; Cimpoesu, M.; Anton, D.; Ciortuz, L. Malware Detection Using Machine Learning.

In Proceedings of the International Multiconference on Computer Science and Information Technology,
Mragowo, Poland, 12–14 October 2009.

3. Saxe, J.; Berlin, K. Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program
Features. In Proceedings of the International Conference on Malicious and Unwanted Software (MALWARE),
Fajardo, PR, USA, 20–22 October 2015.

4. Gibert, D. Convolutional Neural Networks for Malware Classification. Master’s Thesis, Universitat de
Barcelona, Barcelona, Spain, 2016.

5. Dahl, G.E.; Stokes, J.W.; Deng, L.; Yu, D. Large-Scale Malware Classification Using Random Projections
and Neural Networks. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013.

6. Pascanu, R.; Stokes, J.W.; Sanossian, H.; Marinescu, M.; Thomas, A. Malware Classification With Recurrent
Networks. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brisbane, QLD, Australia, 19–24 April 2015.

7. Huang, W.; Stokes, J.W. MtNet: A Multi-Task Neural Networks for Dynamic Malware Classification.
In Proceedings of the International Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), San Sebastian, Spain, 7–8 July 2016.

8. Ki, Y.; Kim, E.; Kim, H.K. A Novel approach to detect malware based on API call sequence analysis. Int. J.
Distrib. Sens. Netw. 2015, 11, 659101. [CrossRef]

9. Bae, J.; Lee, C.; Choi, S.; Kim, J. Malware Detection model with skip-connected LSTM RNN. J. Korean Inst. Inf.
Sci. Eng. 2018, 45, 1233–1239. [CrossRef]

10. Choi, S.; Bae, J.; Lee, C.; Kim, Y.; Kim, J. Attention-based automated feature extraction for malware analysis.
Sensors 2020, 20, 2893. [CrossRef] [PubMed]

11. Choi, S. Combined kNN Classification and hierarchical similarity hash for fast malware detection. Appl. Sci.
2020, 10, 5173. [CrossRef]

12. Song, J.; Kim, J.; Choi, S.; Kim, J.; Kim, I. Implementation of a Static Powershell Analysis Based on
the Cnn-Lstm Model With Token Optimizations. In Proceedings of the WISA Workshop, Jeju, Korea,
21–24 August 2019.

13. Hendler, D.; Kels, S.; Rubin, A. Detecting Malicious Powershell Commands Using Deep Neural Networks.
In Proceedings of the ACM ASIACCS, Incheon, Korea, 4–8 June 2018.

14. Trendmicro. Emotet Uses Coronavirus Scare in Latest Campaign, Targets Japan. Available online: http:
//trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-thrests (accessed on 9 September 2020).

15. Tokenizing PowerShell Scripts. Available online: http://powershell.one/powershell-internals/parsing-and-
tokenization/simple-tokenizer (accessed on 8 September 2020).

16. Goodfellow, I.J.; Abadie, J.P.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative
Adversarial Nets. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems
NIPS, Montreal, QC, Canada, 8–13 December 2014.

17. Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; McDaniel, P. Adversarial Examples for Malware
Detection. In Proceedings of the 22nd European Symposium on Research in Computer Security ESORICS,
Oslo, Norway, 11–13 September 2017.

18. Hu, W.; Tan, Y. Black-box attacks against RNN Based Malware Detection Algorithms. In Proceedings of
the Workshops of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018.

19. Rush, A.M.; Harvard, S.E.A.S.; Chopra, S.; Weston, J. A neural Attention Model for Sentence Summarization.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing EMNLP,
Lisbon, Portugal, 17–21 September 2015.

20. Kendall, K.; McMillan, C. Practical Malware Analysis; BlackHat: Las Vegas, NV, USA, 2007.
21. Moser, A.; Kruegel, C.; Kirda, E. Limits of Static Analysis for Malware Detection. In Proceedings of

the 23rd IEEE International Conference on Computer Security and Applications, Miami Beach, FL, USA,
10–14 December 2007; pp. 421–430.

https://www.av-test.org
http://dx.doi.org/10.1155/2015/659101
http://dx.doi.org/10.5626/JOK.2018.45.12.1233
http://dx.doi.org/10.3390/s20102893
http://www.ncbi.nlm.nih.gov/pubmed/32443750
http://dx.doi.org/10.3390/app10155173
http://trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-thrests
http://trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-thrests
http://powershell.one/powershell-internals/parsing-and-tokenization/simple-tokenizer
http://powershell.one/powershell-internals/parsing-and-tokenization/simple-tokenizer

Electronics 2020, 9, 1817 14 of 14

22. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of
the 3rd International Conference on Learning Representations ICLR, San Diego, CA, USA, 7–9 May 2015.

23. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation As a Defense to Adversarial Perturbations
Against Deep Neural Networks. In Proceedings of the IEEE Symposium on Security and Privacy Workshop,
San Jose, CA, USA, 23–25 May 2016.

24. Samangouei, P.; Kabkab, M.; Chellappa, R. DEFENSE-GAN: Protecting Classifiers Against Adversarial Attacks
Using Generative Models. In Proceedings of the 6th International Conference on Learning Representations
ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification With Deep Convolutional Neural
Networks. In Proceedings of the International Conference on Neural Information Processing Systems,
Lake Tahoe, CA, USA, 3–6 December 2012.

26. Jones, K. GANGogh: Creating Art with GANS. Available online: http://towardsdatascience.com/gangogh-
creating-art-with-gans-8d087d8f74a1 (accessed on 9 September 2020).

27. Engel, J. GANSynth: Making Music with GANS. Available online: http://magenta.tensorflow.org/gansynth
(accessed on 1 November 2020).

28. Understanding LSTM Networks. Available online: https://colah.github.io/posts/2015-08-Understanding-
LSTMs/ (accessed on 27 July 2020).

29. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of the 6th International Conference on Learning Representations, San Diego, CA, USA,
7–9 May 2015.

30. Information Security Research Division, Electronics and Telecommunications Research Institute (ETRI).
Available online: http://etri.re.kr (accessed on 9 September 2020).

31. N-fold Cross Validation. Available online: https://en.wikipedia.org/wiki/Cross-validation_(statistics)
(accessed on 9 September 2020).

32. Keras. Available online: http://keras.io (accessed on 9 September 2020).
33. Antivirus Performance Comparisons. Available online: http://sharedit.co.kr/posts/424 (accessed on 5 October

2020).
34. Lin, Z.; Xue, Z.; Shi, Y. IDSGAN: Generative adversarial networks for attack generation against intrusion

detection. arXiv 2018, arXiv:1809.02077.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://towardsdatascience.com/gangogh-creating-art-with-gans-8d087d8f74a1
http://towardsdatascience.com/gangogh-creating-art-with-gans-8d087d8f74a1
http://magenta.tensorflow.org/gansynth
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://etri.re.kr
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://keras.io
http://sharedit.co.kr/posts/424
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Adversarial Attacks on Deep Learning-Based Malicious PowerShell Detection
	Deep Learning-Based Malicious PowerShell Detection
	Adversarial Attack

	Malicious PowerShell Detection Using Attention against Adversarial Attacks
	Attention
	Malicious PowerShell Detection Using Attention

	Experimental Results
	Setup
	Performance Metric
	Adversarial Attack
	Malicious PowerShell Detection Using Attention against Adversarial Attack

	Discussion
	References

