
electronics

Article

Automatic Method for Distinguishing Hardware and
Software Faults Based on Software Execution Data
and Hardware Performance Counters

Jihyun Park and Byoungju Choi *

Department of Computer Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
pola0527@ewhain.net
* Correspondence: bjchoi@ewha.ac.kr; Tel.: +82-2-3277-2593

Received: 14 August 2020; Accepted: 7 October 2020; Published: 2 November 2020
����������
�������

Abstract: Debugging in an embedded system where hardware and software are tightly coupled and
have restricted resources is far from trivial. When hardware defects appear as if they were software
defects, determining the real source becomes challenging. In this study, we propose an automated
method of distinguishing whether a defect originates from the hardware or software at the stage of
integration testing of hardware and software. Our method overcomes the limitations of the embedded
environment, minimizes the effects on runtime, and identifies defects by obtaining and analyzing
software execution data and hardware performance counters. We analyze the effects of the proposed
method through an empirical study. The experimental results reveal that our method can effectively
distinguish defects.

Keywords: fault distinguish; fault detection; embedded software

1. Introduction

Embedded software is often initially developed in a simulation environment and later mapped
onto a real target or an evaluation board. As the simulation environment, evaluation board, and real
target have different purposes and require different interfaces, various types of fault may occur [1].

Defects detected in the simulation environment are software faults. These defects occur during
operations that are irrelevant to the hardware. The causes of these defects can be easily detected using
various debuggers [2].

After the software is integrated into the evaluation board or real target, many defects can occur
owing to the difference between the development and execution environments. When software is
ported in accordance with the execution environment using a cross-compiler and linker, various defects
related to memory, performance, and inter-process communication (IPC) can be generated through
the different scheduling methods and resources used by the memory and central processing unit
(CPU). These defects occur in situations where the software and hardware are intricately connected,
which makes it challenging to identify which of the two is causing the defect.

Transient or intermittent faults generated by hardware can alter signal transfers or stored values,
which may lead to incorrect program execution [3]. These faults lead to the same results as software
malfunctions or faults, such as hanging or crashing. When the symptoms of hardware faults are shown
as software malfunctions, the consequences of faults tend to be observed in different processes or
applications irrelevant to the hardware that caused these faults [4]. Hangs caused by lower voltage
margins are difficult to reproduce, as the timing of their occurrence is non-deterministic [5]. Even if a
crash occurs, it is difficult to distinguish whether it is caused by invalid memory access in the software
or an exception in the CPU pipeline [6]. In these cases, a developer might incorrectly determine that

Electronics 2020, 9, 1815; doi:10.3390/electronics9111815 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-4478-7565
https://orcid.org/0000-0003-3985-7645
http://www.mdpi.com/2079-9292/9/11/1815?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111815
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1815 2 of 25

these faults are related to the software and potentially waste a considerable amount of time before
detecting the actual cause of the faults.

Theoretically, hardware and software should be integrated and verified in parallel after
development is complete. However, due to problems with development conditions, software
development can be performed even after the hardware and software are integrated. If a new
fault occurs in this situation, a software developer may not be able to determine whether it is caused by
the newly developed software or by the integration. In this context, a method is required to determine
whether a fault in an environment containing integrated hardware and software is generated by the
hardware or software.

To develop a solution for distinguishing hardware and software faults, we consider the restrictions
of embedded systems. In an embedded system, the hardware and software are intricately connected;
furthermore, resource use is limited. Therefore, the software should be tested while prohibiting changes
to software targeted at testing, maintaining a runtime state, and minimizing performance overhead [7].
Moreover, the original runtime environment should be maintained. For example, a print statement
that is added to the source code earmarked for debugging might prevent fault detection. In addition,
a fault that did not initially occur in the simulation environment or evaluation board could appear in
the target.

In this study, we propose a method that efficiently discriminates between hardware and software
faults using execution data and a hardware performance counter when a defect is detected and
debugged in the hardware and software integration test stage of an embedded system. Non-permanent
(transient or intermittent) hardware malfunctions and software timing errors, which we define as
hardware or software integration faults, are usually challenging to distinguish but can be identified
using our approach. Distinguishing between hardware and software faults requires monitoring both.
Faults can be accurately detected only when aspects of both the hardware and software are considered
in the process of fault detection [8–10].

For debugging, the debugger first must determine where the defect occurred. To find the location
of the defect, the execution log is traced or, if a log does not exist, execution is repeated until the defect
occurs. At this point, monitoring tools are used to detect the defect. Tools and methods for monitoring
faults in embedded systems continue to be examined by researchers. However, available methods for
detecting faults by monitoring all execution information destroy the real-time execution environment,
while those that monitor performance within certain intervals lead to a decrease in the accuracy of
the monitored information [11]. Thus, the effects on the real-time execution environment should be
minimized when data are obtained to determine the faults.

Our method obtains minimal data from the execution and performance counters related to the
operation of a system call by hooking the system call of the kernel accessing the hardware in order
to distinguish whether the defect originates from the hardware or software. We analyze the data to
distinguish hardware and software faults and to identify the hardware that caused the fault (if the
fault is determined to be a hardware fault). This solution can detect faults through simple processes in
a runtime environment where hardware and software are integrated for operation (e.g., evaluation
boards or real targets).

The following are the main contributions of this paper: (1) the proposed method effectively
identifies whether faults in the embedded system are generated by the hardware or software during
integration; (2) use of the proposed technique minimizes the influence of fault classification on the
system; (3) the proposed method is automated to monitor faults in an embedded system without using
an additional hardware device. Various malfunctions can occur in environments where hardware and
software are integrated. However, to explain the core principle of our method clearly, we focus on
transient or intermittent faults in the CPU and software faults caused by the interface and timing.

This paper is structured as follows: Section 2 provides an overview of the relevant research.
In Section 3, we describe our approach for distinguishing hardware and software faults, followed



Electronics 2020, 9, 1815 3 of 25

by a report of the experimental results in Section 4. In Section 5, we discuss our conclusions and
future work.

2. Background and Related Research

2.1. Faults Caused by the Integration of Hardware and Software

Typical faults generated in hardware [12] are summarized in Table 1. Hardware malfunctions
are classified as either permanent or non-permanent faults (transient or intermittent faults),
where permanent faults are caused by external impacts, heat, and manufacturing defects, while transient
or intermittent faults result from temporary voltage fluctuations, magnetic fields, and radiation.
Permanent faults that are repeatedly generated at the same location can easily be detected and
distinguished from software faults. In contrast, the occurrence and location of transient or
intermittent faults are irregular, and these faults are unlikely to recur as they occur only under certain
conditions. Furthermore, these faults are difficult to correct as they are not easily distinguishable from
software faults.

Table 1. Types of hardware faults.

Fault Cause of Fault

Permanent fault
Damage External impacts and heat

Fatigue Extended use

Improper manufacturing Incorrect hardware logic

Transient fault Temporary environmental condition (e.g., cosmic rays,
electromagnetic interference)

Intermittent fault
Unstable hardware

Marginal hardware

Software faults [13] are more common than hardware faults and are triggered by different events
as summarized in Table 2. In the case of a defect in the software, there are several types of symptoms,
such as crashes, hangs, and malfunctions. When these defects are reproduced in the same environment,
it is easy to distinguish between them. In the case of a crash or malfunction, it is possible to determine
whether it is a hardware or software defect using defect detection tools or crash logs supported by the
operating system (OS). However, in the case of a hang, reproducing the problem is problematic as the
occurrence of the defect is not deterministic and the symptom appears similar to a hardware defect.
Therefore, it is not easy to distinguish whether the cause of the defect is the hardware or software.
In the case of an interface or timing problem (see Table 2), if a defect occurs when the hardware and
software are integrated, a hang may appear when the hardware seems to be stopped [14].

As such, transient or intermittent faults due to hardware and interface or timing faults caused by
software do not occur at a certain time or location, which poses difficulties in identifying these faults
based on the accompanying conditions. Furthermore, determining the causes of faults that are unlikely
to recur is generally time-consuming.

2.1.1. Transient or Intermittent Faults in the CPU

Transient or intermittent faults can be generated by various hardware devices, such as the CPU,
memory, and bus. In this study, we focus on transient or intermittent faults that occur in the CPU.
CPU transient or intermittent faults are generated by temporary voltage fluctuations, magnetic fields,
and radiation in different parts of the CPU, such as data registers, address registers, the data-fetching
unit, control registers, and the arithmetic logic unit. CPU intermittent faults occur due to unstable or
marginal semiconductors [12]. When transient or intermittent faults occur in the CPU, bit flipping
occurs in the data that are controlled and processed by the CPU. A bit flip might not affect the execution



Electronics 2020, 9, 1815 4 of 25

of the program but can lead to a system downstate in severe cases. Moreover, as the conditions under
which a bit flip occurs are similar to those under which a value is modified by a software fault, the cause
of the fault is difficult to identify.

Table 2. Types of software faults.

Fault Type Cause of Fault

Logic Problem

Forgotten case or steps, duplicate logic, extreme conditions
neglected, unnecessary truncation, misinterpretation,
missing condition test, checking the wrong variable,
or iterating the loop incorrectly.

Computational
Problem

Equation insufficient or incorrect, missing computation,
incorrect equation operand, incorrect equation operator,
parentheses used incorrectly, precision loss, rounding or
truncation fault, mixed modes, or sign conversion fault.

Data Problem

Sensor data incorrect or missing, operator data incorrect or
missing, embedded data in tables incorrect or missing,
external data incorrect or missing, output data incorrect or
missing, or input data incorrect or missing.

Interface/Timing
Problem

Interrupts handled incorrectly, incorrect input/output timing,
timing fault causes data loss, subroutine/module mismatch,
wrong subroutine called, incorrectly located subroutine
called, or inconsistent subroutine arguments.

Documentation
Problem

Ambiguous statement or incomplete, incorrect, missing,
conflicting, redundant, confusing, illogical, non-verifiable,
or unachievable items.

Data Handling
Problem

Data initialized incorrectly, data accessed or stored
incorrectly, flag or index set incorrectly, data
packed/unpacked incorrectly, incorrectly referenced wrong
data variable, data referenced out of bounds, scaling or units
of data incorrect, data dimensioned incorrectly, variable type
incorrect, incorrectly subscripted variable, or incorrect scope
of data.

Document Quality Problem Applicable criteria not met, not traceable, not current,
inconsistencies, incomplete, or no identification.

2.1.2. Interface or Timing Problems in Software

Interface faults are generated during calls between different layers. The locations of interface
faults are uniform. In contrast, timing faults occur when a task to be performed within a set amount of
time is inappropriately executed; therefore, timing faults are not deterministic in terms of location.
For example, when data loss occurs during communication between two processes, an idle state of
waiting for data is maintained in the reception process. During symmetric communication, this idle
state of waiting for the result of data processing is also maintained during the transmission process.
The state in which the system seems to stop operating is known as hanging [15]. When a crash occurs,
the system shuts down. However, when a hang occurs, the system either partially or completely stalls
and most services become unresponsive or respond to user inputs with obvious latency. When a
fault that leads to hanging is generated, external input for debugging cannot be supplied. Therefore,
identifying whether the software stopped operating because of a problem caused by the software or
hardware that stopped operating is challenging.



