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Abstract: The use of a back-propagation artificial neural network (ANN) to systematize the reliability
of a Deep Vein Thrombosis (DVT) diagnostic by using Wells’ criteria is introduced herein. In this paper,
a new ANN model is proposed to improve the Accuracy when dealing with a highly unbalanced
dataset. To create the training dataset, a new data augmentation algorithm based on statistical data
known as the prevalence of DVT of real cases reported in literature and from the public hospital is
proposed. The above is used to generate one dataset of 10,000 synthetic cases. Each synthetic case
has nine risk factors according to Wells’ criteria and also the use of two additional factors, such as
gender and age, is proposed. According to interviews with medical specialists, a training scheme was
established. In addition, a new algorithm is presented to improve the Accuracy and Sensitivity/Recall.
According to the proposed algorithm, two thresholds of decision were found, the first one is 0.484,
which is to improve Accuracy. The other one is 0.138 to improve Sensitivity/Recall. The Accuracy
achieved is 90.99%, which is greater than that obtained with other related machine learning methods.
The proposed ANN model was validated performing the k-fold cross validation technique using a
dataset with 10,000 synthetic cases. The test was performed by using 59 real cases obtained from a
regional hospital, achieving an Accuracy of 98.30%.

Keywords: machine-learning; neural network; data augmentation; clinical decision support systems;
CDSS; deep-vein thrombosis

1. Introduction

Venous thromboembolism (VTE), which includes deep-vein thrombosis (DVT) and pulmonary
embolism (PE), in countries like the United States of America (USA) may affect up to 900,000 patients
per year, with more than 300,000 deaths per year [1]. DVT is a vascular condition in which a venous
thrombus breaks off and travels through the bloodstream and, if it reaches the lungs, it might cause a
fatal pulmonary embolism (PE) [2–4]. VTE occurs for the first time in approximately 100 persons per
100,000 inhabitants per year in USA and rises exponentially from <5 cases per 100,000 persons
<15 years old to 500 cases (0.5%) per 100,000 persons at 80 years of age. It is associated with
substantial morbidity [4]. The activities of modern life such as trans-oceanic flights [5], the demand
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for high performance in sports [6,7] and even sleep disorders [8] have increased the likelihood of
alterations in the circulatory system; hence, it is said that this condition is a universal problem
derived from the development of societies based on their geographical, racial, and socio-cultural
characteristics [9]. With the early diagnosis of DVT, it is possible to start treatment that prevents
the pulmonary manifestation of the disease. Unfortunately, the nature of its symptoms, which may
be confused for another condition such as Baker’s Cyst [10] or infectious cellulite [11], may lead to
delaying the actual diagnosis of this condition. On the other hand, the high uncertainty in diagnosis [12]
can be reduced with the use of diagnostic technologies [13] that have an inverse relationship between
cost-uncertainty. The gold standard for diagnosis of DVT [14] is venography, which in addition to
being invasive is highly expensive; hence, the most commonly used method in hospital emergency
units is compression ultrasound [15]. However, none of the technologies mentioned is usually present
in the primary care units [16], which is the first unit to which a patient comes to when feeling a
symptom. In addition to this, the lack of experience of physicians regarding thromboembolic disease
has caused legal situations where the main lawsuits cited “failure of physicians in the diagnosis and
treatment of these diseases” [17]. Although there are probabilistic methods such as Wells [18] and
Oudega [19] to indicate the probability or risk that a patient is suffering a DVT, these are rarely used
by physicians [20] and, when this happens, most of the decision in continuing with the DVT detection
protocol depends on the physicians’s experience and perception.

On the other hand, in [21], the authors mention that computer-aided diagnosis will play a
very important role in health care in the near future. It is noteworthy that the systems supporting
decision-making are already being widely used by the medical sector, called Clinical Decision
Support Systems (CDSS), for support in the diagnosis of several diseases [22,23], and due to its
high level of reliability, CDSS are useful for choice and dosage of medications [24–26], as well as for
classification [27], prediction, and diagnosis of certain diseases [28]. Furthermore, in medicine and
biomedical engineering, the use of artificial intelligence (AI) and machine-learning (M-L) techniques is
increasing for prediction, diagnosis, classification, and early detection of diseases [29–33]. Nowadays,
methods such as support vector machine (SVM) [34], decision trees [35,36], Random Forest (RF) [32]
and convolutional neural networks [37,38] are also being used for the classification, diagnosis, and
early detection of diseases, which report excellent results when a balanced dataset is available. Recently,
some works have reported the efficacy and reliability of M-L techniques for the prediction and diagnosis
of thromboembolic diseases [39–46] and other applications [47,48]. Other research efforts include
the implementation of M-L algorithms on embedded systems and FPGAs (Field Programmable Gate
Array), which allows developing more efficient and portable systems [49].

Artificial Neural Networks (ANNs) provide a powerful tool to help doctors to analyze, model, and
make sense of complex clinical data across a broad range of medical applications. Most applications
of ANNs to medicine are classification problems [50]. Health care organizations are leveraging
machine-learning techniques, such as ANNs, to improve delivery of care at a reduced cost. Applications
of ANNs to diagnosis are well-known; however, ANNs are increasingly used to inform health
care management decisions [51]. In addition, methods based on ANNs have become more and
more attractive in the medical domain as Deep Learning frameworks mature and become popular.
One application in this context refers to the use of ANNs to predict the most probable clinical
conditions of a patient, given his/her history of hospital/medical admissions [52]. In the diagnosis of
thromboembolic diseases, several authors have shown themselves to be in favor of ANNs, achieving
better performance [40,45,53] even when compared with other M-L algorithms [41]. Some advantages
of using ANNs for predicting medical outcomes [54] are: (i) ANNs require less formal statistical training
to develop, (ii) ANNs can implicitly detect complex nonlinear relationships between independent and
dependent variables, (iii) ANNs have the ability to detect all possible interactions between predictor
variables, and (iv) ANNs can be developed using multiple different training algorithms. Therefore,
in this paper, ANN was chosen due to the aforementioned and to the fact that ANNs perform better in
natural problems, such as medical diseases with highly unbalanced data.
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Data augmentation is a technique commonly used in M-L to increase the dataset that is used in
the learning process. It consists of generating new cases from the original data set without altering
the pattern of the data. In medical environments, it is mostly used to increase the image dataset for
image based diagnosis; see, for example, [37,55–57]. In [58], they argue that the medical and M-L
communities are relying on the promise of artificial intelligence (AI) to transform medicine through
enabling more accurate decisions and personalized treatment. However, progress is slow. Legal
and ethical issues around patient data without consent and privacy is one of the limiting factors
in data sharing, resulting in a significant barrier in accessing routinely collected electronic health
records (EHR) by the machine learning community. Then, they proposed a novel framework for
generating synthetic data that closely approximates the joint distribution of variables in an original
EHR dataset, providing a readily accessible, legally and ethically appropriate solution to support
more open data sharing, enabling the development of AI solutions. In addition, in [52], the authors
demonstrated that it is possible to augment clinical data to improve the performance of automatic
predictive systems. They introduced two methods to create synthetic clinical histories (trajectories)
based on existing data; the first one extracts subsequences of trajectories to emphasize the transition in
between hospital admissions; the second method benefits from the hierarchical structure of standard
diagnosis codes (like ICD-9) trajectories whose characteristics resemble those of real-world clinics.
In [59], they argue that M-L has made a significant impact in medicine and cancer research; however, its
impact in these areas has been undeniably slower and more limited than in other application domains.
A major reason for this has been the lack of availability of patient data to the broader M-L research
community, in large part due to patient privacy protection concerns. High-quality, realistic, synthetic
datasets can be leveraged to accelerate methodological developments in medicine. By and large,
medical data are high dimensional and often categorical. These characteristics pose multiple modeling
challenges. They evaluated three classes of synthetic data generation approaches; probabilistic models,
classification-based imputation models, and generative adversarial neural networks. However, based
on our understanding, little research has been done for data augmentation in non-image based
diagnosis in hospital work. Therefore, in this paper, a new data augmentation algorithm is proposed
by using a mixed patterns approach. Thus, it takes into account two patterns: (i) a dataset of 59
instances from a public hospital and (ii) the distribution of instances between classes reported in [60].

To the best of our knowledge and based on the reviewed literature, some works report the use of
machine-learning techniques as a support tool for the diagnosis of thromboembolic diseases [39–46].
However, there are still open problems to be solved, such as the development of new methods
and algorithms to systematize the diagnosis of DVT. In this manner, the aim of this paper is the
introduction of a new prediction model by using a back-propagation neural network, based on
the Wells’ probabilistic method to guide the design of computer systems for support in clinical
decision-making for the diagnosis of DVT in primary care. Therefore, the main contribution of this
research is that physicians in a hospital’s primary care can use a smart tool to improve the diagnosis in
the early detection of DVT in lower limbs, the foregoing, based on an intelligent system trained with
10,000 synthetic cases, validated by using k-fold cross validation and the hold-out model. External
validation using 59 real cases from a public hospital of Mexico is performed. The above developed with
11 predictors (risk factors) generated by using a new data augmentation algorithm inspired in [61–64]
according to statistical data of real cases reported in [60] and from a public hospital.

The rest of the work is organized as follows: Section 2 presents the protocol currently followed by
hospitals to confirm or rule out the diagnosis of DVT. Section 3 describes the proposed method based
on a back-propagation type artificial neural network to obtain the Prediction Model that is the basis of
a CDSS. Section 4 presents the results obtained in the evaluation of the proposed prediction model and
a discussion of the results. Finally, Section 5 summarizes the conclusions of the paper.
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2. Hospital Protocol for DVT Diagnosis

DVT is a condition that, due to the unspecific nature of its symptoms, can be confused with other
illnesses. A differential diagnosis is required to confirm the existence of DVT. In many countries,
including Mexico, the primary care physicians do not have the equipment or experience to perform
imaging tests such as ultrasound or venography, resorting, in the best case, to using probabilistic
models. The clinical diagnosis of DVT alone is unreliable; therefore, clinical probability models such as
the Wells criteria [18,60,65] and the Oudega Rule [19] have been developed to guide their investigation,
diagnosis, and treatment [66]. The most studied and validated model is the one suggested by Wells [67],
which classifies patients into three groups according to the probability of having DVT.