Electronics 2020, 9, 1815 5 of 25

2.2. Related Research

2.2.1. Detection of Transient or Intermittent Faults

Several previous studies have sought to develop methods to determine whether a fault is a
transient or intermittent fault in the CPU. These methods are based on adding logic to determine
whether the fault is caused by the hardware or software.

Examples of this approach can be found in the works of Bower et al. [16] and
Constantinides et al. [17]. The method proposed by Bower et al. [16] adjusts the logic of the CPU
processor to monitor the execution of instructions and recognize malfunctions caused by incorrect
instructions. However, the limitation of this method is that it only works in CPUs designed to detect
faults. The approach proposed by Constantinides et al. [17] identifies CPU malfunctions by adjusting
the instruction set. However, the limitation of this method is that faults can be detected only in a
CPU with an adjusted instruction set, as demonstrated in the method of Bower et al. [16]. In addition,
this method regularly interrupts CPU execution for testing and debugging, disrupting the real-time
execution environment.

The method proposed by Rashid et al. [10] detects transient or intermittent faults by monitoring
the software execution. This method works by backtracking the state of the application based on a
crash dump when a system crash occurs due to a transient or intermittent fault. However, although
this method can obtain information on the execution of software and registers before the fault occurs,
it cannot simultaneously identify the execution environment. Furthermore, as transient or intermittent
faults do not always lead to a system crash, the application of this method is limited.

Methods for detecting transient or intermittent faults by simultaneously monitoring both hardware
and software have also been developed. For example, Li et al. [18] proposed a co-operative
hardware–software solution to detect CPU malfunctions. This approach detects faults that can
recur, such as transient faults in the hardware. However, as non-deterministic hardware faults
generated during the execution of hardware are unlikely to recur, this method is inappropriate.

2.2.2. Detection of Hang or Timing Faults in the Software

Runtime faults in the software can be detected using a variety of methods based on kernel
dumping, shadow memory, capture and replay, and trace [19]. However, these methods rarely detect
malfunctions that lead to hanging, as hanging occurs irregularly. In addition, a fault is not considered
as such in the system unless it occurs during hanging. Various studies [20,21] have focused on detecting
software outages, but these outages are for one application and do not detect any faults that appear to
have crashed the entire system.

The primary method for detecting faults that lead to hanging is based on tracing all execution
information [22,23]. A system hang detector [22] uses the counter of an instruction executed during
a context switch. This method, which determines the system to be hanging when the value of the
counter exceeds a maximum value, can be applied only when a process or the OS stop operating.
In [23], hardware instrumentation is used to monitor the hardware and to obtain software counters for
the OS code. As this method uses hardware, it has a low performance overhead. However, hanging
cannot be detected if the event under investigation arises in an OS that has stopped operating.

2.2.3. Distinguishing Hardware and Software Faults

Few studies on the discrimination of faults generated by hardware or software have been reported.
Methods to detect intermittent faults in the CPU and faults that lead to hanging depend on knowledge
of the existence of faults in the hardware and software. Dadashi et al. [24] proposed a framework for
integrating hardware and software to diagnose intermittent faults. In the hardware framework, all
information on the execution of instructions is obtained. When a crash occurs due to a fault, the system
is rebooted using the software. In addition, representation information is used to identify whether a
crash is caused by an intermittent fault in the CPU or a software problem.



Electronics 2020, 9, 1815 6 of 25

The method proposed by Dadashi et al. is the most similar to our approach in that it identifies
whether an intermittent fault generated in the CPU is caused by the hardware or software. This approach
does not require any adjustment of the hardware or software. However, its limitation is that only faults
leading to a system crash can be detected.

3. Method Distinguishing Between Hardware and Software Faults

In this study, we propose a new method to identify whether a fault that occurred after the
integration of hardware and software originated from the hardware or software, as well as determining
the hardware (if applicable) that caused the fault. Our approach requires information on the hardware
and software execution. To collect the data, the overhead in the real-time environment must be
minimized. As shown in Figure 1, our method only collects optimized information in the real target,
whereas the analysis is performed in the development environment. The Data Logging module
mounted on the test target hooks the system when collecting data. This makes it possible to log only
the minimum amount of data needed at the most optimized location for fault classification. In the
Distinguishing Faults module, data collected from the target are analyzed to distinguish whether the
defect originated from the hardware or software.Electronics 2020, 9, x FOR PEER REVIEW 6 of 25 

 

Distinguishing Faults

Determine whether the 
faults are generated in 

the hardware or 
software

Data Logging

Collecting data for 
distinguishing faults in 
the simulator/evaluation 

board/target system

Embedded System

Log

 

Figure 1. Overview of the proposed method for distinguishing hardware and software faults. 

The proposed method can be applied to various OSs and CPUs, but in order to clearly 
demonstrate the core principle of the approach, Linux and Cortex A15 based on ARMv7-a 
architecture are used as examples. As mentioned in Section 2, we focus on distinguishing CPU 
intermittent faults from software faults. We also focus on distinguishing the faults caused by 
software hangs from those caused by the hardware. Our method can distinguish between hardware 
and software defects without a separate hardware device. 

Our method distinguishes whether the defect is a CPU defect or a software defect in an 
embedded system which has been confirmed to have a defect. The following assumptions are 
required: 
• Assumption 1—The target system has already been confirmed to have defects during 

integration testing. Our approach is not to detect faults, but to identify where the cause of a 
fault (or faults) is in a system where it has already been detected. 

• Assumption 2—There are no defects in the hardware and OS, other than the CPU. 
• Assumption 3—Applications do not contain excessive input/output (I/O) waits or excessive 

memory accesses. 
• Assumption 4—The faults to be identified cannot be analyzed with software fault detection 

tools or hardware debuggers such as trace32 or probes. Furthermore, the location of the defect 
changes each time or the defect is not reproducible. 

3.1. Data Logging 

If we collect all available data on system execution, the overhead is significant. Therefore, we 
collect data for fault identification only when a hardware device is accessed. Specifically, an 
application should call the system call of the kernel to access a hardware device in Linux. The device 
driver for the hardware is created in the kernel and the application is accessed by calling a system 
call to access the device driver. As depicted in Figure 2a, the application can access a hardware 
device through the virtual file system of the kernel when the system call is executed. Moreover, 
sys_read(), sys_write(), and sys_ioctl() are among the most frequently used system calls for 
hardware access. In this study, these three calls are hooked to obtain the necessary data for fault 
diagnosis only when they are executed. 

3.1.1. Kernel Module for System Call Hooking 

System call hooking indicates that a kernel module called the Shark agent executes a hooking 
system call instead of the original system call (see Figure 2a). When this agent is initialized, the value 
of sys_call_table is adjusted and the hooking system calls (i.e., hook_sys_read(), hook_sys_write(), 
and hook_sys_ioctl()) are executed instead of sys_read(), sys_write(), and sys_ioctl(). The hooking 
system call functions as an existing system call and perform hardware and software data logging to 

Figure 1. Overview of the proposed method for distinguishing hardware and software faults.

The proposed method can be applied to various OSs and CPUs, but in order to clearly demonstrate
the core principle of the approach, Linux and Cortex A15 based on ARMv7-a architecture are used
as examples. As mentioned in Section 2, we focus on distinguishing CPU intermittent faults from
software faults. We also focus on distinguishing the faults caused by software hangs from those caused
by the hardware. Our method can distinguish between hardware and software defects without a
separate hardware device.

Our method distinguishes whether the defect is a CPU defect or a software defect in an embedded
system which has been confirmed to have a defect. The following assumptions are required:

• Assumption 1—The target system has already been confirmed to have defects during integration
testing. Our approach is not to detect faults, but to identify where the cause of a fault (or faults) is
in a system where it has already been detected.

• Assumption 2—There are no defects in the hardware and OS, other than the CPU.
• Assumption 3—Applications do not contain excessive input/output (I/O) waits or excessive

memory accesses.
• Assumption 4—The faults to be identified cannot be analyzed with software fault detection tools

or hardware debuggers such as trace32 or probes. Furthermore, the location of the defect changes
each time or the defect is not reproducible.



Electronics 2020, 9, 1815 7 of 25

3.1. Data Logging

If we collect all available data on system execution, the overhead is significant. Therefore, we collect
data for fault identification only when a hardware device is accessed. Specifically, an application
should call the system call of the kernel to access a hardware device in Linux. The device driver for
the hardware is created in the kernel and the application is accessed by calling a system call to access
the device driver. As depicted in Figure 2a, the application can access a hardware device through the
virtual file system of the kernel when the system call is executed. Moreover, sys_read(), sys_write(),
and sys_ioctl() are among the most frequently used system calls for hardware access. In this study,
these three calls are hooked to obtain the necessary data for fault diagnosis only when they are executed.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 25 

 

identify the faults. In terms of hook_sys_write(), the data required before or after its original 
sys_write() is called are obtained and stored in the log file. 

  
(a) (b) 

Figure 2. Data logging for distinguishing faults. (a) Kernel hooking module; (b) Monitoring data 

3.1.2. Software and Hardware Data for Distinguishing Faults 

The minimal data obtained for distinguishing faults consist of software and hardware data 
(Figure 2b). 

• Data obtained from software include system call results, parameters, values loaded from the 
memory, and the call stack. The values loaded from the memory and the values of the CPU 
performance counters are used to determine the occurrence and location of data errors. 

• The data obtained from the CPU hardware include the CPU ID and performance counters. The 
CPU ID indicates in which CPU the instruction was processed when a system call was executed. 
The performance counters that can be collected by the CPU depend on the type of CPU. 
Typically, there are various performance counters. In this study, faults are distinguished based 
on transient or intermittent faults generated in the CPU that seem to be caused by incorrect 
software operation. Thus, only performance counters related to this situation are obtained. 

Figure 3 shows the location of the data for performance counters obtained from the Cortex-A15 
CPU and the location of faults artificially injected to conduct an experiment using our method. 
Further details on fault injection are provided in Section 4. The existence and types of performance 
counters vary according to the type of CPU. The performance data required in this study were 
obtained from ARM CPUs. 

• For the Cortex-A15 CPU, performance counters such as the CPU cycle counter, L1/L2 cache 
access/refill/miss counters, BPU access/refill/miss counter, stall counter, and error counter were 
obtained. 