To perform a good diagnosis, Wells established a number of risk factors. For this reason,
to calculate the probability of suffering from DVT, the factors selected from Table 1 must be taken into
consideration, and, if an alternative diagnosis is found at least as likely as DVT, two points must be
subtracted from the sum [18,60,65]. Once the sum has been completed and, according to the score
obtained, the likelihood of suffering of DVT is classified as low risk (−2 to 0 points), moderate risk
(1 to 2 points), and high risk (3 to 8 points) [18,60,65].

Table 1. Wells criteria for the prediction of deep vein thrombosis (DVT) [18,60,65].

Clinical Feature Score

Active cancer (patient either receiving treatment for cancer within the 1previous 6 months or currently receiving palliative treatment)

Paralysis, paresis, or recent cast immobilization of the lower extremities 1

Recently bedridden for ≥3 days, or major surgery within the previous 112 weeks requiring general or regional anesthesia

Localised tenderness along the distribution of the deep venous system 1

Entire leg swollen 1

Calf swollen at least 3 cm larger than that on the asymptomatic side 1(measured 10 cm below tibial tuberosity)

Pitting edema confined to the symptomatic leg 1

Collateral superficial veins (non-varicose) 1

Previously documented deep vein thrombosis 1

Alternative diagnosis at least as likely as deep vein thrombosis −2

In patients with symptoms in both legs, the more symptomatic leg is used

Figure 1 shows the protocol to be followed for the diagnosis of DVT [68]. Patients who have
a low risk or probability of suffering from DVT have a blood test called D-dimer [45] showing
high values due to protein degradation in thromboembolic states. Furthermore, some instruments
provide their measurements in FEU (Fibrinogen Equivalent Units) and others in D-DU (D-dimer units)
with 500 and 230 threshold values, respectively [69]. When the D-dimer is negative, the diagnosis
is ruled out. However, when the D-dimer is greater than the threshold value [70], and when the
calculated probability/risk is moderate to high, the recommended initial diagnostic method is a
Doppler ultrasound [68,71]. Moreover, compression ultrasonography (CUS) is the first-line imaging
test in the diagnostic management of suspected deep vein thrombosis (DVT) of the lower extremity [14].
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Figure 1. Protocol for the diagnosis of DVT, taken from [68].

Although Venography [66,67] is considered the gold standard for the diagnosis of DVT [14], its use
in clinical applications is limited, mainly because it is an invasive method that requires an injection
with contrast (biomaterial) to observe the displacement of blood flow in the circulatory system, which,
in addition to being expensive, is risky for the patient’s health, so its use in clinical applications is
limited. In contrast, Doppler ultrasound [72,73] is a safe, non-invasive, easy-to-use imaging test,
in addition to having a high sensitivity of 88–98% and specificity from 97–100% [74,75]. Therefore,
it is one of the fundamental diagnostic methods in multiple disciplines and medical specialties [76].
Ultrasonic equipment bases its operation on the principle of the Doppler Effect to analyze blood flow,
and, with it, the diagnosis of thromboembolic diseases is performed.

3. Proposed Method

In Mexico, it is quite difficult to have access to clinical files or statistical data on the occurrence of
certain medical cases, at least not with the detail required to conduct research such as the one reported
in [18,45,60,65]. Therefore, this paper proposes using a data augmentation technique [61–64] based on
statistical data of real cases reported in [60] and from a public hospital, the above, with the purpose
of making up a new dataset of synthetic cases represented by a matrix with 10,000 cases to be used
in the training and validation of the proposed ANN model. Validation/test is performed with the
well-known k-fold cross validation method. The external validation/test was performed by using
historical data with 59 real cases from a public hospital. The study was conducted in accordance with
the Declaration of Helsinki, and the protocol was approved on 23 June 2020 by the Ethics Committee
of Autonomous University of Baja California, Mexico with project identification code POSG/020-1-03.

3.1. Artificial Neural Network

Figure 2 depicts the simplest model of the operation of an ANN, which is the perceptron developed
by Frank Rosenblatt [77]. ANN is made of artificial neurons connected to one another emulating the
functioning of biological neurons in the brain of a human being. A set of input values (x1, x2, . . . , xn) are
connected to an artificial neuron, which is switched on by an activation function. Each input value is
assigned a weight (w); the products of all the entries and their corresponding weights are added before
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moving on to the activation function. Unlike the simple perceptron, the multilayer perceptron is made
of one or more layers which make it capable of solving nonlinear problems [77,78]. However, there are
some algorithms to design the architecture of an ANN, such as the geometric pyramid rule [78,79], the
rule based on the mean square error (MSE) [80], and the application of evolutionary algorithms [81].
Actually, a successful ANN configuration depends on the experience of the designer and evaluating
different architectures. The number of neurons in the hidden layers used will determine the Accuracy
of the ANN model. To select the best ANN model, 100 different ANN architectures were considered
and used the rule based on the MSE [80]. Finally, the architecture with the best Accuracy is depicted
in Figure 3. ANN are machine-learning algorithms designed to analyze data without a pre-existing
hypothesis as to any associations that may exist [45].

Figure 2. Structure of an artificial neuron, taken from [78].
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Figure 3. Architecture of the proposed back-propagation ANN model.

For a proper classification/prediction, in addition to the network design, a training algorithm
is required. In an ANN, the back-propagation algorithm uses the difference between the produced
result and the desired result to change the “weights”of the connections among the artificial neurons.
The importance of this process is that, as the network is trained, the neurons of the intermediate layers
organize themselves in such a way that the different neurons learn to recognize different characteristics
of the total input space. A back-propagation ANN works under the supervised learning scheme,
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so a set of known data are required to train the network describing the values of the input variables
(predictors) as well as the expected output for each set [77]. In the research reported by [45], the authors
argue that the use of artificial neural network analysis can improve the risk-stratification of patients
presenting with suspected DVT. Furthermore, they conclude that this approach may improve the
analysis of complex data to support decision-making in other areas of clinical medicine [45]. In [46],
the author argues that predictive analytics by deep machine-learning will be the next generation tool
to improve health care; he concludes by encouraging the physicians to have an open mind about
artificial intelligence and deep machine-learning, and to embrace the application and use of predictive
algorithms that undoubtedly will unfold over the next decade. This is one of the key pathways to
cost-effective, efficient, and safe health care. In addition, he argues, we must overcome the fear of the
black box concept of artificial intelligence, and physicians need to be confident that large, well-managed
datasets can produce tools that will improve patient care.

3.2. Data Augmentation Algorithm

Data Augmentation consists of artificially increasing the volume of the training dataset by
applying several distortions to the original information without altering the spatial pattern of target
classes [63]. Usually, the distortions are performed during the training time, which allows for doing it
on the fly without saving the new information [63]. Data augmentation, which applies deformations
and transformations on annotated training samples to generate new training data, is an elegant
solution [61–64]. The main objective of the data augmentation algorithm is to generate a set of
synthetic data that adheres to the data observed in real life [61–64]. Algorithm 1 describes the proposed
data augmentation approach, which is proposed to generate each case that will comprise the set of
synthetic data for training and validation of the proposed back-propagation ANN model. Therefore,
the first task to be performed is to calculate the percentage of positive and negative cases that are
present for each type of risk probability of the occurrence of DVT in addition to the percentage for
which each of the factors of the Wells Score was observed [18,45,60,65] in the real cases we had access.
To calculate the percentage of suspected cases of DVT in each type of risk proposed by Wells [65],
historical data from [60] was taken, where it is mentioned that, of all the cases observed, 19% were
diagnosed as DVT, while the remaining 81% had a different diagnosis. Furthermore, in [60], it is
mentioned that, in the cases detected as Low Risk, only 5% of the cases were diagnosed as positive for
DVT, while 17% were diagnosed in Medium Risk, and 53% as High Risk.

Based on the above, this paper proposes a model of linear equations described by (1) to determine
the percentage of cases that were presented in each type of risk.

Low Medium High
Risk Risk Risk

x + y + z + = 100,
0.05x + 0.17y + 0.53z + = 19,
0.95x + 0.83y + 0.47z + = 81,

(1)

where x is Low Risk cases, y is Medium Risk cases, and z is High Risk cases. Solving (1), it is obtained
that x = 60.9% was classified as Low Risk cases, y = 13.2% as Medium Risk, and z = 25.9% as High
Risk. Subsequently, with this information, the distribution of suspected cases of DVT diagnosed as
positive and negative is calculated in each type of risk that was used in a new dataset of 10,000 training
and validation cases, which are shown in Table 2. This generates an imbalanced data distribution
which could lead to misclassification. However, according to [82], the skill of master diagnosticians
was not due to a distinctive reasoning process, but instead depended on a clinician’s ability to access
knowledge from past experience to generate short lists of possible diagnoses. For this reason, it is
preferable to train the predictive model from a dataset where the distribution of suspected and positive
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cases for DVT are consistent with the way the DVT phenomenon occurs in order to take into account
the impact that each one of the symptoms have in the DVT diagnosis, just as physicians do.

Algorithm 1 Data Augmentation
1: DataSetGenerator(initial_row, final_row, risk_type)
2: # The dataset is stored in a integer matrix with 10,000 rows and 12 columns dimension.
3: # The random function random(base, range) generates random numbers from 0 to range-1.
4: # It returns the sum of the base plus the generated random number.
5: for i=initial_row:final_row
6: switch(risk_type)
7: case 1: symptoms_observed=1 # Low risk has 1 observable symptom
8: diagnosis=1 # risk_type == 1 is a Low Risk with positive diagnosis
9: case 2: symptoms_observed=1 # Low risk has 1 observable symptom

10: diagnosis=0 # risk_type == 2 is a Low Risk with negative diagnosis
11: case 3: symptoms_observed=random(2,2) # Medium risk has 2 o 3 observable symptom
12: diagnosis=1 # risk_type == 3 is a Medium Risk with positive diagnosis
13: case 4: symptoms_observed=random(2,2) # Medium risk has 2 o 3 observable symptom
14: diagnosis=0 # risk_type == 4 is a Medium Risk with negative diagnosis
15: case 5: symptoms_observed=random(4,3) # High risk has 4 to 6 observable symptom (for this study; in real life could be until 9)

16: diagnosis=1 # risk_type == 5 is a High Risk with positive diagnosis
17: case 6: symptoms_observed=random(4,3) # High risk has 4 to 6 observable symptom
18: diagnosis=0 # risk_type == 6 is a High Risk with negative diagnosis
19: end switch
20: for j=1:symptoms_observed
21: symptom=random(2,9) #random asignation for the observed symptom
22: dataset[i,0]=random(1,8) #random asignation for the patient’s age range
23: dataset[i,1]=random(0,2) #random asignation for the patient’s gender
24: while(dataset[i,symptom]==1) #if the observed symptons is choosed, the next available is asigned
25: symptom++
26: if(symptom==11)
27: symptom=1
28: end if
29: end while
30: dataset[i,symptom]=1 #the symptom is asigned as positive (0 is negative)
31: end for
32: end for

Table 2. Distribution of risk cases in a dataset of 10,000 synthetic cases.

Low Risk Moderated Risk High Risk

DVT Diagnosis 305 224 1373

Other 5785 1096 1217

Then, the calculation of the distribution of Wells’ factors in the proposed dataset is based on
the analysis of the real cases observed. For this purpose, each factor in each case is observed in the
statistical data of real cases recorded in a Mexican hospital, and then, each one is divided over 280,
being the total risk factors of the Wells’ score identified in the study as described in Equation (2):

% f actori =
ocurrences of factori

ocurrences of all factors
. (2)

Therefore, the matrix containing the training dataset is generated row by row, where each row
represents a patient, i.e., gender, age, and nine risk factor’s of Well’s score. Initially, the number of
synthetic cases of patients to be generated is determined, and the type of risk and the corresponding
diagnosis to each of them is calculated. Likewise, the number of occurrences of each of the risk factors
of the Wells score is calculated [60,65] to know how many patients that risk factor will be assigned.
In each one of the rows, the amount of Wells risk factors is determined randomly that will be marked
as present in each patient. In the event of low risk cases, only one factor is specified in all rows; in cases
of medium risk, the rows may contain two or three observed factors, while, in high risk, the observed
factors vary in a range of 4 or more. Once the number of risk factors are determined, a random number
is generated for each of them, used to indicate the observed risk factor in that patient; if the random
number represents a risk factor that has already been marked as observed in the patient, then a new
random number is generated until one is found that represents a factor not previously observed in the



Electronics 2020, 9, 1810 9 of 24

patient; the corresponding column with the value 1 is activated, and the number of cases to which this
factor will be assigned is reduced by one. Finally, the value corresponding to the diagnosis of each
patient’s case is assigned, which is 0 for negative cases and 1 for positive cases.

3.3. Pre-Processing Scheme of the Dataset

From each medical record of a regional hospital, the data that coincided with the first nine of the
criteria established by Wells for the detection of DVT was extracted; in addition, this paper proposes to
use gender and age, which helps to improve the risk-stratification of patients presenting suspected
DVT [45]. From the obtained data, a matrix was designed composed of clinical cases in which the
diagnosis of suffering a DVT can be positive or negative. The rows of the matrix represent the clinical
cases or patients, while the columns represent the inputs to the expert system, that is, the first nine
criteria taken from the Wells model, in addition to the patient’s gender and age. Each of the inputs to
the system was associated with a real numerical value to form the numerical matrix that would serve
as training for the system. Therefore, to identify the patient’s gender, zero values were assigned to the
male gender and one to the female gender. Then, the clinical cases were grouped using patient age
ranges as shown in Table 3. Each interval was coded by a numerical value between 1 and 9.

Table 3. Pre-processing of age factor.

Age [Years Old] Life Stage Numerical Value

0–5 Childhood 1

6–12 Middle childhood 2

13–20 Youth 3

21–39 Young adults 4

40–49 Average adults 5

50–59 Mature adults 6

60–69 Initial old age 7

70–84 Intermediate old 8

85–120 Advanced old age 9

Table 4 shows that, for each Wells’ criteria agreed by the patient or the physician, the value of one
is assigned, while, for the absence of the same, the value of zero is assigned.

Table 4. Assignment by risk factor.

Clinical Feature Present Absent Collected Data

Active cancer 1 0 Interview the patient

Paralysis, paresis, or recent cast immobilization of 1 0 Interview the patientthe lower extremities

Recently bedridden for ≥3 days, or major surgery
1 0 Interview the patientwithin the previous 12 weeks requiring general or

regional anesthesia

Localised tenderness along the distribution of the 1 0 Interview the patientdeep venous system

Entire leg swollen 1 0 Interview the patient/Physical examination

Calf swollen at least 3 cm larger than that on the 1 0 Physical examinationasymptomatic side

Pitting edema confined to the symptomatic leg 1 0 Physical examination

Collateral superficial veins 1 0 Interview the paciente/Physical examination

Previously documented deep vein thrombosis 1 0 Interview the al paciente
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Table 5 shows the proposed prediction model for DVT Diagnosis. It consists of an input layer
with 11 predictors (age, gender, cancer, immobilization, surgery, tenderness, leg swollen, calf swollen,
edema, superficial veins, previous DVT, three hidden layers (150-100-50) and an output layer, which is
the DVT diagnosis.

Table 5. Proposed prediction model for DVT Diagnosis.

Input Layer with 11 Predictors Hidden Layer Output Layer

Age, gender, cancer, immobilization, surgery,
150-100-50 DVT Diagnosistenderness, leg swollen, calf swollen, edema,

superficial veins, previous DVT

Figure 3 depicts the proposed ANN model, the 11 predictors mentioned in Table 5 are taken as
input for the proposed ANN model, a set hidden layers and an output layer, which is the diagnosis of
DVT in a patient. The proposed ANN model consists of an input layer with 11 neurons, three hidden
layers with 150, 100, and 50 neurons, respectively, and an output layer with a neuron indicating the
diagnosis result of DVT. The activation function used in the input layer and in the hidden layers
corresponds to the hyperbolic tangent (tansig), while a linear (purelin) function was used in the
output layer.

3.4. Training Process for DVT Diagnostic

Traditionally, medical diagnosis is regarded by physicians as an art and depends heavily on
the knowledge and experience of each one of them. The diagnostic process is carried out through a
combination of activities performed by physicians, which may include physical examination, interview
with the patient, review of clinical history, and interpretation of laboratory analysis, among others.
This information is used to relate it to known real and academic medical cases, family history and,
in some cases, the opinion of colleagues. However, data science opens up new possibilities for medical
diagnosis since it allows the analysis of large amounts of data such as the symptoms associated with
patient conditions, which can be used in the diagnosis of people with similar symptoms. Nevertheless,
one of the hypotheses that arose during this work considers that cases in which patients who showed
similar symptoms but opposite diagnosis, negatively affect diagnostic Accuracy in a Decision Support
System based, in this case with the proposed ANN model. For this reason, it was deemed necessary
to identify and characterize information analysis and establish a training scheme for the generation
of an ANN model that allows for improving the Accuracy in the diagnosis of computer-assisted
DVT in primary care. To understand the diagnostic process, interviews were conducted with five
physicians of different degrees of specialty, who were consulted on how to confirm the suspicion that a
patient is suffering an episode of Deep Venous Thrombosis, placing them in a primary care setting,
taking as the only additional tool to their knowledge the probabilistic models, particularly the Wells
criteria [18,60,65]. In order to train the ANN and determine the experiments that lead to the optimal
configuration of the network, the dataset with 11 predictors (see Table 5) was obtained in accordance
with the data augmentation Algorithm 1 described in Section 3.2, this by using statistical data of real
cases reported in [60] and from a regional hospital. Figure 4 depicts an overview of the training dataset
for the proposed ANN model, and all available cases in the dataset were taken into account along with
their original diagnosis. It can be seen that 8151 instances have a probability of deep vein thrombosis
(DVT) less than 50%, while 570 instances have a 50% probability of DVT and 1279 instances have a
probability of DVT greater than 50%.
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Figure 4. Representation of the training dataset.

The hyperparameters used for training the ANN model depicted in Figure 3 were tuned by using
the Conjugate Gradient Back-propagation Algorithm with Fletcher–Reeves Restarts, a maximum of
1000 epochs, the learning rate is 1 × 10−2, the initialization weights is random and the target error
minimum is 0.001 to 0.09. The configuration of the computer is: CPU 2.9 GHz Intel Core i5, RAM 8 GB
1867 MHz DDR3, Intel Iris Graphics 6100 1536 MB, MAC operating system Sierra and Software Matlab.
Figure 5 depicts the training performance, and it can be seen that the best training performance, also
known as Mean Square Error (MSE) is 0.007 at epoch 1000.
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Figure 5. Training performance of the proposed ANN model.

3.5. Algorithm to Improve Accuracy/Recall

Algorithm 2 describes the proposed approach to improve the classification threshold to maximize
the Accuracy or Sensitivity/Recall of DVT classification. The proposed ANN model is classified
through a threshold function, which was defined through an improving process, which consisted of
evaluating the Accuracy or Recall of the proposed ANN model with respect to a dataset, taking into
account a set of thresholds that had a variation between themselves of 0.001, in a range of 0 to 0.99.
For each Threshold, the Accuracy or Recall are obtained.

Thus, for best Accuracy, the threshold function is taken by (3), which indicates when the output of
the neural network is greater than or equal to 0.484, then the diagnosis of DVT is considered positive
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( f (x) = 1); otherwise, it is negative ( f (x) = 0). However, for best Sensitivity/Recall, the threshold
function is taken by (4), which indicates that, when the output of the neural network is greater than or
equal to 0.138, then the diagnosis of DVT is considered positive ( f (x) = 1); otherwise, it is negative
( f (x) = 0).

if x ≥ 0.484 then f (x) = 1; else then f (x) = 0, (3)

if x ≥ 0.138 then f (x) = 1; else then f (x) = 0. (4)

Algorithm 2 Maximizing Accuracy or Sensitivity/Recall
1: # This algorithm is aimed to improve the classification Threshold in order to get the best classification Accuracy or Sensitivity/Recall.
2: HighestValue=-1 # Initializing the Highest Value variable
3: for x=1:1000 # There will be evaluated 1000 Threshold values
4: Threshold=Threshold+0.001; # The Threshold value is incremented 0.001 each time
5: tp=0; # Initializing the True Positives accumulator
6: tn=0; # Initializing the True Negatives accumulator
7: fp=0; # Initializing the False Positives accumulator
8: fn=0; # Initializing the False Negatives accumulator
9: for m=1:10,000 # The 10,000 synthetic cases in the original Dataset are evaluated in the model

10: if dataset(m)>=1 # If the Case m in the Dataset is Positive and,
11: if ModelOutputs(m)>=Threshold # If the Output m is greater or equal to the Threshold value thus
12: tp=tp+1 # The result is classified as True Positive
13: else # Case m in the Dataset is Positive and the Output m is Negative
14: fn=fn+1 # The result is classified as True Negative
15: end
16: else # If the case m in the Dataset is Negative and,
17: if ModelOutputs(m)<Threshold # If the Output m is smaller than the Threshold value thus
18: tn=tn+1; # The result is classified as True Negative
19: else # Case m in the dataset is Negative and the Output m is Positive
20: fp=fp+1; # The result is classified as False Positive
21: end
22: end
23: end
24: Compute Accuracy or Recall; # Get the Accuracy of the ANN model with the i Threshold value
25: if Accuracy or Recall>HighestValue # If Accuracy or Recall of the ANN model with i-th Threshold value is greater than Highest

Value, thus
26: OptimizedThreshold=Threshold; # To save the Threshold of the i-th iteration in the optimized Threshold variable
27: end

28: end

4. Results

This section presents the results obtained from the performance of the proposed method. First, a
k-fold cross validation by using the 10,000 synthetic cases from the dataset is presented. Subsequently,
an analysis of the results from the perspective of the dataset is performed. In addition, comparison
of results versus related work is discussed. Later, the results obtained from the validation/test with
statistical data of 59 real cases from a regional hospital are shown. Finally, a usage scenario is presented.