Figure 3 ① shows the CPU cycle counter, which is a performance counter that counts CPU 

clock cycles. Figure 3 ② and ③ are performance counters related to the L1 cache and BPU, 
respectively. The L1 cache miss ratio is measured using the L1 cache access/refill/miss counter, while 
the BPU miss ratio is measured using the BPU access/refill/miss counter. The L1/L2 cache and BPU 
counters are used to determine whether the CPU has processed an instruction or a retry has 
occurred. Figure 3 ④ shows a stall counter, which monitors the number of stalls generated in the 
CPU. A stall in the CPU means that the command processing pipeline stops operating for a certain 
reason. Such a stall is generated when a crash occurs due to a lack of resources in the CPU, such that 
a task is suddenly switched to another during pipelining, or where the result of the previous 
command depends on the current command [25]. Even if a retry or stall occurs, not all of them lead 
to defects. However, as a retry or stall can occur due to CPU faults, relevant performance data are 

Figure 2. Data logging for distinguishing faults. (a) Kernel hooking module; (b) Monitoring data

3.1.1. Kernel Module for System Call Hooking

System call hooking indicates that a kernel module called the Shark agent executes a hooking
system call instead of the original system call (see Figure 2a). When this agent is initialized, the value
of sys_call_table is adjusted and the hooking system calls (i.e., hook_sys_read(), hook_sys_write(),
and hook_sys_ioctl()) are executed instead of sys_read(), sys_write(), and sys_ioctl(). The hooking
system call functions as an existing system call and perform hardware and software data logging to
identify the faults. In terms of hook_sys_write(), the data required before or after its original sys_write()
is called are obtained and stored in the log file.

3.1.2. Software and Hardware Data for Distinguishing Faults

The minimal data obtained for distinguishing faults consist of software and hardware
data (Figure 2b).

• Data obtained from software include system call results, parameters, values loaded from the
memory, and the call stack. The values loaded from the memory and the values of the CPU
performance counters are used to determine the occurrence and location of data errors.

• The data obtained from the CPU hardware include the CPU ID and performance counters.
The CPU ID indicates in which CPU the instruction was processed when a system call was
executed. The performance counters that can be collected by the CPU depend on the type of CPU.
Typically, there are various performance counters. In this study, faults are distinguished based on
transient or intermittent faults generated in the CPU that seem to be caused by incorrect software
operation. Thus, only performance counters related to this situation are obtained.

Figure 3 shows the location of the data for performance counters obtained from the Cortex-A15
CPU and the location of faults artificially injected to conduct an experiment using our method. Further



Electronics 2020, 9, 1815 8 of 25

details on fault injection are provided in Section 4. The existence and types of performance counters
vary according to the type of CPU. The performance data required in this study were obtained from
ARM CPUs.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 25 

 

obtained. Figure 3 ⑤ shows an error counter, which indicates the number of errors generated in the 
internal memory of the CPU. 

Location of CPU performance
Counters obtained

Location of fault injection

①

②
②

③ ④

⑤

Figure 3. Locations of CPU performance counters and fault injection. 

3.2. Fault Classification and Diagnosis of Factors Leading to CPU Faults 

The second important contribution of our method relates to the extent to which our method can 
classify a detected fault as being either a hardware or software fault by analyzing the data, as shown 
in Figure 2b, obtained by the system call-hooking agent presented in Figure 2a. The process of 
distinguishing faults varies according to the normal termination of the system. Figure 4 illustrates 
the process of distinguishing a fault and diagnosing the cause of a CPU fault. It is assumed that 
faults already exist in the target system of fault classification. 

Figure 3. Locations of CPU performance counters and fault injection.

• For the Cortex-A15 CPU, performance counters such as the CPU cycle counter, L1/L2 cache
access/refill/miss counters, BPU access/refill/miss counter, stall counter, and error counter
were obtained.

Figure 3 1O shows the CPU cycle counter, which is a performance counter that counts CPU clock
cycles. Figure 3 2O and 3O are performance counters related to the L1 cache and BPU, respectively.
The L1 cache miss ratio is measured using the L1 cache access/refill/miss counter, while the BPU miss
ratio is measured using the BPU access/refill/miss counter. The L1/L2 cache and BPU counters are
used to determine whether the CPU has processed an instruction or a retry has occurred. Figure 3
4O shows a stall counter, which monitors the number of stalls generated in the CPU. A stall in the

CPU means that the command processing pipeline stops operating for a certain reason. Such a stall
is generated when a crash occurs due to a lack of resources in the CPU, such that a task is suddenly
switched to another during pipelining, or where the result of the previous command depends on the
current command [25]. Even if a retry or stall occurs, not all of them lead to defects. However, as a
retry or stall can occur due to CPU faults, relevant performance data are obtained. Figure 3 5O shows
an error counter, which indicates the number of errors generated in the internal memory of the CPU.

3.2. Fault Classification and Diagnosis of Factors Leading to CPU Faults

The second important contribution of our method relates to the extent to which our method can
classify a detected fault as being either a hardware or software fault by analyzing the data, as shown
in Figure 2b, obtained by the system call-hooking agent presented in Figure 2a. The process of



Electronics 2020, 9, 1815 9 of 25

distinguishing faults varies according to the normal termination of the system. Figure 4 illustrates the
process of distinguishing a fault and diagnosing the cause of a CPU fault. It is assumed that faults
already exist in the target system of fault classification.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 25 

 

Figure 4. CPU fault diagnosis criteria. 

3.2.1. Normal Termination of Applications 

When an application is terminated normally, the method identifies whether the detected fault is 
a software fault. If this is not the case, the method determines whether the fault is a hardware fault. If 
it is a hardware fault, our approach assesses whether it is a CPU fault. 

(a) Identification of software faults 

First, using the execution result of the hooking target system call to access the hardware, our 
method distinguishes whether the detected fault is a software fault. The hooking target system call 
occurs when the software accesses the hardware through the virtual file system of the kernel. The 
hooking target system calls in Linux include sys_read(), sys_write(), and sys_ioctl(). If an incorrect 
value is input into a parameter before a system call occurs, this can be determined as being due to 
the software. Thus, in this case, the fault is identified as a software fault. Another point of assessment 
is whether the incorrect parameter depends on the system call. In addition, even if the parameter has 
a normal value, the fault is identified as a software fault if the return value is an error value of a type 
included among software faults. 

(b) Identification of hardware faults and diagnosis of causes of CPU faults 

Figure 4. CPU fault diagnosis criteria.

3.2.1. Normal Termination of Applications

When an application is terminated normally, the method identifies whether the detected fault is a
software fault. If this is not the case, the method determines whether the fault is a hardware fault. If it
is a hardware fault, our approach assesses whether it is a CPU fault.

(a) Identification of software faults
First, using the execution result of the hooking target system call to access the hardware, our method

distinguishes whether the detected fault is a software fault. The hooking target system call occurs
when the software accesses the hardware through the virtual file system of the kernel. The hooking
target system calls in Linux include sys_read(), sys_write(), and sys_ioctl(). If an incorrect value is
input into a parameter before a system call occurs, this can be determined as being due to the software.
Thus, in this case, the fault is identified as a software fault. Another point of assessment is whether the
incorrect parameter depends on the system call. In addition, even if the parameter has a normal value,



Electronics 2020, 9, 1815 10 of 25

the fault is identified as a software fault if the return value is an error value of a type included among
software faults.

(b) Identification of hardware faults and diagnosis of causes of CPU faults
When the detected fault is not clearly recognized as a software fault in the first stage, it can be

determined to be a hardware fault. This can be done by applying the five criteria indicated below
based on the CPU ID, hardware performance counters, and values loaded from the memory (except
for the software data). At this point, the hardware that generated this fault can be identified.

(C1) Occurrence of CPU core switching such that performance is consistently maintained
Changes in the CPU cycle are monitored to ensure that CPU cycles remain within a certain range

of values, where the CPU ID is checked to determine the occurrence of CPU core switching. It is
checked whether the CPU cycle is within the range of Expression (1). The range of values that needs
to be kept depends on the type of CPU or type of application. The constant α is calculated based
on the CPU cycles of a normally running system and not on the faulty system (see Section 4.2.3 for
further details):

(1 − α)A ≤ C ≤ (1 + α)A, (1)

where
A: mean value until the current CPU cycle;
C: CPU cycle counter;
α: constant that varies according to the CPU/application type.
CPU core switching is supported by the kernel and does not indicate a fault. However, after CPU

core switching, if no operation is performed on the previously used CPU ID or if the CPU cycle
fluctuates rapidly, it is determined that a fault may have occurred. The CPU cycle may fluctuate due to
an event and, thus, other performance counters are checked to determine it as a fault. If the method is
run on a single CPU, C1) is omitted and C2) is applied.

(C2) Performance degradation of CPU
An increase in the number of CPU cycles increases the amount of time required for operation

processing, leading to a decrease in CPU performance. Performance degradation in a CPU occurs
when the CPU cycle is beyond the range of the expression in Criterion 1. Such degradation occurs for
various reasons, such as delayed processing due to an interruption during task processing in the CPU
or delayed data load or store tasks. Thus, the detected fault cannot be recognized as a CPU defect
based only on performance degradation in the CPU. However, CPU performance tends to decrease
before a fault occurs [26]. Therefore, a CPU fault is identified when Criteria 3 and 4 are both satisfied.
If a fault is generated when the performance of the CPU is maintained, the fault is determined to be
caused by other hardware, such as memory.

(C3) Occurrence of retry or stall
A retry or stall can occur if the CPU cannot perform an operation normally or if it takes a long

time to load/store data. The occurrence of a retry or stall is determined using the BPU miss ratio and
stall counter. If the BPU miss ratio and stall counter are outside the ranges of their average value, it is
determined that a retry/stall has occurred. A fault cannot be determined based only on the occurrence
of a retry or stall; however, the occurrence of a retry or stall can be used to determine whether the
detected fault is a CPU fault. If a retry or stall did not occur, we deduce that some hardware other than
the CPU reduced the CPU performance and generated the fault.

(C4) Occurrence of errors
An examination is performed to determine whether an error was generated in the data exchanged

between the CPU, memory, and external devices. For this purpose, an error type returned from the
system call and an error counter are used. If the error type is less than 0 or the error counter , 0,
we conclude that an error has occurred. If an error was not generated despite a decrease in the CPU
performance and the occurrence of a retry and stall, our analysis indicates that the detected fault is a
CPU fault caused by an internal CPU program rather than a problem resulting from data processing.



Electronics 2020, 9, 1815 11 of 25

(C5) If an error is confirmed to have occurred by Criterion 4, the error counter and values stored
in the memory are used to determine whether the error was generated in the internal CPU. The error
counter increases when an error occurs in the cache data in the CPU. Accordingly, an increase in the
error counter indicates that the cache in the CPU includes a fault. If the error counter increases and the
value stored in the memory is incorrect (data), the analysis indicates that a fault has occurred in other
hardware, such as the memory, rather than in the internal CPU.