4.1. K-Fold Cross Validation

Regarding the test/validation of the prediction model, there are two main methods that are used
as selection criteria for a prediction model: (i) the hold-out model and (ii) the k-fold cross validation
model. Both share the characteristic of using a percentage of the dataset for training and retaining a
portion for validation. Cross validation is highly adopted as a predictive model selection criterion [83].
Basically, it consists of using a portion of the dataset to build the model and hold-out another portion
of the dataset to validate it. However, the main difference lies in the way that data are used for
the training and validation process, while the hold-out method is carried out only once, the k-fold
cross validation method carries out k times (see Figure 6) and the results of the classification in each
interaction are averaged. Therefore, in this article, we decided to perform the test/validation using
a k-fold cross validation, since it could help validate the entire synthetic dataset and not to just rely
on a random selection of the training and hold-out dataset, since one of the important aspects to
consider when using neural networks is that the model should be independent from the dataset used
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for training and validation. For this purpose, the k-fold cross validation method is perhaps the most
widely used to validate the degree of Accuracy of a neural network model regardless of dataset. It
consists of dividing the data set into k segments, and, during k times, a different segment is chosen to
validate the model, while the remaining k-1 segments were used to train the neural network as shown
in Figure 6. The Accuracy of the data are taken from the average Accuracy obtained in each iteration.

Figure 6. 10-Fold Cross Validation scheme with 10,000 cases.

According to [84], the most recommended and most commonly used value of k is 10. Therefore,
10 segments of 1000 data are used in this paper. Subsequently, the artificial neural network is trained
and validated with these data blocks.

Table 6 shows the confusion matrix of two-class classification [85]; four categories can be observed,
(i) positive success (True Positive), which occurs when both the output of the case to be validated and the
output estimated by the artificial neural network coincide in a positive diagnosis of DVT, (ii) negative
success (True Negative), occurring when both the output of the case to be validated and the output
estimated by the artificial neural network coincide in a negative diagnosis of DVT, (iii) False Positive,
which occurs when the output of the case to be validated is a negative diagnosis, while the ANN
model estimates a positive diagnosis, and (iv) False Negative, occurring when the case is validated as a
positive diagnosis, while the ANN model estimates a negative diagnosis.

Table 6. Confusion matrix of two-class classification [85].

Predicted Diagnostic

True diagnostic Positive DVT Negative DVT

Positive DVT True False
Positive Negative

Negative DVT False True
Positive Negative

The performance evaluation of the proposed ANN model was initiated by calculating the
Sensitivity, Speci f icity, Precision, and Accuracy [85,86]. The Sensitivity, also known as Recall [86],
it measures the proportion of positives that are correctly identified as such and can be calculated by (5).
Similarly, the Specificity measures the proportion of negatives that are correctly identified as such [86]
and can be calculated by (6). The Precision is the proportion of true positives among the positive
predictions [86]; it can be calculated by (7) and the Accuracy by using (8),
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Sensitivity =
TruePositives

FalseNegative + TruePositives
, (5)

Speci f icity =
TrueNegatives

FalsePositives + TrueNegatives
, (6)

Precision =
TruePositives

TruePositives + FalsePositives
, (7)

Accuracy =
TruePositives + TrueNegatives

TruePositives + FalsePositives + TrueNegatives + FalseNegatives
. (8)

Table 7 shows the results of 10-fold cross-validation obtained using the proposed ANN model;
it can be observed that the average Accuracy is 90.51% with a standard deviation (Std. Dev.) of
2.67. The True Positive cases are 12.39%, True Negative cases are 78.12%, while False Positive are
2.86% and False Negative are 6.63%. Furthermore, it can be seen that the standard deviation for False
Positive cases is 9.54, while, for False Negatives, it is 23.37. As shown in Table 7, the k-fold evaluation
showed an average Accuracy of 90.51%. Therefore, it can be said that the proposed ANN model has a
confidence range of 90.51%. In addition, it can be observed that the average specificity is 96.46% with a
standard deviation of 1.20, while the average precision is 80.96% with a standard deviation of 7.40.

Table 7. 10-Fold Cross-validation of the proposed ANN model by using the proposed dataset.

True True False False Specificity Sensitivity Precision Accuracy
K-Fold Positive (TP) Negative (TN) Positive (FP) Negative (FN) [%] (Recall) [%] [%] [%]

1 136 778 26 60 96.77 69.39 83.95 91.40
2 116 801 24 59 97.09 66.29 82.86 91.70
3 150 769 37 44 95.41 77.32 80.21 91.90
4 152 761 32 55 95.96 73.43 82.61 91.30
5 122 791 15 72 98.14 62.89 89.05 91.30
6 116 790 23 71 97.17 62.03 83.45 90.60
7 112 805 19 64 97.69 63.64 85.50 91.70
8 150 763 42 45 94.78 76.92 78.13 91.30
9 116 793 25 66 96.94 63.74 82.27 90.90

10 69 761 43 127 94.65 35.20 61.61 83.00
Avg. 123.90 781.20 28.60 66.30 96.46 65.08 80.96 90.51

Std. Dev. 25.04 16.92 9.54 23.37 1.20 11.97 7.40 2.67
Percentage [%] 12.39 78.12 2.86 6.63 - - - -

In order to get a stronger validation of the data independency, an additional validation was
analyzed using the hold-out model with an 80–20% ratio, obtaining an Accuracy result of 90.35% by
using a threshold of 0.484, and a MSE of 0.0714 was obtained. The Sensitivity is 64.30%, the Precision
is 81.13%, and the Specificity is 96.47%. Therefore, it can be seen that the results obtained with both
validations (k-fold cross validation and hold-out model) are similar.

4.2. Results from the Perspective of the Dataset

As mentioned in Section 1, medical diagnosis has a high degree of uncertainty due to the
complexity of the biological systems, which can lead to two people with similar characteristics
showing different symptoms before the same health condition, or, on the contrary, show opposite
health conditions even with the same symptomatology. In terms of the prediction model by using
ANNs, we can affirm that the above is similar to clinical cases in which the risk factors representing
the input predictors to the system are equal in their entirety, obtaining a different resulting diagnosis
as output from the CDSS.

On the other hand, ROC curves and Precision–Recall (PR) curves are the most popular ways to
estimate the performance of ANN inference methods [87]. ROC curves do not really emphasize a
particular interval of values of this ratio and therefore favor methods that are good for a large range
of such values. If one knows for example that the ratio between positives and negatives will be very
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low when applying the classification model, then one is typically only interested in the bottom-left
part of the ROC curve [87]. PR curves, on the other hand, provide a better picture of the performance
of a method when the ratio between positives and negatives in the test data are close to the ratio
one expects when practically applying the model [87]. Binary classification problems are usually
substantially imbalanced in favor of the negative class, as the proportion of interacting pairs among all
possible pairs is very small. This speaks in favor of the PR curve over the ROC curve [87]. Therefore,
Figure 7 shows the PR curve of the proposed classification model using a threshold of 0.484; it can
be seen that the result of varying the pivot that distinguishes a positive case from a negative one.
As can be observed, a commitment must be established between reducing cases of False Positives and
cases of False Negatives. When minimizing False Positives, False Negatives are increased, and vice
versa; in this way, it will be a design decision to determine the appropriate configuration for diagnosis.
Regarding the area under the curve (AUC), the resulting values of ROC-AUC is 0.9601 and PR-AUC
is 0.9114.
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Figure 7. Precision–Recall (PR) curve of the proposed ANN model.

Figure 8 shows a comparison of the confusion matrices of the proposed ANN model by using
the proposed dataset. It can be observed that the model correctly classifies 68.34% (1300 of 1902) of
the positive cases, and 96.30% (7799 of 8098) of the negative cases, with 3.69% of positive erroneous
classifications (299 of 8098) and 31.60% of erroneous negative classifications (602 of 1905), while the
evaluation with the Wells criteria yields 83.96% (1597 of 1902) of the positive cases, and 71.43% (5785
of 8098) of the negative cases, with 28.56% of false positive predictions (2313 of 8098) and 16.03% of
false negative predictions (305 of 1902).
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Figure 8. Comparison of the confusion matrices of the proposed ANN model.

Figure 9 depicts a comparison of Precision, Sensitivity/Recall and Accuracy percentages
obtained with the proposed ANN model for Maximum Accuracy with threshold 0.484, for Maximum
Sensitivity/Recall with threshold 0.138 and using Wells’ Score in a traditional way. It can be observed
that, when the threshold is 0.484, the maximum Accuracy is 90.99%, the Sensitivity/Recall is 68.35%,
and Precision is 81.30%. However, when the threshold is 0.138, the maximum Sensitivity/Recall is
84.01%, the Precision is 57.09%, and Accuracy is 84.95%. When Wells’ Score is used in the traditional
way, the Accuracy is 73.82%, Sensitivity/Recall is 83.96%, and Precision is 40.84%.
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Figure 9. Comparison of the percentages of Precision, Sensitivity/Recall, and Accuracy obtained with
the proposed ANN model.

This paper presents an alternative to evaluate the diagnosis of DVT by using an ANN model
based on the Wells’ score [60]. As a variant, in this paper, the Age and gender of the patients are added
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to improve the Accuracy of the prediction model. For this reason, an analysis was carried out to know
the impact that the inputs have on the final result obtained; in its original form, the Accuracy is 90.99%.
Table 8 shows an analysis of the importance in case of missing a risk factor (some input). It can be
observed that the input that most impacts the result is Age, since eliminating the age produces an
Accuracy of 84.59%, which means a decrease of more than 6% with respect to the original value of
90.99% obtained by the trained model considering all the inputs. This influence is quite different from
the average between the other variables, which is 88.17% (Standard Deviation of 0.5%). The above
can be explained from the stratification that each variable (input) contributes to the ANN model;
practically, all the inputs offer a binary segmentation, so it is not surprising that they have a similar
influence on the model’s Accuracy, unlike the Age that can assume nine different values, which allows
the ANN model to better distinguish due to the stratification that this variable provides.

Table 8. Evaluation of the proposed ANN model without any input.

Missing True True False False MSE Accuracy Sensitivity Specificity Precision
Input Factor Positive Negative Positive Negative MSE [%] [%] [%] [%]

Age 2338 6121 952 589 0.11 84.59 79.88 86.54 71.06
Gender 1116 7779 319 786 0.95 88.95 58.68 96.06 77.77
Cancer 1233 7699 399 669 0.08 89.32 64.83 95.07 75.55
Immobilization 1159 7676 422 743 0.09 88.35 60.94 94.79 73.31
Surgery 1160 7677 421 742 0.09 88.37 60.99 94.80 73.37
Pain 1163 7669 429 739 0.09 88.32 61.15 94.70 73.05
Leg swelling 641 8230 155 974 0.09 88.71 39.69 98.15 80.53
Calf Swelling 1053 7793 305 849 0.08 88.46 55.36 96.23 77.54
Edema 1181 7629 469 721 0.08 88.10 62.09 94.21 71.58
Vericose veins 1199 7563 535 703 0.09 87.62 63.04 93.39 69.15
Previous DVT 1253 7652 446 649 0.08 89.05 65.88 94.49 73.75

4.3. Results Comparison

To clarify the contribution of this paper, this section shows a comparison among: (i) the results of
using the proposed ANN model, (ii) the evaluation of the cases of the dataset by the traditional Wells’
criteria and, as shown in Table 9, and (iii) performing another M-L approach [35,36,88–90] by using the
same dataset, as shown in Table 10.

Table 9 shows, when seeking to maximize Accuracy, the proposed scheme has an average Accuracy
of 90.99% and a Specificity 96.31%, it can be observed that Accuracy is 17.17% greater than the traditional
method reported by Wells [60] without considering gender and age. However, when seeking to maximize
the Sensitivity/Recall, the proposed scheme obtained is 84.01%, the Accuracy is 84.95%, and a Specificity of
85.17%.

Table 9. Comparison versus Wells’ criteria in a traditional way.

Approach Accuracy Sensitivity/Recall Specificity

Proposed approach for maximum Accuracy 90.99 68.35 96.31

Proposed approach for maximizing the Recall 84.95 84.01 85.17

Wells’ score in a traditional way [60] 73.82 83.96 71.43

Table 10 shows a comparison of results versus other machine-learning approaches. It can be
observed that the proposed ANN model presents: Specificity 96.31%, Sensitivity/Recall 68.35%,
Precision 81.30%, and an Accuracy of 90.99%; it can be seen that, in most cases, it is higher than the
other M-L methods, except that the linear SVM method [35,36,88] has a Specificity of 100%, but a
Sensitivity/Recall of 0%, which means that all predicted diagnosis are negative. This is because the
proposed ANN model using a threshold to make the best decision in diagnosing DVT and ANN
models works better with unbalanced datasets [85,91,92]. Therefore, this is the reason why the ANN
model was used in this paper.
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Table 10. Comparison of the proposed ANN model versus other M-L approaches.

True True False False Specificity Sensitivity Precision Accuracy
Machine-Learning Approach Positive (TP) Negative Positive Negative [%] (Recall) [%] [%] [%]

Proposed ANN 1300 7799 299 602 96.31 68.35 81.30 90.99

Related work

Linear SVM [35,36,88] 0 8098 0 1902 100 0 0 80.98

Quadratic SVM [35,36,88,89] 651 7553 545 1251 93.27 34.23 54.43 82.04

Fine Gaussian SVM [36,88] 569 7526 572 1333 92.94 29.92 49.87 80.95

Simple Tree [35,36] 685 7384 724 1217 91.07 31.01 48.62 80.69

Complex Tree [35,36] 740 7361 737 1162 90.90 38.91 50.10 81.01

Weigthed KNN [35,36,90] 710 7365 733 1192 90.95 37.33 49.20 80.75

Fine KNN [35,36,90] 801 6874 1224 1101 84.89 42.11 39.56 76.75

Random Forest (RF) [32] 1265 7658 316 761 96.04 62.44 80.01 89.23

Stochastic Gradient Descent (SGD) [32] 1157 7453 295 1095 96.19 51.38 79.68 86.10

eXtreme Gradient Boosting (XGBoost) [33] 1250 7625 312 813 96.07 60.59 80.03 88.75

Gradient Boosting Decision Tree (GBDT) [33] 1358 7583 294 765 96.27 63.97 82.20 89.41

4.4. External Validation

Once the proposed ANN model was trained and validated with the k-fold cross-validation technique,
an external validation was performed using the information from 59 real clinical cases provided by a
public hospital during the years of 2017 and 2018. Figure 10 shows the results of evaluating the real
clinical cases by using the proposed prediction model. It is observed that only 1 out of 36 cases of
DVT were diagnosed as negative, when, in fact, they were positive; that is, an Accuracy of 98.30% was
achieved (58 of 59 hits); therefore, there is a diagnostic error of 1.70%.
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Figure 10. External validation of the proposed ANN model by using historical data from a Mexican hospital.

4.5. Usage Scenario

The use of the proposed CDSS uses ANN modelo based on the Wells criteria for the diagnosis of
DVT; it is recommended that this intelligent system is complementary to the protocol that is currently
used, therefore, as illustrated in Figure 11. It is proposed that the physician performs the physical
examination and interviews the patient, and then enters the data obtained into the proposed intelligent
system. If the physician and the system show that the user does not have a DVT condition, the patient
will not receive treatment. If the system yields a diagnosis of positive DVT, but the doctor determines
that it is not, then the patient should go home and watch for the appearance of new symptoms or
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those already existing becoming more acute. In the case that the physician determines that the physical
examination suggests a DVT, but the system diagnoses otherwise, the physician will make the decision
leaving as a suggestion that the patient should be under observation. Finally, if both the system and
the physician determine that the patient is suffering from DVT, treatment of DVT should be initiated.
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Figure 11. Suggested use of the proposed CDSS in primary care modules.

4.6. Limitations of the Proposed Approach

The dataset used in the training and validation of the proposed classification model is generated
according to the proposed Algorithm 1, and, although it is based on actual occurrences according to
statistical data reported by Wells [60], it does not faithfully represent the behavior of the population at
risk of suffering from DVT. However, the results with real data suggest an accuracy of 98.30% due to
the impact that decisions based on the proposed classification model can have on the health of patients;
it is suggested to take these results as evidence of the effectiveness of ANNs in the diagnosis of DVT,
and look for a dataset with more real cases to train the ANN model before putting it into practice
in real-life.

5. Conclusions

This paper presented a diagnostic model for suspected DVT cases based on back-propagation
ANN. In this study, an ANN model was used to improve the learning Accuracy when dealing with a
highly unbalanced dataset. The training was performed according to Wells’ criteria and considering
age and gender. Because of the small amount of historical data in Mexican hospitals with cases of
DVT symptoms, a technique of data augmentation to train the ANN model is proposed, which helps
to improve Accuracy in the DVT diagnosis. The k-fold cross validation results show a diagnostic
Accuracy of 90.99% of the cases of a synthetic dataset and an Accuracy of 98.30% from 59 real-cases
of a Mexican hospital. The above could be achieved because the ANN model makes the diagnosis
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by using a threshold 0.484 found to maximize Accuracy. On the other hand, with a threshold of
0.138, the proposed ANN model improves the classification of positive cases without significantly
affecting the classification of negative cases. It is evident that the development and implementation
of a CDSS using the ANN model for the diagnosis of DVT in primary care improves the Accuracy of
early diagnosis, thus decreasing the flow of patients arriving at the emergency department. As a direct
consequence, morbidity and mortality rates in patients in primary care would be reduced; in addition,
less economic resources in medical units would be consumed. The proposed approach improves
Accuracy by 17.17% versus diagnosis in a traditional way using Wells’ criteria without considering
gender and age. The proposed ANN model was compared with other well known machine-learning
approaches, and it was observed that the Accuracy obtained is better than the related approaches
because they do not use an optimized threshold to make the decision. Therefore, it is concluded that
the presented approach contributes significantly to the early diagnosis of DVT through probabilistic
models such as the Wells criteria, gender, age, and the use of back-propagation ANN to help physicians
make a more reliable or accurate decision when making a DVT diagnosis.

As future work, the proposed method and algorithms can be implemented on embedded systems
and FPGAs, the above with the purpose of developing intelligent instrumentation that is portable
and reliable.

Author Contributions: Conceptualization, E.I.-G., E.E.G.-G. and O.R.L.-B.; Data curation, M.B.F.-M. and
D.A.M.-M.; Formal analysis, M.B.F.-M., F.Z.-A. and D.L.-M.; Funding acquisition, E.I.-G., D.A.M.-M. and M.B.F.-M.;
Investigation, M.B.F.-M., E.I.-G., E.E.G.-G., O.R.L.-B., D.A.M.-M. and L.J.V.-G.; Methodology, M.B.F.-M., E.I.-G. and
D.A.M.-M.; Software, M.B.F.-M., E.I.-G. and D.A.M.M.; Validation, E.E.G.G., O.R.L.-B. and D.L.-M.; Supervision,
E.I.-G. and E.E.G.-G.; Writing—original draft, M.B.F.-M. and D.A.M.-M.; Writing—review and editing, E.I.-G. and
E.E.G.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Secretary of Public Education (SEP) with code 11776
P/PROFEXCE-2020-02MSU0020A-12 and P/PFCE-2018-02MSU0020A-12 11478. The authors appreciate the
doctoral scholarship granted to Francisco Zamora-Arellano from the Mexican National Council for Science and
Technology (CONACYT). The authors would like to thank PRODEP (Professional Development Program for
Professors) for supporting the new generations and for innovating the application of knowledge.