3.2.2. Abnormal Termination of Applications

When an application is terminated abnormally due to crashing, aborting, or hanging, the return
values or error numbers caused by the errors cannot be identified. In this case, faults are distinguished
using the system call parameters, CPU ID, and call stack. A fault is recognized as a software fault if
the parameter value of the system call is incorrect, such as for a fault occurring during the normal
termination of an application.

When the system call parameter has a normal value, the fault is identified according to the CPU
operation. If a program (e.g., Daemon) is executed in another CPU after an application has terminated
abnormally, the fault is identified as a software fault; otherwise, it is distinguished as a hardware fault.

It is difficult to distinguish between a crash caused by an exception in CPU pipeline due to a CPU
transient/intermittent defect and a crash due to invalid memory access. If a crash occurs due to invalid
memory access by the software, it can be detected with memory fault detection tools or debuggers and
can be reproduced. Thus, according to Assumption 4, such a situation is excluded.

3.3. Automation

The solution proposed in Sections 3.1 and 3.2 was developed as a tool named Shark, which
currently supports Linux based on ARM Architecture. Shark consists of a Shark agent and a test
monitor (Figure 5).

Electronics 2020, 9, x FOR PEER REVIEW 11 of 25 

 

the detected fault is a CPU fault caused by an internal CPU program rather than a problem resulting 
from data processing. 

(C5) If an error is confirmed to have occurred by Criterion 4, the error counter and values stored 
in the memory are used to determine whether the error was generated in the internal CPU. The error 
counter increases when an error occurs in the cache data in the CPU. Accordingly, an increase in the 
error counter indicates that the cache in the CPU includes a fault. If the error counter increases and 
the value stored in the memory is incorrect (data), the analysis indicates that a fault has occurred in 
other hardware, such as the memory, rather than in the internal CPU. 

3.2.2. Abnormal Termination of Applications 

When an application is terminated abnormally due to crashing, aborting, or hanging, the return 
values or error numbers caused by the errors cannot be identified. In this case, faults are 
distinguished using the system call parameters, CPU ID, and call stack. A fault is recognized as a 
software fault if the parameter value of the system call is incorrect, such as for a fault occurring 
during the normal termination of an application. 

When the system call parameter has a normal value, the fault is identified according to the CPU 
operation. If a program (e.g., Daemon) is executed in another CPU after an application has 
terminated abnormally, the fault is identified as a software fault; otherwise, it is distinguished as a 
hardware fault. 

It is difficult to distinguish between a crash caused by an exception in CPU pipeline due to a 
CPU transient/intermittent defect and a crash due to invalid memory access. If a crash occurs due to 
invalid memory access by the software, it can be detected with memory fault detection tools or 
debuggers and can be reproduced. Thus, according to Assumption 4, such a situation is excluded. 

3.3. Automation 

The solution proposed in Sections 3.1 and 3.2 was developed as a tool named Shark, which 
currently supports Linux based on ARM Architecture. Shark consists of a Shark agent and a test 
monitor (Figure 5). 

Target System

User space

Kernel

sApplication

SHARK Agent
Log

System Call 
Table

(Step2) System 
call table 
hooking

Host System

Test Monitor

(Step5) Distinguish faults
• Types of faults
• Occurrence time of faults
• CPU ID
• Process ID

User
(Tester, Developer)

Hardware

CPU

C
o
n
t
r
o
l

Memory Audio

Initializer

Logger

C
a
l
l

(Step3) 
Collecting data

(Step4) Store 
the data in a 
log file

SharkDriver

(Step1) 
Initialize

Power Etc.

Figure 5. Overview of Shark and flow chart of tool execution. 

(1) Shark agent: This kernel module is implemented to enable the solution proposed in Section 
3.1 to operate in the target system, in order to conduct the test. It consists of the following three 
components: 

Figure 5. Overview of Shark and flow chart of tool execution.

(1) Shark agent: This kernel module is implemented to enable the solution proposed in Section 3.1
to operate in the target system, in order to conduct the test. It consists of the following three components:

• Initializer: This module initializes the other components (SharkDriver and Logger) of the Shark
agent and hooks the system call table in the kernel to execute the system call of SharkDriver
instead of the original system call.



Electronics 2020, 9, 1815 12 of 25

• SharkDriver: This kernel library module executes the system call, which is adjusted to obtain data
to distinguish faults.

• Logger: This module logs the data obtained through SharkDriver.

(2) Test monitor: This program implements the fault classification solution proposed in Section 3.2
to operate in the host computer. It distinguishes a fault that occurs in the system as either a hardware or
software fault by analyzing the data logged in the Shark agent. Then, it informs the user about the types
and occurrence times of the faults, CPU ID, and process ID. When the detected fault is identified as a
hardware fault, the program identifies the hardware—including the CPU and memory—responsible
for causing the fault. However, in this study, we focus only on CPU faults.

Shark is executed by the following five-step process:

• Step 1. When the Shark agent is applied to the target system for testing, the initializer operates the
SharkDriver module and Logger module in the kernel.

• Step 2. SharkDriver examines the system call table and switches the system call from accessing
hardware to a hooked system call.

• Step 3. When the system call targeted for hooking is called in the application, the corresponding
hooked system call is executed to obtain the necessary hardware and software data to
distinguish faults.

• Step 4. The Logger stores the data obtained in a log file.
• Step 5. The Shark test monitor identifies the fault by analyzing the log file and displays the types

and occurrence times of the fault, CPU ID, and process ID.

4. Empirical Study

In our empirical study, which analyzes the effectiveness of our method, we address the following
three research questions:

• RQ1. How accurately can the proposed method detect faults?
• RQ2. How accurately can the proposed method distinguish hardware faults from software faults?
• RQ3. How much overhead does the proposed method generate?

4.1. Experimental Environment

Although the method proposed in this study applies to all test stages after the integration of the
hardware and software, in our experiment, the method was applied to the testing stage of the embedded
system. Moreover, we assumed that the hardware and software did not have faults themselves in
order to verify how accurately our method could distinguish artificial faults injected in the hardware.

The experiment was conducted on the evaluation board ODROID-XU3 and in the GEM5
simulator [27,28]. The Exynos5422 system on a chip in ODROID-XU3 has an octa-core processor
consisting of Cortex A15 and Cortex A7 [29–31]. The GEM5 simulator is a full-system simulator that
models computer processors, memory, and other devices. As it supports various architectures, such as
ARM, x86, and Alpha, Shark—an ARM-based automated tool—was readily accommodated. In the
case of ODROID-XU3, Ubuntu 16.04 and Linux kernel 3.10 were installed as a 32-bit system. In the
case of the GEM5 simulator, 64-bit Ubuntu 20.04 and Linux kernel 5.4 were installed.

The Princeton Application Repository for Shared-Memory Computers (PARSEC) benchmark
was used in the experiment [32]. Among the 13 applications of the PARSEC benchmark, six ported
in the ARM-based system for operation were applied in ODROID-XU3 and the GEM5 simulator to
perform the system test in the experiment (Table 3). However, canneal, dedup, raytrace, swaption, vips,
and x264 were excluded from the applications of the PARSEC benchmark as they either did not have
the libraries required for porting to an ARM-based system or they required source code modification.
Bodytrack, which was ported based on ARM, was also excluded, given that it terminated due to an
error that occurred when this application was executed in the system.



Electronics 2020, 9, 1815 13 of 25

Table 3. System and applications targeted for the experiment.

Environment System CPU Architecture No. of CPU Cores

Evaluation Board ODROIC-XU3 ARM v7-a architecture 8
Simulation GEM5 Simulator ARM v8-a architecture 4

Program Description LOC Size (KB)

Blackscholes:
Computational

finance application
(Pseudo application)

1751 712

Streamcluster: Machine learning application
(Kernel process) 1825 1371

Facesim:
Computer

animation application
(Pseudo Application)

37,265 19,702

Ferret: Similarity search engine
(Pseudo Application) 10,984 2728

Freqmine: Data mining application
(Pseudo Application) 2027 1469

Fluidanimate:
Computer

animation application
(Pseudo Application)

2831 1363

Figure 6 shows the experimental environment in which the Shark agent was applied to the target
systems, ODROID-XU3, and GEM5 simulators to perform the system test. The log collected by the
Shark agent was analyzed by executing the test monitor on the host computer. This experiment was
conducted by artificially injecting faults into the hardware and software. In the case of ODROID-XU3,
as the hardware was only modified to a limited extent, faults were injected using the fault injection
module. The fault injection module is a software module that artificially injects faults while the system
under test is operating. In the case of the GEM5 simulator, as the code related to the internal operation
of the CPU could be modified, faults were injected directly into the code. The types of faults that were
artificially injected for the experiment and the methods used to inject them are described in detail in
Section 4.2.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 25 

 

have the libraries required for porting to an ARM-based system or they required source code 
modification. Bodytrack, which was ported based on ARM, was also excluded, given that it 
terminated due to an error that occurred when this application was executed in the system. 

Table 3. System and applications targeted for the experiment. 

Environment System CPU Architecture No. of CPU 
Cores 

Evaluation 
Board 

ODROIC-XU3 
ARM v7-a 

architecture 
8 

Simulation GEM5 Simulator 
ARM v8-a 

architecture 
4 

Program Description LOC Size (KB) 

Blackscholes: 
Computational finance application (Pseudo 

application) 
1751 712 

Streamcluster: Machine learning application (Kernel process) 1825 1371 

Facesim: 
Computer animation application (Pseudo 

Application) 
37,265 19702 

Ferret: Similarity search engine (Pseudo Application) 10,984 2728 
Freqmine: Data mining application (Pseudo Application) 2027 1469 

Fluidanimate: 
Computer animation application (Pseudo 

Application) 
2831 1363 

Figure 6 shows the experimental environment in which the Shark agent was applied to the 
target systems, ODROID-XU3, and GEM5 simulators to perform the system test. The log collected by 
the Shark agent was analyzed by executing the test monitor on the host computer. This experiment 
was conducted by artificially injecting faults into the hardware and software. In the case of 
ODROID-XU3, as the hardware was only modified to a limited extent, faults were injected using the 
fault injection module. The fault injection module is a software module that artificially injects faults 
while the system under test is operating. In the case of the GEM5 simulator, as the code related to the 
internal operation of the CPU could be modified, faults were injected directly into the code. The 
types of faults that were artificially injected for the experiment and the methods used to inject them 
are described in detail in Section 4.2. 

 
Figure 6. Experimental environment. 

4.2. Experimental Design 

To artificially generate faults that can occur after hardware and software integration, hardware 
and software faults were injected into the target system. The experimental results were then 

Figure 6. Experimental environment.

4.2. Experimental Design

To artificially generate faults that can occur after hardware and software integration, hardware
and software faults were injected into the target system. The experimental results were then analyzed



Electronics 2020, 9, 1815 14 of 25

in order to examine whether the method proposed in this study successfully identified the injected
faults in practice.