Acknowledgments: The authors are thankful to the reviewers for their comments and suggestions to improve the
quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References

1. Myers, D.J.; Lester, P.; Adili, R.; Hawley, A.; Durham, L.; Dunivant, V.; Reynolds, G.; Crego, K.;
Zimmerman, Z.; Sood, S.; et al. A new way to treat proximal deep venous thrombosis using E-selectin
inhibition. J. Vasc. Surg. Venous Lymphat Disord. 2020, 8, 268–278. [CrossRef]

2. Taha, M.A.; Busuttil, A.; Bootun, R.; Davies, A.H. A systematic review on the use of deep venous stenting
for acute venous thrombosis of the lower limb. Phlebology 2019, 34, 115–127. [CrossRef]

3. Lopes Goularte, F.F.C.; Caroliny Torres, G.; Carvalho, R.D.P. Evaluation of deep vein thrombosis prophylaxis
in a general hospital. J. Vasc. Bras. 2018, 17. [CrossRef]

4. White, R.H. The epidemiology of venous thromboembolism. Circulation 2003, 107, I-4–I-8. [CrossRef]
[PubMed]

5. Clarke, M.J.; Broderick, C.; Hopewell, S.; Juszczak, E.; Eisinga, A. Compression stockings for preventing deep
vein thrombosis in airline passengers. Cochrane Database Syst. Rev. 2016, 9. [CrossRef] [PubMed]

6. Kean, J.; Pearton, A.; Fell, J.; Adams, M.; Kitic, C.; Wu, S.; Stone, S.; Zadow, E. Deep vein thrombosis in a
well-trained masters cyclist, is popliteal vein entrapment syndrome to blame? J. Thromb. Thrombolysis 2019,
47, 301–304. [CrossRef] [PubMed]

7. Abood, K.K.; Paul, M.R.; Kuo, D.J. Deep Vein Thrombosis in a Young, Healthy Baseball Catcher: A Case
Report and Review of the Literature. J. Pediatr. Hematol. Oncol. 2019, 41, 321–323. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jvsv.2019.08.016
http://dx.doi.org/10.1177/0268355518772760
http://dx.doi.org/10.1590/1677-5449.007017
http://dx.doi.org/10.1161/01.CIR.0000078468.11849.66
http://www.ncbi.nlm.nih.gov/pubmed/12814979
http://dx.doi.org/10.1002/14651858.CD004002.pub3
http://www.ncbi.nlm.nih.gov/pubmed/27624857
http://dx.doi.org/10.1007/s11239-018-1796-x
http://www.ncbi.nlm.nih.gov/pubmed/30569423
http://dx.doi.org/10.1097/MPH.0000000000001113
http://www.ncbi.nlm.nih.gov/pubmed/29401105


Electronics 2020, 9, 1810 21 of 24

8. Lippi, G.; Mattiuzzi, C.; Franchini, M. Sleep apnea and venous thromboembolism, A systematic review.
Thromb. Haemost. 2015, 114, 958–963. [CrossRef] [PubMed]

9. Middeldorp, S.; Levi, M. Thrombophilia: An Update. Semin. Thromb. Hemost. 2007, 33, 563–572. [CrossRef]
10. Chaudhuri, R.; Salari, R. Baker’s cyst simulating deep vein thrombosis. Clin. Radiol. 1990, 41, 400–404.

[CrossRef]
11. Gunderson, C.G.; Chang, J.J. Overuse of compression ultrasound for patients with lower extremity cellulitis.

Thromb. Res. 2014, 134, 846–850. [CrossRef]
12. Harder, E.M.; Desai, O.; Marshall, P.S. Clinical Probability Tools for Deep Venous Thrombosis, Pulmonary

Embolism, and Bleeding. Clin. Chest Med. 2018, 39, 473–482. [CrossRef] [PubMed]
13. Do, D.D.; Husmann, M. Diagnostik venöser Erkrankungen, (Diagnosis of Venous Disease). Herz Kardiovaskuläre

Erkrank. 2007, 32, 10–17. [CrossRef]
14. Kraaijpoel, N.; Carrier, M.; Le Gal, G.; McInnes, M.; Salameh, J.P.; McGrath, T.; Van Es, N.; Moher, D.; Büller,

H.R.; Bossuyt, P.; et al. Diagnostic accuracy of three ultrasonography strategies for deep vein thrombosis of
the lower extremity: A systematic review and meta-analysis. PLoS ONE 2020, 15. [CrossRef] [PubMed]

15. Lewiss, R.E.; Kaban, N.L.; Saul, T. Point-of-care ultrasound for a deep venous thrombosis. Glob. Heart 2013,
8, 329–333. [CrossRef] [PubMed]

16. Fuentes Camps, E.; Luis Del Val García, J.; Bellmunt Montoya, S.; Hmimina Hmimina, S.; Gómez Jabalera, E.;
Muñoz Pérez, M.Á. Cost-effectiveness of the deep vein thrombosis diagnosis process in primary care.
Aten Primaria 2016, 48, 251–257. [CrossRef] [PubMed]

17. Wilson, E.; Phair, J.; Carnevale, M.; Koleilat, I. Common Reasons for Malpractice Lawsuits Involving Pulmonary
Embolism and Deep Vein Thrombosis. J. Surg. Res. 2020, 245, 212–216. [CrossRef]

18. Modi, S.; Deisler, R.; Gozel, K.; Reicks, P.; Irwin, E.; Brunsvold, M.; Banton, K.; Beilman, G.J. Wells criteria
for DVT is a reliable clinical tool to assess the risk of deep venous thrombosis in trauma patients. World J.
Emerg. Surg. 2016, 11. [CrossRef]

19. Oudega, R.; Moons, K.G.M.; Hoes, A.W. Ruling out deep venous thrombosis in primary care. A simple
diagnostic algorithm including D-dimer testing. Thromb. Haemost. 2005, 94, 200–205. [CrossRef]

20. Van der Hulle, T.; Dronkers, C.E.; Huisman, M.V.; Klok, F.A. Current standings in diagnostic management of
acute venous thromboembolism: Still rough around the edges. Blood Rev. 2016, 30, 21–26. [CrossRef]

21. Tan, J.H.; Fujita, H.; Sivaprasad, S.; Bhandary, S.V.; Rao, A.K.; Chua, K.C.; Acharya, U.R. Automated
segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network.
Inf. Sci. 2017, 420, 66–76. [CrossRef]

22. Kadhim, M.A. ScienceDirect FNDSB: A fuzzy-neuro decision support system for back pain diagnosis.
Cogn. Syst. Res. 2018, 52, 691–700. [CrossRef]

23. Jabez Christopher, J.; Khanna Nehemiah, H.; Kannan, A. A clinical decision support system for diagnosis of
Allergic Rhinitis based on intradermal skin tests. Comput. Biol. Med. 2015, 65, 76–84. [CrossRef]

24. Simões, A.S.; Maia, M.R.; Gregório, J.; Couto, I.; Asfeldt, A.M.; Simonsen, G.S.; Póvoa, P.; Viveiros, M.; Lapão,
L.V. Participatory implementation of an antibiotic stewardship programme supported by an innovative
surveillance and clinical decision-support system. J. Hosp. Infect. 2018, 100, 257–264. [CrossRef]

25. Hsu, W.Y. A decision-making mechanism for assessing risk factor significance in cardiovascular diseases.
Decis. Support Syst. 2018, 115, 64–77. [CrossRef]

26. However, B.; Bastani, K.; Raharjo, H.; Lifvergren, S.; Marsh, W.; Bergman, B. Decision support system for
Warfarin therapy management using Bayesian networks. Decis. Support Syst. 2013, 55, 488–498. [CrossRef]

27. Xiao, Y.; Wu, J.; Lin, Z.; Zhao, X. A deep learning-based multi-model ensemble method for cancer prediction.
Comput. Methods Programs Biomed. 2018, 153, 1–9. [CrossRef]

28. Cao, C.; Liu, F.; Tan, H.; Song, D.; Shu, W.; Li, W.; Zhou, Y.; Bo, X.; Xie, Z. Deep Learning and Its Applications
in Biomedicine. Genom. Proteom. Bioinform. 2018, 16, 17–32. [CrossRef]

29. Cruz-Vega, I.; Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.
Deep Learning Classification for Diabetic Foot Thermograms. Sensors 2020, 20, 1762. [CrossRef]

30. Manogaran, G.; Mohamed Shakeel, P.; Hassanein, A.S.; Malarvizhi Kumar, P.; Chandra Babu, G. Machine
Learning Approach-Based Gamma Distribution for Brain Tumor Detection and Data Sample Imbalance
Analysis. IEEE Access 2019, 7, 12–19. [CrossRef]

http://dx.doi.org/10.1160/th15-03-0188
http://www.ncbi.nlm.nih.gov/pubmed/25994924
http://dx.doi.org/10.1055/s-2007-985752
http://dx.doi.org/10.1016/S0009-9260(05)80600-2
http://dx.doi.org/10.1016/j.thromres.2014.08.002
http://dx.doi.org/10.1016/j.ccm.2018.04.001
http://www.ncbi.nlm.nih.gov/pubmed/30122172
http://dx.doi.org/10.1007/s00059-007-2958-3
http://dx.doi.org/10.1371/journal.pone.0228788
http://www.ncbi.nlm.nih.gov/pubmed/32045437
http://dx.doi.org/10.1016/j.gheart.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/25690634
http://dx.doi.org/10.1016/j.aprim.2015.05.006
http://www.ncbi.nlm.nih.gov/pubmed/26298874
http://dx.doi.org/10.1016/j.jss.2019.07.079
http://dx.doi.org/10.1186/s13017-016-0078-1
http://dx.doi.org/10.1160/TH04-12-0829
http://dx.doi.org/10.1016/j.blre.2015.07.002
http://dx.doi.org/10.1016/j.ins.2017.08.050
http://dx.doi.org/10.1016/j.cogsys.2018.08.021
http://dx.doi.org/10.1016/j.compbiomed.2015.07.019
http://dx.doi.org/10.1016/j.jhin.2018.07.034
http://dx.doi.org/10.1016/j.dss.2018.09.004
http://dx.doi.org/10.1016/j.dss.2012.10.007
http://dx.doi.org/10.1016/j.cmpb.2017.09.005
http://dx.doi.org/10.1016/j.gpb.2017.07.003
http://dx.doi.org/10.3390/s20061762
http://dx.doi.org/10.1109/ACCESS.2018.2878276


Electronics 2020, 9, 1810 22 of 24

31. Stefan Jianu, S.R.; Ichim, L.; Popescu, D. Automatic Diagnosis of Skin Cancer Using Neural Networks. In
Proceedings of the 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE),
Bucharest, Romania, 28–30 March 2019; pp. 1–4.10.1109/ATEE.2019.8724938. [CrossRef]

32. Syed-Abdul, S.; Firdani, R.P.; Chung, H.J.; Uddin, M.; Hur, M.; Park, J.H.; Kim, H.W.; Gradišek, A.; Dovgan, E.
Artificial Intelligence based Models for Screening of Hematologic Malignancies using Cell Population Data.
Sci. Rep. 2020, 10, 4583. [CrossRef] [PubMed]

33. Shen, J.; Chen, J.; Zheng, Z.; Zheng, J.; Liu, Z.; Song, J.; Wong, S.Y.; Wang, X.; Huang, M.; Fang, P.H.; et al.
An Innovative Artificial Intelligence–Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI):
Development Study. J. Med. Internet Res. 2020, 22, e21573. [CrossRef]

34. Kumar Srivastava, A.; Kumar, Y.; Kumar Singh, P. Computer aided diagnostic system based on SVM and K
harmonic mean based attribute weighting method. Obes. Med. 2020, 19, 100270. [CrossRef]

35. Doma, V.; Pirouz, M.A. A comparative analysis of machine learning methods for emotion recognition using
EEG and peripheral physiological signals. J. Big. Data 2020, 7. [CrossRef]

36. Janghel, R.; Verma, A.; Rathore, Y. Performance Comparison of Machine Learning Techniques for Epilepsy
Classification and Detection in EEG Signal. In Data Management, Analytics and Innovation. Advances in
Intelligent Systems and Computing; Sharma, N.; Chakrabarti, A., Eds.; Springer: Berlin/Heidelberg, Germany,
2020; Volume 1042. [CrossRef]

37. Liu, Z.; Cao, Y.; Li, Y.; Xiao, X.; Qiu, Q.; Yang, M.; Zhao, Y.; Cui, L. Automatic diagnosis of fungal keratitis
using data augmentation and image fusion with deep convolutional neural network. Comput. Methods
Programs Biomed. 2020, 187, 105019. [CrossRef]

38. Sun, H.; Zeng, X.; Xu, T.; Peng, G.; Ma, Y. Computer-Aided Diagnosis in Histopathological Images of the
Endometrium Using a Convolutional Neural Network and Attention Mechanisms. IEEE J. Biomed. Health Inf.
2019.10.1109/JBHI.2019.2944977. [CrossRef] [PubMed]

39. Nafee, T.; Gibson, C.M.; Travis, R.; Yee, M.K.; Kerneis, M.; Chi, G.; AlKhalfan, F.; Hernandez, A.F.; Hull, R.D.;
Cohen, A.T.; et al. Machine learning to predict venous thrombosis in acutely ill medical patients. Res. Pr.
Thromb. Haemost. 2020, 4, 230–237. [CrossRef]

40. Martins, T.; Annichino-Bizzacchi, J.; Romano, A.; Maciel Filho, R. Artificial neural networks for prediction of
recurrent venous thromboembolism. Int. J. Med. Inf. 2020, 141, 104221. [CrossRef]

41. Mishra, A.; Ashraf, M. Using Artificial Intelligence to Manage Thrombosis Research, Diagnosis, and Clinical
Management. Semin. Thromb. Hemost. 2020, 46, 410–418. [CrossRef]

42. Wang, X.; Yang, Y.Q.; Liu, S.H.; Hong, X.Y.; Sun, X.F.; Shi, J.H. Comparing different venous thromboembolism
risk assessment machine learning models in Chinese patients. J. Eval. Clin. Pract. 2019, 21, 26–34. [CrossRef]

43. Liu, S.; Zhang, F.; Xie, L.; Wang, Y.; Xiang, Q.; Yue, Z.; Feng, Y.; Yang, Y.; Li, J.; Luo, L.; et al. Machine
learning approaches for risk assessment of peripherally inserted Central catheter-related vein thrombosis in
hospitalized patients with cancer. Int. J. Med. Inf. 2019, 129, 175–183. [CrossRef] [PubMed]

44. Mclnnes, G.; Daneshjou, R.; Katsonis, P.; Lichtarge, O.; Srinivasan, R.; Rana, S.; Radivojac, P.; Mooney, S.D.;
Pagel, K.A.; Stamboulian, M.; et al. Predicting venous thromboembolism risk from exomes in the Critical
Assessment of Genome Interpretation (CAGI) challenges. Hum. Mutat. Var. Inf. Dis. 2019, 40, 1314–1320.
[CrossRef] [PubMed]

45. Willan, J.; Katz, H.; Keeling, D. The use of artificial neural network analysis can improve the risk-stratification of
patients presenting with suspected deep vein thrombosis. Br. J. Haematol. 2019, 185, 289–296. [CrossRef] [PubMed]

46. Wells, P. Predictive analytics by deep machine learning: A call for next-gen tools to improve health care.
Res. Pract. Thromb. Haemost. 2020, 4, 181–182. [CrossRef]

47. Zhao, H.; Hua, Q.; Chen, H.B.; Ye, Y.; Wang, H.; Tan, S.X.D.; Tlelo-Cuautle, E. Thermal-Sensor-Based
Occupancy Detection for Smart Buildings Using Machine-Learning Methods. ACM Trans. Des. Autom.
Electron. Syst. 2018, 23. [CrossRef]

48. Horng, M.F.; Kung, H.Y.; Chen, C.H.; Hwang, F.J. Deep Learning Applications with Practical Measured
Results in Electronics Industries. Electronics 2020, 9, 501. [CrossRef]

49. Tlelo-Cuautle, E.; De la Fraga, L.; Rangel-Magdaleno, J. Engineering Applications of FPGAs; Springer:
Berlin/Heidelberg, Germany, 2016; doi:10.1007/978-3-319-34115-6. [CrossRef]

50. Al-Shayea, Q.K. Artificial Neural Networks in Medical Diagnosis. Int. J. Comput. Sci. Issues 2011, 8, 150–154.
51. Shahid, N.; Rappon, T.; Berta, W. Applications of artificial neural networks in health care organizational

decision-making. PLoS ONE 2019, 14, e0212356. [CrossRef]

http://dx.doi.org/10.1109/ATEE.2019.8724938
http://dx.doi.org/10.1038/s41598-020-61247-0
http://www.ncbi.nlm.nih.gov/pubmed/32179774
http://dx.doi.org/10.2196/21573
http://dx.doi.org/10.1016/j.obmed.2020.100270
http://dx.doi.org/10.1186/s40537-020-00289-7
http://dx.doi.org/10.1007/978-981-32-9949-8_29
http://dx.doi.org/10.1016/j.cmpb.2019.105019
http://dx.doi.org/10.1109/JBHI.2019.2944977
http://www.ncbi.nlm.nih.gov/pubmed/31581102
http://dx.doi.org/10.1002/rth2.12292
http://dx.doi.org/10.1016/j.ijmedinf.2020.104221
http://dx.doi.org/10.1055/s-0039-1697949
http://dx.doi.org/10.1111/jep.13324
http://dx.doi.org/10.1016/j.ijmedinf.2019.06.001
http://www.ncbi.nlm.nih.gov/pubmed/31445252
http://dx.doi.org/10.1002/humu.23825
http://www.ncbi.nlm.nih.gov/pubmed/31140652
http://dx.doi.org/10.1111/bjh.15780
http://www.ncbi.nlm.nih.gov/pubmed/30727024
http://dx.doi.org/10.1002/rth2.12297
http://dx.doi.org/10.1145/3200904
http://dx.doi.org/10.3390/electronics9030501
http://dx.doi.org/10.1007/978-3-319-34115-6
http://dx.doi.org/10.1371/journal.pone.0212356


Electronics 2020, 9, 1810 23 of 24

52. Choquenaira Florez, A.Y.; Scabora, L.; Amer-Yahia, S.; Rodrigues Júnior, J.F. Augmentation Techniques for
Sequential Clinical Data to Improve Deep Learning Prediction Techniques. In Proceedings of the 2020
IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA,
28–30 July 2020; pp. 597–602. [CrossRef]

53. Qatawneh, Z.; Alshraideh, M.; Almasri, N.; Tahat, L.; Awidi, A. Clinical decision support system for venous
thromboembolism risk classification. Appl. Comput. Inf. 2019, 15, 12–18. [CrossRef]

54. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for
predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]

55. Zuluaga-Gomez, J.; Al Masry, Z.; Benaggoune, K.; Meraghni, S.; Zerhouni, N. A CNN-based methodology
for breast cancer diagnosis using thermal images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020.
[CrossRef]

56. De Souza, L.A.; Passos, L.A.; Mendel, R.; Ebigbo, A.; Probst, A.; Messmann, H.; Palm, C.; Papa, J.P. Assisting
Barrett’s esophagus identification using endoscopic data augmentation based on Generative Adversarial
Networks. Comput. Biol. Med. 2020, 126, 104029. [CrossRef] [PubMed]

57. Gao, Z.; Li, J.; Guo, J.; Chen, Y.; Yi, Z.; Zhong, J. Diagnosis of Diabetic Retinopathy Using Deep Neural
Networks. IEEE Access 2019, 7, 3360–3370. [CrossRef]

58. Yoon, J.; Drumright, L.N.; Van der Schaar, M. Anonymization Through Data Synthesis Using Generative
Adversarial Networks (ADS-GAN). IEEE J. Biomed. Health Inf. 2020, 24, 2378–2388. [CrossRef]

59. Goncalves, A.; Ray, P.; Soper, B.; Stevens, J.; Coyle, L.; Sales, A.P. Generation and evaluation of synthetic
patient data. BMC Med. Res. Methodol. 2020, 20, 108. [CrossRef]

60. Wells, P.S.; Owen, C.; Doucette, S.; Fergusson, D.; Tran, H. Does this patient have deep vein thrombosis?
JAMA 2006, 295, 199–207. [CrossRef]

61. Yang, L.; Tao, L.; Chen, X.; Gu, X. Multi-scale semantic feature fusion and data augmentation for acoustic
scene classification. Appl. Acoust. 2020, 163. [CrossRef]

62. Hu, T.; Tang, T.; Lin, R.; Chen, M.; Han, S.; Wu, J. A simple data augmentation algorithm and a self-adaptive
convolutional architecture for few-shot fault diagnosis under different working conditions. Measurement
2020, 156. [CrossRef]