4.2.1. Design of the Injected Faults

Hardware and software faults have diverse effects on the state and operation of a system, such as
detailed registers and flow of program control [12]. In particular, CPU transient or intermittent faults
and faults that cause software to hang should be avoided in order to minimize sophisticated and
non-deterministic effects.

(1) CPU intermittent faults
We considered all the processes that involve the processing of instructions in the CPU as the target

of fault injection. Both ODROID-XU3 and the GEM5 simulators are based on ARM architectures; thus,
the injection target was the same. Components related to instruction processing are instruction fetch,
instruction decode, instruction dispatch, integer execute, and load/store unit. We injected faults into the
instruction fetch, instruction dispatch, and load/store units, as shown in Figure 3. Other components
were excluded as the target for fault injection, as adjustment of the register value—which is required for
fault injection—could not be performed on these components and as they are protected by ECC [30].

(2) Software faults that lead to hanging
As indicated in Section 2.1, correctly distinguishing faults that lead to hanging as either hardware

or software faults is difficult in an environment where the hardware and software are integrated [33].
Among the types of software faults described in Table 2, interface or timing problems can cause
hanging. However, these problems do not always occur alongside hanging. To select the faults to
be injected, we analyzed the time of fault occurrence and hanging according to the causes of faults,
as shown in Table 4.

Table 4. Interface or timing problems in software.

Fault
Cause of Fault Time Fault was

Generated
Hanging

OccurrenceMajor Category Minor
Category

Interface/Timing
Problem

Timing
Input/output

timing incorrect Runtime O

Timing fault causes
data loss Runtime O

Interface

Interrupts handled
incorrectly Runtime X

Subroutine/
module mismatch Compile time X

Wrong
subroutine called Runtime X

Incorrectly located
subroutine called Runtime X

Inconsistent
subroutine arguments Compile time X

When a timing fault is generated by an incorrect input and output timing or data loss, hanging
can occur. This fault results in an idle state of constantly waiting for data due to the data loss that
occurs during data transfer. The timing fault is irregular in terms of occurrence time and location [14];
this non-deterministic characteristic makes it complicated to accurately identify the occurrence time
of the fault. Moreover, when this fault occurs, the hardware or software seems to stop operating,
leading to difficulty in fault classification. Therefore, this fault was considered appropriate to verify the
effectiveness of our method. However, as the target program in this experiment operated independently,
timing faults due to data loss—which are frequently generated when more than two processes or



Electronics 2020, 9, 1815 15 of 25

threads communicate—were unlikely to occur. Thus, in this experiment, we injected a timing fault
generated by incorrect input/output (I/O) timing.

Most faults related to the interface do not lead to hanging. Moreover, they are generated in a
consistent location as they are caused by the interface based on a function call relation. For these
reasons, these faults are easily distinguished from hardware faults, excluding them from consideration
as target faults to be injected.

4.2.2. Hardware and Software Faults and Fault Injection Methods

Table 5 specifies the four types of hardware and software faults that we selected through the fault
design process detailed in Section 4.2.1. The period and method of artificially generating these faults
through injection were as follows:

• Hardware CPU faults were injected into the instruction fetch, instruction dispatch, and load/store
unit. These faults were injected by performing bit flipping on the register values corresponding
to the CPU components, as shown in Figure 7a. Upon injection of a CPU intermittent fault into
the evaluation board, the fault injection module was used to inject the fault immediately before a
system call occurred. Injection of a fault into the simulator modified the code directly and the
fault was injected randomly.

• Software faults were I/O timing faults interrupting the reception of appropriate responses when
an I/O request occurred. This fault was injected to generate a time-out event in the CPU by
converting the running state of a process or thread into a wait state before a system call related to
I/O is executed (see Figure 7b). As an I/O timing fault leads to hanging, it was injected only once
before a system call occurred.

4.2.3. Variables for Determining Experimental Results

The criteria for determining faults were established in Section 3.2. The value α in the equation,
which is used to indicate whether the CPU performance decreases or a retry or stall occurs, varies
according to the type of CPU or type of application. When the value of the constant α decreases,
the rate at which performance is determined to be degraded increases (even though the performance
did not degrade). Similarly, when the value of the constant α increases, a fault is not detected, although
the performance decreases.

To accurately detect faults in our experiment, the false-positive rate was measured by adjusting
the value of α within the allowable range of a CPU cycle and retry or stall occurrence. The false-positive
rate was measured by adjusting the mean value of the CPU cycle at intervals of 5% in the range of
20 to 60%. The measured results indicate that the false-positive rate was the lowest (at 2%) when the
mean value of alpha was 45% (Figure 8a). Figure 8b presents the results of measuring the false-positive
rate according to the occurrence of retry or stall when α = 0.45 for the CPU cycle. As the difference
according to the change in the mean value was insignificant, we selected a random value (0.25) to
determine the occurrence.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 25 

 

4.2.2. Hardware and Software Faults and Fault Injection Methods 

Table 5 specifies the four types of hardware and software faults that we selected through the 
fault design process detailed in Section 4.2.1. The period and method of artificially generating these 
faults through injection were as follows: 

• Hardware CPU faults were injected into the instruction fetch, instruction dispatch, and 
load/store unit. These faults were injected by performing bit flipping on the register values 
corresponding to the CPU components, as shown in Figure 7a. Upon injection of a CPU 
intermittent fault into the evaluation board, the fault injection module was used to inject the 
fault immediately before a system call occurred. Injection of a fault into the simulator modified 
the code directly and the fault was injected randomly. 

• Software faults were I/O timing faults interrupting the reception of appropriate responses when 
an I/O request occurred. This fault was injected to generate a time-out event in the CPU by 
converting the running state of a process or thread into a wait state before a system call related 
to I/O is executed (see Figure 7b). As an I/O timing fault leads to hanging, it was injected only 
once before a system call occurred. 

(a) (b) 

Figure 7. Fault injection methods. (a) Hardware fault injection; (b) Software fault injection 

Table 5. Hardware and software faults. 

Fault Type Target Injection Period Fault Injection Method 

Hardware 
fault 
(CPU 
fault) 

Instruction 
Fetch 

ODROID-XU3 
Just before 
executing a 
system call 

Bit flipping is performed on the value of the 
loaded L1 instruction cache register and the 
value of the L1 instruction cache register is 
overlaid with the value obtained through bit 
flipping 

GEM5 Random 
Code modification related to instruction 
fetch 

Instruction 
Dispatch 

ODROID-XU3 
Just before 
executing a 
system call 

Bit flipping is performed on the value of the 
loaded instruction dispatch register and the 
value of the instruction dispatch register is 
overlaid with the value obtained through bit 
flipping 

GEM5 Random 
Code modification related to instruction 
dispatch 

Load/store 
Unit 

ODROID-XU3 
Just before 
executing a 
system call 

Bit flipping is performed on the value of the 
loaded L1 data cache register and the value 
of the L1 data cache register is overlaid with 
the value obtained through bit flipping 

GEM5 Random Code modification related to load/store unit 

Figure 7. Fault injection methods. (a) Hardware fault injection; (b) Software fault injection



Electronics 2020, 9, 1815 16 of 25

Table 5. Hardware and software faults.

Fault Type Target Injection Period Fault Injection Method

Hardware fault (CPU fault)

Instruction Fetch
ODROID-XU3 Just before executing a

system call

Bit flipping is performed on the value of the loaded
L1 instruction cache register and the value of the L1
instruction cache register is overlaid with the value
obtained through bit flipping

GEM5 Random Code modification related to instruction fetch

Instruction Dispatch
ODROID-XU3 Just before executing a

system call

Bit flipping is performed on the value of the loaded
instruction dispatch register and the value of the
instruction dispatch register is overlaid with the
value obtained through bit flipping

GEM5 Random Code modification related to instruction dispatch

Load/store Unit ODROID-XU3 Just before executing a
system call

Bit flipping is performed on the value of the loaded
L1 data cache register and the value of the L1 data
cache register is overlaid with the value obtained
through bit flipping

GEM5 Random Code modification related to load/store unit

Software fault I/O Timing All Just before executing a
system call

The sleep() function is called to block the thread
being currently executed



Electronics 2020, 9, 1815 17 of 25

Electronics 2020, 9, x FOR PEER REVIEW 16 of 25 

 

Software 
fault 

I/O Timing All 
Just before 
executing a 
system call 

The sleep() function is called to block the 
thread being currently executed 

4.2.3. Variables for Determining Experimental Results 

The criteria for determining faults were established in Section 3.2. The value α in the equation, 
which is used to indicate whether the CPU performance decreases or a retry or stall occurs, varies 
according to the type of CPU or type of application. When the value of the constant α decreases, the 
rate at which performance is determined to be degraded increases (even though the performance did 
not degrade). Similarly, when the value of the constant α increases, a fault is not detected, although 
the performance decreases. 

To accurately detect faults in our experiment, the false-positive rate was measured by adjusting 
the value of α within the allowable range of a CPU cycle and retry or stall occurrence. The 
false-positive rate was measured by adjusting the mean value of the CPU cycle at intervals of 5% in 
the range of 20 to 60%. The measured results indicate that the false-positive rate was the lowest (at 
2%) when the mean value of alpha was 45% (Figure 8a). Figure 8b presents the results of measuring 
the false-positive rate according to the occurrence of retry or stall when α = 0.45 for the CPU cycle. 
As the difference according to the change in the mean value was insignificant, we selected a random 
value (0.25) to determine the occurrence. 

  
(a) (b) 

Figure 8. False-positive rate according to the alpha (α) value. (a)False positive rate according to the 
CPU cycle; (b) False positive rate according to the occurrence of retry/stall when α = 45% for the CPU 
cycle. 

4.2.4. Experimental Measurements 

The accuracy of detecting faults related to RQ1 was measured based on the proportion of 
injected faults that were detected. The fault detection ratio was calculated based on the ratio of the 
number of faults detected by Shark to the number of practically executed faults among the injected 
faults (Equation (2)): 

100Number of faults detectedFault detection ratio
Number of faults executed during thebenchmark among theinjected faults

= ×  (2)

Fault classification related to RQ2 was determined by examining how accurately the proposed 
method identified the injected fault as a hardware or software fault. The fault classification ratio was 
calculated as the ratio of the number of faults correctly distinguished as either hardware or software 
faults to the total number of detected faults (Equation (3)): 

. 100Num of faults correctly distinguished as hardwareor software faultsFault classification ratio
Number of detected faults

= ×  (3)

Figure 8. False-positive rate according to the alpha (α) value. (a)False positive rate according to the
CPU cycle; (b) False positive rate according to the occurrence of retry/stall when α = 45% for the
CPU cycle.

4.2.4. Experimental Measurements

The accuracy of detecting faults related to RQ1 was measured based on the proportion of
injected faults that were detected. The fault detection ratio was calculated based on the ratio of the
number of faults detected by Shark to the number of practically executed faults among the injected
faults (Equation (2)):

Fault detection ratio =
Number o f f aults detected

Number o f f aults executed during the benchmark among the injected f aults
× 100 (2)

Fault classification related to RQ2 was determined by examining how accurately the proposed
method identified the injected fault as a hardware or software fault. The fault classification ratio was
calculated as the ratio of the number of faults correctly distinguished as either hardware or software
faults to the total number of detected faults (Equation (3)):

Fault classi f ication ratio =
Num. o f f aults correctly distinguished as hardware or so f tware f aults

Number o f detected f aults
× 100 (3)

The overhead related to RQ3 was calculated by measuring the system performance delay ratio
and code increase ratio, according to the proposed method (Equations (4) and (5)):

Per f ormance delay ratio =
Program execution time in case o f tool application− Program execution time

Program execution time
(4)

Code increase ratio =
Program code size in case o f tool application− Program code size

Program code size
(5)

4.2.5. Number of Injected Faults

Four types of hardware and software faults (Table 5) were artificially generated in the experiment.
Figure 6 indicates that the four types of faults were artificially injected when the system calls of
each application occurred. These faults could be generated every time these system calls were
executed (Table 5). Repeated injection of the same faults in the fault injection experiment increased the
probability of detecting these faults. However, in this study, the faults were injected only once while
each application was running, in order to enable the fault detection ratio to be measured accurately.

• A hardware CPU fault was injected into the evaluation board when the system calls of sys_read(),
sys_write(), and sys_ioctl() were first called in the applications. Although system calls were
executed several times in the applications, hardware intermittent faults occurred at sporadic



Electronics 2020, 9, 1815 18 of 25

intervals. Thus, faults were injected when the system calls first occurred instead of considering
every system call executed in this experiment.

• Injection of a hardware CPU fault into the simulator resulted in the code related to instruction
processing being directly modified, regardless of the system call; thus, it was necessary to only
inject the fault once (at random).

• Both the evaluation board and simulator injected faults into the software in the same way. The first
injected fault caused the system to hang; consequently, system calls that occurred after the first
fault were not executed. In this regard, faults were injected when system calls were first executed
and completed when faults were injected into the hardware.

Even if the same application were to be executed in the same environment, the occurrence of a
fault would depend on whether a daemon was executed or whether an application was running in
the background; thus, the experiments were performed repeatedly. Execution and termination of an
application were repeated 50 times during hardware fault injection in order to ensure that the entire
CPU was used. During software fault injection, execution and termination of an application were
repeated 10 times.

4.3. Experimental Results

Tables 6 and 7 presents the results obtained when injecting hardware and software faults during
the experiment.

4.3.1. RQ1: How Accurately Can the Proposed Method Detect Faults?

Among the faults that were injected during the execution of an application, the number of faults
detected by the Shark tool (i.e., the fault detection ratio) was measured. In the streamcluster application,
sys_ioctl() was not called. Thus, 3790 faults were injected into six applications. Shark identified 3758 of
these faults, with a fault detection ratio of 99.06%. More specifically, Shark detected 3259 faults among
3450 injected hardware faults, demonstrating a fault detection ratio of 94.46% (Figure 9a). In addition,
it detected all 340 software faults.

Electronics 2020, 9, x FOR PEER REVIEW 20 of 25 

 

4.3.1. RQ1: How Accurately Can the Proposed Method Detect Faults? 

Among the faults that were injected during the execution of an application, the number of faults 
detected by the Shark tool (i.e., the fault detection ratio) was measured. In the streamcluster 
application, sys_ioctl() was not called. Thus, 3790 faults were injected into six applications. Shark 
identified 3758 of these faults, with a fault detection ratio of 99.06%. More specifically, Shark 
detected 3259 faults among 3450 injected hardware faults, demonstrating a fault detection ratio of 
94.46% (Figure 9a). In addition, it detected all 340 software faults. 

The fault detection ratio was between 70% and 99.22% for the existing methods for detecting 
intermittent CPU faults in hardware [10,16–18,24] and between 70% and 95% for software fault 
detection methods. This implies that Shark can more accurately detect faults compared with the 
existing methods. 

  
(a) (b) 

Figure 9. Fault detection ratio of the proposed method. (a) Fault detection ratio; (b) Number of 
undetected faults. 

Figure 9a indicates that the ratio of detecting CPU intermittent faults was below 100% for the 
blackscholes, streamcluster, and fluidanimate applications. The faults that were not detected in these 
applications are presented in Figure 9b. This figure reveals that these faults were mainly injected 
into the instruction caches, except for one fault that was injected into the dispatch stage of the 
blackscholes application. The CPU loads and executes commands from the instruction cache or main 
memory. 

It appears that the faults injected into the instruction cache were not detected because the CPU 
loaded commands from the main memory and so the commands including the injected faults were 
not executed. Furthermore, the injected faults in the dispatch stage or the instruction cache were not 
detected when they did not affect the execution of the software or system, both of which were 
normally terminated. 

4.3.2. RQ2: How Accurately Does the Proposed Method Identify Whether the Fault is A Hardware or 
Software Fault? 

The fault classification ratio was measured to identify the extent to which the proposed method 
was able to accurately distinguish whether the detected fault was a hardware or software fault. 
Shark was not only designed to indicate where the fault was detected, but also to determine whether 
the fault was caused by the hardware or software. As listed in Tables 6 and 7, Shark accurately 
identified 3599 out of 3758 faults, achieving a hardware fault classification ratio of 95.77%. The ratio 
of correctly determined injected hardware faults was 95.35% and all software faults were correctly 
distinguished. Figure 10 illustrates the accuracy of our method in terms of its ability to distinguish 
the faults for each application. 

Figure 9. Fault detection ratio of the proposed method. (a) Fault detection ratio; (b) Number of
undetected faults.

The fault detection ratio was between 70% and 99.22% for the existing methods for detecting
intermittent CPU faults in hardware [10,16–18,24] and between 70% and 95% for software fault
detection methods. This implies that Shark can more accurately detect faults compared with the
existing methods.



Electronics 2020, 9, 1815 19 of 25

Table 6. Results of experimental data (Evaluation board).

Application Fault System Call No. of
Injected Faults

No. of
Detected Faults

No. of
Classified Faults Application Fault System Call No. of

Injected Faults
No. of

Detected Faults
No. of

Classified Faults

Blackscholes

HW

Instruction cache

Write 50 38 28

Streamcluster

HW

Instruction cache

Write 50 50 50

Ioctl 50 49 49 Ioctl - - -

Read 50 42 42 Read 50 47 47

Dispatch stages
Write 50 50 50

Dispatch stages
Write 50 50 50

Ioctl 50 50 50 Ioctl - - -

Read 50 49 49 Read 50 50 50

Load/store queue
Write 50 50 50

Load/store queue
Write 50 50 50

Ioctl 50 50 50 Ioctl - - -

Read 50 50 50 Read 50 50 50

SW I/O timing
Write 10 10 10

SW I/O timing
Write 10 10 10

Ioctl 10 10 10 Ioctl - - -

Read 10 10 10 Read 10 10 10

Facesim

HW

Instruction cache

Write 50 50 50

Ferret

HW

Instruction cache

Write 50 50 50

Ioctl 50 50 50 Ioctl 50 50 42

Read 50 50 50 Read 50 50 46

Dispatch stages
Write 50 50 50

Dispatch stages
Write 50 50 50

Ioctl 50 50 50 Ioctl 50 50 50

Read 50 50 50 Read 50 50 46

Load/store queue
Write 50 50 50

Load/store queue
Write 50 50 50

Ioctl 50 50 50 Ioctl 50 50 50

Read 50 50 50 Read 50 50 50

SW I/O timing
Write 10 10 10

SW I/O timing
Write 10 10 10

Ioctl 10 10 10 Ioctl 10 10 10

Read 10 10 10 Read 10 10 10

Freqmine

HW

Instruction cache

Write 50 50 50

Fluidanimate

HW

Instruction cache

Write 50 49 36

Ioctl 50 50 50 Ioctl 50 50 33

Read 50 50 50 Read 50 50 32

Dispatch stages
Write 50 50 50

Dispatch stages
Write 50 50 32

Ioctl 50 50 50 Ioctl 50 50 32

Read 50 50 49 Read 50 50 31

Load/store queue
Write 50 50 50

Load/store queue
Write 50 50 50

Ioctl 50 50 50 Ioctl 50 50 50

Read 50 50 50 Read 50 50 50

SW I/O timing
Write 10 10 10

SW I/O timing
Write 10 10 10

Ioctl 10 10 10 Ioctl 10 10 10

Read 10 10 10 Read 10 10 10

Sum

Hardware fault 2550 2524 2394

Software fault 170 170 170

Total 2720 2694 2564



Electronics 2020, 9, 1815 20 of 25

Table 7. Results of experimental data (Simulator).

Application Fault System Call No. of
Injected Faults

No. of
Detected Faults

No. of
Classified Faults Application Fault System Call No. of

Injected Faults
No. of

Detected Faults
No. of

Classified Faults

Blackscholes

HW
Instruction cache - 50 44 43

Streamcluster

HW
Instruction cache - 50 50 50

Dispatch stages - 50 50 50 Dispatch stages - 50 50 50

Load/store queue - 50 50 50 Load/store queue - 50 50 50

SW I/O timing

Write 10 10 10

SW I/O timing
Write 10 10 10

Ioctl 10 10 10 Ioctl - - -

Read 10 10 10 Read 10 10 10

Facesim

HW
Instruction cache - 50 50 50

Ferret

HW

Instruction cache - 50 50 50

Dispatch stages - 50 50 50 Dispatch stages - 50 50 50

Load/store queue - 50 50 50 Load/store queue - 50 50 50

SW I/O timing
Write 10 10 10

SW I/O timing
Write 10 10 10

Ioctl 10 10 10 Ioctl 10 10 10

Read 10 10 10 Read 10 10 10

Freqmine

HW

Instruction cache - 50 50 50

Fluidanimate
HW

Instruction cache - 50 50 41

Dispatch stages - 50 50 50 Dispatch stages - 50 50 32

Load/store queue - 50 50 50 Load/store queue - 50 50 49

SW I/O timing

Write 10 10 10

SW I/O timing
Write 10 10 10

Ioctl 10 10 10 Ioctl 10 10 10

Read 10 10 10 Read 10 10 10

Sum

Hardware fault 900 894 865

Software fault 170 170 170

Total 1070 1064 1035



Electronics 2020, 9, 1815 21 of 25

Figure 9a indicates that the ratio of detecting CPU intermittent faults was below 100% for the
blackscholes, streamcluster, and fluidanimate applications. The faults that were not detected in these
applications are presented in Figure 9b. This figure reveals that these faults were mainly injected into
the instruction caches, except for one fault that was injected into the dispatch stage of the blackscholes
application. The CPU loads and executes commands from the instruction cache or main memory.