63. Gómez-Ríos, A.; Tabik, S.; Luengo, J.; Shihavuddin, A.S.; Krawczyk, B.; Herrera, F. Towards highly accurate
coral texture images classification using deep convolutional neural networks and data augmentation.
Expert Syst. Appl. 2019. [CrossRef]

64. Cao, B.; Wang, N.; Li, J.; Gao, X. Data Augmentation-Based Joint Learning for Heterogeneous Face
Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1731–1743. [CrossRef]

65. Wells, P.S.; Anderson, D.R.; Bormanis, J.; Guy, F.; Mitchell, M.; Gray, L.; Clement, C.; Robinson, K.S.;
Lewandowski, B. Value of assessment of pretest probability of deep-vein thrombosis in clinical management.
Lancet 1997, 350, 1795–1798. [CrossRef]

66. Hardy, T.J.; Bevis, P.M. Deep vein thrombosis. Vasc. Surg. 2019, 37, 67–72. [CrossRef]
67. Bernardi, E.; Camporese, G. Diagnosis of deep-vein thrombosis. Thromb. Res. 2018, 163, 201–206. [CrossRef]
68. Fox, J.C.; Bertoglio, K.C. Emergency Physician Performed Ultrasound for DVT Evaluation. Thrombosis 2011,

2011, 4. [CrossRef] [PubMed]
69. Zubiate, P.; Urrutia, A.; Zamarreño, C.R.; Egea-Urra, J.; Fernández-Irigoyen, J.; Giannetti, A.; Baldini, F.;

Díaz, S.; Matias, I.R.; Arregui, F.J.; et al. Fiber-based early diagnosis of venous thromboembolic disease by
label-free D-dimer detection. Biosens. Bioelectron. X 2019, 2, 100026. [CrossRef]

70. Sun, M.C.; Li, M.S. Intervention for Diagnosis of Deep Vein Thrombosis in Acute Stroke Patients: A
Hospital-Based Study. PLoS ONE 2014, 9. [CrossRef]

71. Pedraza García, J.; Valle Alonso, J.; Ceballos García, P.; Rico Rodríguez, F.; Aguayo López, M.Á.;
Muñoz-Villanueva, M.D.C. Comparison of the Accuracy of Emergency Department-Performed Point-of-
Care-Ultrasound (POCUS) in the Diagnosis of Lower-Extremity Deep Vein Thrombosis. J. Emerg. Med. 2018,
54, 656–664. [CrossRef]

72. Garcia, R.; Labropoulos, N. Duplex Ultrasound for the Diagnosis of Acute and Chronic Venous Diseases.
Surg. Clin. N. Am. 2018, 98, 201–218. [CrossRef]

73. Jain, A.K.; Soult, M.C.; Resnick, S.A.; Desai, K.; Astleford, P.; Eskandari, M.K.; Rodriguez, H.E. Detecting
iliac vein thrombosis with current protocols of lower extremity venous duplex ultrasound. J. Vasc. Surg.
Venous Lymphat. Disord. 2018, 6, 724–729. [CrossRef]

http://dx.doi.org/10.1109/CBMS49503.2020.00118
http://dx.doi.org/10.1016/j.aci.2017.09.003
http://dx.doi.org/10.1016/S0895-4356(96)00002-9
http://dx.doi.org/10.1080/21681163.2020.1824685
http://dx.doi.org/10.1016/j.compbiomed.2020.104029
http://www.ncbi.nlm.nih.gov/pubmed/33059236
http://dx.doi.org/10.1109/ACCESS.2018.2888639
http://dx.doi.org/10.1109/JBHI.2020.2980262
http://dx.doi.org/10.1186/s12874-020-00977-1
http://dx.doi.org/10.1001/jama.295.2.199
http://dx.doi.org/10.1016/j.apacoust.2020.107238
http://dx.doi.org/10.1016/j.measurement.2020.107539
http://dx.doi.org/10.1016/j.eswa.2018.10.010
http://dx.doi.org/10.1109/TNNLS.2018.2872675
http://dx.doi.org/10.1016/S0140-6736(97)08140-3
http://dx.doi.org/10.1016/j.mpsur.2018.12.002
http://dx.doi.org/10.1016/j.thromres.2017.10.006
http://dx.doi.org/10.1155/2011/938709
http://www.ncbi.nlm.nih.gov/pubmed/22084671
http://dx.doi.org/10.1016/j.biosx.2019.100026
http://dx.doi.org/10.1371/journal.pone.0114094
http://dx.doi.org/10.1016/j.jemermed.2017.12.020
http://dx.doi.org/10.1016/j.suc.2017.11.007
http://dx.doi.org/10.1016/j.jvsv.2018.06.010


Electronics 2020, 9, 1810 24 of 24

74. Segal, J.B.; Eng, J.; Tamariz, L.J.; Bass, E.B. Review of the evidence on diagnosis of deep venous thrombosis
and pulmonary embolism. Ann. Fam. Med. 2007, 5, 63–73. [CrossRef]

75. Landefeld, C. Noninvasive diagnosis of deep vein thrombosis. JAMA 2008, 300, 1696–1697. [CrossRef]
76. Stevenson, J.G. The Development of Color Doppler Echocardiography: Innovation and Collaboration. J. Am.

Soc. Echocardiogr. 2018, 31, 1344–1352. [CrossRef] [PubMed]
77. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44.

[CrossRef]
78. Pano-Azucena, A.; Tlelo-Cuautle, E.; Tan, S.D.; Ovilla-Martinez, B.; De la Fraga, L. FPGA-Based

Implementation of a Multilayer Perceptron Suitable for Chaotic Time Series Prediction. Technologies 2018, 6,
90. [CrossRef]

79. Masters, T. Practical Neural Networks Recipes in C++; Morgan Kaufmann: Bossdun, MA, USA, 1993; p. 493.
[CrossRef]

80. Aylward, S.; Anderson, R.A.Y. An algorithm for neural network architecture generation. In Proceedings of
the 8th Computing in Aerospace Conference, Baltimore, MD, USA, 21–24 October 1991. [CrossRef]

81. Yao, X. Evolving artificial neural networks. Proc. IEEE 1999, 87, 1423–1447. [CrossRef]
82. Brush, J.; Sherbino, J.; Norman, G.R. How Expert Clinicians Intuitively Recognize a Medical Diagnosis.

Am. J. Med. 2017, 130, 629–634. [CrossRef]
83. Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametric Stat. 2018, 30, 197–215.

[CrossRef]
84. Rodríguez, J.D.; Pérez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error

Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [CrossRef] [PubMed]
85. Sadrawi, M.; Sun, W.Z.; Ma, M.M.; Yeh, Y.T.; Abbod, M.; Shieh, J.S. Ensemble Genetic Fuzzy Neuro

Model Applied for the Emergency Medical Service via Unbalanced Data Evaluation. Symmetry 2018, 10, 71.
[CrossRef]

86. Fu, G.H.; Xu, F.; Zhang, B.Y.; Yi, L.Z. Stable variable selection of class-imbalanced data with precision-recall
criterion. Chemom. Intell. Lab. Syst. 2017, 171, 241–250. [CrossRef]

87. Schrynemackers, M.; Küffner, R.; Geurts, P. On protocols and measures for the validation of supervised
methods for the inference of biological networks. Front. Genet. 2013, 4, 262. [CrossRef] [PubMed]

88. Liu, M.; Wang, M.; Wang, J.; Li, D. Comparison of random forest, support vector machine and back
propagation neural network for electronic tongue data classification: Application to the recognition of
orange beverage and Chinese vinegar. Sens. Actuators B Chem. 2013, 177. [CrossRef]

89. Luo, J.; Yan, X.; Tian, Y. Unsupervised quadratic surface support vector machine with application to credit
risk assessment. Eur. J. Oper. Res. 2020, 280, 1008–1017. [CrossRef]

90. Barbon, A.P.A.C.; Barbon, S.J.; Mantovani Gomes, R.; Mayumi Fuzyi, E.; Manha Peres, L.; Bridi, A.M.
Storage time prediction of pork by Computational Intelligence. Comput. Electron. Agric. 2016, 127, 368–375.
[CrossRef]

91. Cascarano, G.; Debitonto, F.; Lemma, R.; Brunetti, A.; Buongiorno, D.; De Feudis, I.; Guerriero, A.; Rossini, M.;
Pesce, F.; Gesualdo, L.; et al. An Innovative Neural Network Framework for Glomerulus Classification Based on
Morphological and Texture Features Evaluated in Histological Images of Kidney Biopsy; Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Cham, Switzerland, 2019; pp. 727–738. [CrossRef]

92. Areiza-Laverde, H.; Castro-Ospina, A.; Peluffo-Ordóñez, D. Voice pathology detection using artificial
neural networks and support vector machines powered by a multicriteria optimization algorithm. Commun.
Comput. Inf. Sci. 2018, 915, 148–159. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1370/afm.648
http://dx.doi.org/10.1001/jama.300.14.1696
http://dx.doi.org/10.1016/j.echo.2018.08.005
http://www.ncbi.nlm.nih.gov/pubmed/30241927
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.3390/technologies6040090
http://dx.doi.org/10.1016/C2009-0-22399-3
http://dx.doi.org/10.2514/6.1991-3756
http://dx.doi.org/10.1109/5.784219
http://dx.doi.org/10.1016/j.amjmed.2017.01.045
http://dx.doi.org/10.1080/10485252.2017.1404598
http://dx.doi.org/10.1109/TPAMI.2009.187
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://dx.doi.org/10.3390/sym10030071
http://dx.doi.org/10.1016/j.chemolab.2017.10.015
http://dx.doi.org/10.3389/fgene.2013.00262
http://www.ncbi.nlm.nih.gov/pubmed/24348517
http://dx.doi.org/10.1016/j.snb.2012.11.071
http://dx.doi.org/10.1016/j.ejor.2019.08.010
http://dx.doi.org/10.1016/j.compag.2016.06.028
http://dx.doi.org/10.1007/978-3-030-26766-7_66
http://dx.doi.org/10.1007/978-3-030-00350-0_13
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hospital Protocol for DVT Diagnosis
	Proposed Method
	Artificial Neural Network
	Data Augmentation Algorithm
	Pre-Processing Scheme of the Dataset
	Training Process for DVT Diagnostic
	Algorithm to Improve Accuracy/Recall

	Results
	K-Fold Cross Validation
	Results from the Perspective of the Dataset
	Results Comparison
	External Validation
	Usage Scenario
	Limitations of the Proposed Approach

	Conclusions
	References