It appears that the faults injected into the instruction cache were not detected because the CPU
loaded commands from the main memory and so the commands including the injected faults were
not executed. Furthermore, the injected faults in the dispatch stage or the instruction cache were
not detected when they did not affect the execution of the software or system, both of which were
normally terminated.

4.3.2. RQ2: How Accurately Does the Proposed Method Identify Whether the Fault is A Hardware or
Software Fault?

The fault classification ratio was measured to identify the extent to which the proposed method
was able to accurately distinguish whether the detected fault was a hardware or software fault. Shark
was not only designed to indicate where the fault was detected, but also to determine whether the
fault was caused by the hardware or software. As listed in Tables 6 and 7, Shark accurately identified
3599 out of 3758 faults, achieving a hardware fault classification ratio of 95.77%. The ratio of correctly
determined injected hardware faults was 95.35% and all software faults were correctly distinguished.
Figure 10 illustrates the accuracy of our method in terms of its ability to distinguish the faults for
each application.Electronics 2020, 9, x FOR PEER REVIEW 21 of 25 

 

  
(a) (b) 

Figure 10. Fault classification ratio of the proposed method. (a) Fault classification ratio; (b) Number 
of incorrectly distinguished faults and fault classification ratio. 

The applications streamcluster, ferret, and freqmine caused the system to crash when hardware 
faults were injected. The proposed method was able to distinguish these faults with accuracy values 
of 100%, 97.33%, and 99.83%, respectively. For the blackscholes and facesim applications, the 
hardware performance before the system call differed significantly from the performance afterwards 
(i.e., including the injected faults), although the system did not crash. Thus, for these two 
applications, the proposed method was able to distinguish faults with high accuracy, at 98.06% and 
100%, respectively. However, for fluidanimate, the reduction in CPU performance and the 
occurrence of retry or stall after the system call was insignificant, compared with before the system 
call and including the injected fault, leading to a low fault-distinguishing accuracy of 78.13%. This 
result was attributed to the fact that the fault classification method proposed in this work uses data 
related to the hardware performance when a system call occurs. 

With respect to hardware faults, our method failed to correctly distinguish 159 of the 3259 faults 
injected into the instruction cache, dispatch stage, and load/store unit, resulting in fault classification 
ratios of 92.30%, 92.72%, and 99.91%, respectively. However, our method exhibited a higher fault 
classification ratio than that proposed by Dadashi et al. [24], which resulted in a fault classification 
ratio of 71% in the instruction fetch queue (including the injected faults) and 95% in the load/store 
queue. Certain faults injected into the instruction cache or dispatch stage were incorrectly 
distinguished in our experiment as the return value of the system call was established as abnormal, 
considering that a value above 0 is a normal return value for sys_read(). However, the return of a 
negative value indicated that the proposed method incorrectly determined the detected fault to be a 
software fault. 

4.3.3. RQ3: How Much Overhead is Generated by the Proposed Method? 

Figure 11 depicts the performance overhead measured by the Shark agent in the experiment. 
The operation of the Shark test monitor in the host environment did not affect the performance of the 
target system for testing; therefore, its contribution was excluded from the process of measuring the 
overhead. In the case of the GEM5 simulator, the overall operating speed of the simulation was slow 
because of hardware modeling; thus, it was also excluded from the performance overhead 
measurement. Therefore, performance overhead was measured only in the ODROID-XU3 
environment. 

When the Shark agent was not applied, the mean time required for the execution of the 
application was 1.81 ms. When the agent was applied, the mean time increased to 1.92 ms. Therefore, 
the average time attributable to performance overhead was 0.11 ms, such that the average 
performance delay ratio was 6.07%. The existing method for detecting intermittent CPU faults 
exhibited a performance overhead of 5.5% [16,17]. However, the previous method has the critical 
problem of requiring logic to be added to the hardware. As our method uses software, it performs 
the test and exhibited performance close to that of the existing method using hardware. 

Figure 10. Fault classification ratio of the proposed method. (a) Fault classification ratio; (b) Number
of incorrectly distinguished faults and fault classification ratio.

The applications streamcluster, ferret, and freqmine caused the system to crash when hardware
faults were injected. The proposed method was able to distinguish these faults with accuracy values of
100%, 97.33%, and 99.83%, respectively. For the blackscholes and facesim applications, the hardware
performance before the system call differed significantly from the performance afterwards (i.e., including
the injected faults), although the system did not crash. Thus, for these two applications, the proposed
method was able to distinguish faults with high accuracy, at 98.06% and 100%, respectively. However,
for fluidanimate, the reduction in CPU performance and the occurrence of retry or stall after the system
call was insignificant, compared with before the system call and including the injected fault, leading
to a low fault-distinguishing accuracy of 78.13%. This result was attributed to the fact that the fault
classification method proposed in this work uses data related to the hardware performance when a
system call occurs.

With respect to hardware faults, our method failed to correctly distinguish 159 of the 3259 faults
injected into the instruction cache, dispatch stage, and load/store unit, resulting in fault classification
ratios of 92.30%, 92.72%, and 99.91%, respectively. However, our method exhibited a higher fault
classification ratio than that proposed by Dadashi et al. [24], which resulted in a fault classification ratio



Electronics 2020, 9, 1815 22 of 25

of 71% in the instruction fetch queue (including the injected faults) and 95% in the load/store queue.
Certain faults injected into the instruction cache or dispatch stage were incorrectly distinguished in our
experiment as the return value of the system call was established as abnormal, considering that a value
above 0 is a normal return value for sys_read(). However, the return of a negative value indicated that
the proposed method incorrectly determined the detected fault to be a software fault.

4.3.3. RQ3: How Much Overhead is Generated by the Proposed Method?

Figure 11 depicts the performance overhead measured by the Shark agent in the experiment.
The operation of the Shark test monitor in the host environment did not affect the performance of the
target system for testing; therefore, its contribution was excluded from the process of measuring the
overhead. In the case of the GEM5 simulator, the overall operating speed of the simulation was slow
because of hardware modeling; thus, it was also excluded from the performance overhead measurement.
Therefore, performance overhead was measured only in the ODROID-XU3 environment.Electronics 2020, 9, x FOR PEER REVIEW 22 of 25 

 

 
Figure 11. Performance overhead. 

Among the benchmark applications, facesim led to a high performance overhead of 8.16%. This 
result was due to I/O occurring several times due to the frequent memory access by facesim, 
increasing the number of executed system calls and amount of obtained data. 

The size of the Shark agent applied to the system was 5.99 KB. In practice, this agent does not 
adjust the software code by operating in the system. Therefore, unlike other methods that obtain 
data through changes to the code, our method did not generate any memory overhead due to an 
increase in the amount of software code [19,22]. However, the size of the log when a system call was 
executed was 128 bytes. 

4.3.4. Experimental Limitations 

The results of our study demonstrated that Shark can effectively detect and distinguish faults 
using the hooking method on the system call to access the hardware and obtain the necessary data 
for distinguishing faults while minimally affecting the real-time execution environment. The CPUs 
we used in the experiment were based on ARM architecture. The command sets or architecture and 
the rates of fault detection and classification may vary, depending on the characteristics of the CPU. 
Therefore, in further research, the validity of the experiment should be determined by analyzing the 
results when injecting faults into other types of CPUs. 

The experimental results indicate that a fault occurred through the application of fluidanimate 
and that the accuracy of distinguishing faults decreased when the performance of the system slightly 
decreased. This phenomenon occurred because the system performance was reduced when a fault 
occurred during a state when the performance was already low, owing to the high CPU usage of the 
application. Thus, to increase the fault classification accuracy of our method, the reduction in CPU 
performance and the occurrence of retry or stall should be determined by considering the type of 
CPU and normal execution performance of applications through comparison. 

5. Conclusions and Further Research 

The method proposed in this study determines whether a fault generated in an environment 
where hardware and software are integrated is a hardware or software fault. In addition, if the fault 
is determined to be a hardware fault, our method can also identify the hardware responsible for the 
fault. This approach primarily uses minimal information from the hardware performance counter 
and software execution, without the need for an additional hardware device to detect faults, thus 
minimizing the effects on the execution environment. 

The proposed strategy was implemented in the form of Shark, an automated tool that operates 
on a Linux platform based on ARM. In addition, experiments to verify the efficiency of our method 
were conducted using Shark. Faults that occurred after integration of the hardware and software 
were selected and randomly injected into the system targeted for testing, in order to examine 
whether Shark was capable of distinguishing such faults. The experimental results indicated that 

Figure 11. Performance overhead.

When the Shark agent was not applied, the mean time required for the execution of the application
was 1.81 ms. When the agent was applied, the mean time increased to 1.92 ms. Therefore, the average
time attributable to performance overhead was 0.11 ms, such that the average performance delay
ratio was 6.07%. The existing method for detecting intermittent CPU faults exhibited a performance
overhead of 5.5% [16,17]. However, the previous method has the critical problem of requiring logic to
be added to the hardware. As our method uses software, it performs the test and exhibited performance
close to that of the existing method using hardware.

Among the benchmark applications, facesim led to a high performance overhead of 8.16%.
This result was due to I/O occurring several times due to the frequent memory access by facesim,
increasing the number of executed system calls and amount of obtained data.

The size of the Shark agent applied to the system was 5.99 KB. In practice, this agent does not
adjust the software code by operating in the system. Therefore, unlike other methods that obtain data
through changes to the code, our method did not generate any memory overhead due to an increase in
the amount of software code [19,22]. However, the size of the log when a system call was executed
was 128 bytes.

4.3.4. Experimental Limitations

The results of our study demonstrated that Shark can effectively detect and distinguish faults
using the hooking method on the system call to access the hardware and obtain the necessary data
for distinguishing faults while minimally affecting the real-time execution environment. The CPUs
we used in the experiment were based on ARM architecture. The command sets or architecture and
the rates of fault detection and classification may vary, depending on the characteristics of the CPU.



Electronics 2020, 9, 1815 23 of 25

Therefore, in further research, the validity of the experiment should be determined by analyzing the
results when injecting faults into other types of CPUs.

The experimental results indicate that a fault occurred through the application of fluidanimate
and that the accuracy of distinguishing faults decreased when the performance of the system slightly
decreased. This phenomenon occurred because the system performance was reduced when a fault
occurred during a state when the performance was already low, owing to the high CPU usage of the
application. Thus, to increase the fault classification accuracy of our method, the reduction in CPU
performance and the occurrence of retry or stall should be determined by considering the type of CPU
and normal execution performance of applications through comparison.

5. Conclusions and Further Research

The method proposed in this study determines whether a fault generated in an environment
where hardware and software are integrated is a hardware or software fault. In addition, if the
fault is determined to be a hardware fault, our method can also identify the hardware responsible
for the fault. This approach primarily uses minimal information from the hardware performance
counter and software execution, without the need for an additional hardware device to detect faults,
thus minimizing the effects on the execution environment.

The proposed strategy was implemented in the form of Shark, an automated tool that operates
on a Linux platform based on ARM. In addition, experiments to verify the efficiency of our method
were conducted using Shark. Faults that occurred after integration of the hardware and software
were selected and randomly injected into the system targeted for testing, in order to examine whether
Shark was capable of distinguishing such faults. The experimental results indicated that 99.06% of the
injected faults were identified by Shark and that 95.77% of them were successfully classified as either
hardware or software faults. Moreover, Shark exhibited a performance delay rate of 6.07% on average,
with the advantage that it did not require adjustment of the system targeted for testing. This rate was
close to the performance delay rate of 5.5% reported for other hardware fault detection methods with
which the method proposed in this study was compared. However, our method is significantly more
lightweight: Whereas other methods require hardware logic to be adjusted, our method only requires
an additional software agent for logging.

Although the method proposed in this paper is limited to intermittent CPU faults and timing
faults in the software, it should also apply to faults in other hardware, such as the memory or power
management unit. As such, we will conduct further research on the application of this method to other
hardware beyond the CPU and investigate how to increase the fault classification ratio based on a
database of faults that have occurred in practice.

Author Contributions: J.P. and B.C. contributed to the design and implementation of the research, to the analysis
of the results and to the writing of the manuscript. B.C. supervised the findings of this work. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the industry-academic project with Samsung Electronics,
“Development of test technology and establishment of test automation platform for Android system” in 2014.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kang, B.; Kwon, Y.-J.; Lee, R. A design and test technique for embedded software. In Proceedings of the Third
ACIS Int’l Conference on Software Engineering Research, Management and Applications (SERA’05), Mount
Pleasant, MI, USA, 11–13 August 2005; Institute of Electrical and Electronics Engineers (IEEE): Piscataway
Township, NJ, USA, 2005; pp. 160–165.

2. Hangal, S.; Lam, M.S. Tracking down software bugs using automatic anomaly detection. In Proceedings
of the 24th international conference on Software engineering—ICSE ’02, Orlando, FL, USA, 25 May 2002;
Association for Computing Machinery (ACM): New York, NY, USA, 2002; p. 291.



Electronics 2020, 9, 1815 24 of 25

3. Reis, G.; Chang, J.; Vachharajani, N.; Rangan, R.; August, D. SWIFT: Software implemented fault tolerance.
In Proceedings of the International Symposium on Code Generation and Optimization, New York, NY, USA,
20–23 March 2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 243–254.

4. Park, J.; Kim, H.-J.; Shin, J.-H.; Baik, J. An embedded software reliability model with consideration of
hardware related software failures. In Proceedings of the 2012 IEEE Sixth International Conference on
Software Security and Reliability, Gaithersburg, MD, USA, 20–22 June 2012; pp. 207–214. [CrossRef]

5. Shye, A.; Moseley, T.; Reddi, V.J.; Blomstedt, J.; Connors, D.A. Using process-level redundancy to exploit
multiple cores for transient fault tolerance. In Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07), Edinburgh, UK, 25–28 June 2007; 2007;
pp. 297–306. [CrossRef]

6. Moreira, F.B.; Diener, M.; Navaux, P.O.A.; Koren, I. Data mining the memory access stream to detect
anomalous application behavior. In Proceedings of the Computing Frontiers Conference on ZZZ—CF’17,
Siena, Italy, 15–17 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 45–52.
[CrossRef]

7. Seo, J.; Choi, B.; Yang, S. A profiling method by PCB hooking and its application for memory fault detection
in embedded system operational test. Inf. Softw. Technol. 2011, 53, 106–119. [CrossRef]

8. Chen, Y.-Y.; Leu, K.-L.; Kun-Chun Chang, K.-C. Datapath error detection using hybrid detection approach
for high-performance microprocessors. In Proceedings of the 12th WSEAS international conference on
Computers, Heraklion, Greece, 23–25 July 2008.

9. Wagner, I.; Bertacco, V. Engineering trust with semantic guardians. In Proceedings of the 2007 Design,
Automation & Test in Europe Conference & Exhibition, Nice, France, 16–20 April 2007; pp. 1–6.

10. Rashid, L.; Karthik, P.; Sathish, G. Dieba: Diagnosing intermittent errors by backtracing application failures.
In Proceedings of the Silicon Errors in Logic-System Effects, Champaign, IL, USA, 27–28 March 2012.

11. Bruckert, W.; Klecka, J.; Smullen, J. Diagnostic Memory Dump Method in a Redundant Processor. U.S. Patent
Application 10/953,242, 2004.

12. Han, S.; Shin, K.; Rosenberg, H. DOCTOR: An integrated software fault injection environment for distributed
real-time systems. In Proceedings of the 1995 IEEE International Computer Performance and Dependability
Symposium, Erlangen, Germany, 24–26 April 1995; pp. 204–213.

13. IEEE. IEEE Standard Classification for Software Anomalies; IEEE Std.: Piscataway Township, NJ, USA, 1994;
pp. 1044–1993.

14. Madeira, H.; Costa, D.; Vieira, M. On the emulation of software faults by software fault injection.
In Proceedings of the International Conference on Dependable Systems and Networks (DSN), New York, NY,
USA, 25–28 June 2000; pp. 417–426.

15. Zhu, Y.; Li, Y.; Xue, J.; Tan, T.; Shi, J.; Shen, Y.; Ma, C. What is system hang and how to handle it? In Proceedings
of the 2012 IEEE 23rd International Symposium on Software Reliability Engineering, Dallas, TX, USA, 27–30
November 2012; pp. 141–150.

16. Bower, F.A.; Sorin, D.J.; Ozev, S. Online diagnosis of hard faults in microprocessors. ACM Trans. Arch. Code
Optim. 2007, 4. [CrossRef]

17. Constantinides, K.; Mutlu, O.; Austin, T.; Bertacco, V. Software-based online detection of hardware defects:
Mechanisms, architectural, and evaluation. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, Chicago, IL, USA, 1–5 December 2007; pp. 97–108.

18. Li, M.-L.; Ramachandran, P.; Sahoo, S.K.; Adve, S.V.; Adve, V.S.; Zhou, Y. Understanding the propagation
of hard errors to software and implications for resillant system design. ASPLOS XIII: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and Operating Systems; Association
for Computing Machinery: New York, NY, USA, 2008.

19. Mickens, J.W.; Elson, J.; Howell, J. Mugshot: Deterministic capture and replay for JavaScript applications.
In Proceedings of the NSDI, San Jose, CA, USA, 28–30 April 2010; Volume 10, pp. 159–174.

20. Ting, D.; He, J.; Gu, X.; Lu, S.; Wang, P. Dscope: Detecting real-world data corruption hang bugs in cloud
server systems. In Proceedings of the ACM Symposium on Cloud Computing, Carlsbad, CA, USA, 11–13
October 2018; pp. 313–325.

21. Brocanelli, M.; Wang, X. Hang doctor: Runtime detection and diagnosis of soft hangs for smartphone apps.
In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

http://dx.doi.org/10.1109/SERE.2012.10
http://dx.doi.org/10.1109/DSN.2007.98
http://dx.doi.org/10.1145/3075564.3075578
http://dx.doi.org/10.1016/j.infsof.2010.09.003
http://dx.doi.org/10.1145/1250727.1250728


Electronics 2020, 9, 1815 25 of 25

22. Wang, L.; Kalbarczyk, Z.; Gu, W.; Iyer, R.K. Reliability MicroKernel: Providing application-aware reliability
in the OS. IEEE Trans. Reliab. 2007, 56, 597–614. [CrossRef]

23. Sultan, F.; Bohra, A.; Smaldone, S.; Pan, Y.; Gallard, P.; Neamtiu, I.; Iftode, L. Recovering internet service
sessions from operating system failures. IEEE Internet Comput. 2005, 9, 17–27. [CrossRef]

24. Dadashi, M.; Rashid, L.; Pattabiraman, K.; Gopalakrishnan, S. Hardware-software integrated diagnosis for
intermittent hardware faults. In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, USA, 23–26 June 2014; pp. 363–374.

25. Tiwari, V.; Malik, S.; Wolfe, A. Power analysis of embedded software: A first step towards software power
minimization. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1994, 2, 437–445. [CrossRef]

26. Woo, L.L.; Zwolinski, M.; Halak, B. Early detection of system-level anomalous behaviour using hardware
performance counters. In Proceedings of the 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 485–490.

27. ODROID-XU3. Available online: http://www.hardkernel.com/ (accessed on 5 October 2020).
28. GEM5 Simulator. Available online: http://www.gem5.org/ (accessed on 5 October 2020).
29. Exynos5422. Available online: https://www.samsung.com/semiconductor/minisite/exynos/products/

mobileprocessor/exynos-5-octa-5422/ (accessed on 5 October 2020).
30. ARM. ARM. Cortex-a15 MPCore Processor Technical Reference Manual; ARM: Cambridge, UK, 2013.
31. ARM. ARM. Cortex-a7 MPCore Technical Reference Manual; ARM: Cambridge, UK, 2013.
32. Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite: Characterization and architectural

implications. In Proceedings of the 17th International Conference on Parallel Architectures and Compilation
Techniques, Toronto, ON, Canada, 25–29 October 2008; pp. 72–81.

33. Silva, L.; Batista, V.; Silva, J.G. Fault-tolerant execution of mobile agents. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), New York, NY, USA, 25–28 June 2000; pp. 135–143.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TR.2007.909758
http://dx.doi.org/10.1109/MIC.2005.45
http://dx.doi.org/10.1109/92.335012
http://www.hardkernel.com/
http://www.gem5.org/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background and Related Research 
	Faults Caused by the Integration of Hardware and Software 
	Transient or Intermittent Faults in the CPU 
	Interface or Timing Problems in Software 

	Related Research 
	Detection of Transient or Intermittent Faults 
	Detection of Hang or Timing Faults in the Software 
	Distinguishing Hardware and Software Faults 


	Method Distinguishing Between Hardware and Software Faults 
	Data Logging 
	Kernel Module for System Call Hooking 
	Software and Hardware Data for Distinguishing Faults 

	Fault Classification and Diagnosis of Factors Leading to CPU Faults 
	Normal Termination of Applications 
	Abnormal Termination of Applications 

	Automation 

	Empirical Study 
	Experimental Environment 
	Experimental Design 
	Design of the Injected Faults 
	Hardware and Software Faults and Fault Injection Methods 
	Variables for Determining Experimental Results 
	Experimental Measurements 
	Number of Injected Faults 

	Experimental Results 
	RQ1: How Accurately Can the Proposed Method Detect Faults? 
	RQ2: How Accurately Does the Proposed Method Identify Whether the Fault is A Hardware or Software Fault? 
	RQ3: How Much Overhead is Generated by the Proposed Method? 
	Experimental Limitations 


	Conclusions and Further Research 
	References

