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Abstract: The study of the optical properties of biological tissues for a wide spectral range is necessary
for the development and planning of noninvasive optical methods to be used in clinical practice.
In this study, we propose a new method to calculate almost all optical properties of tissues as a function
of wavelength directly from spectral measurements. Using this method, and with the exception of
the reduced scattering coefficient, which was obtained by traditional simulation methods, all the
other optical properties were calculated in a simple and fast manner for human and pathological
colorectal tissues. The obtained results are in good agreement with previous published data, both in
magnitude and in wavelength dependence. Since this method is based on spectral measurements
and not on discrete-wavelength experimental data, the calculated optical properties contain spectral
signatures that correspond to major tissue chromophores such as DNA and hemoglobin. Analysis of
the absorption bands of hemoglobin in the wavelength dependence of the absorption spectra of
normal and pathological colorectal mucosa allowed to identify differentiated accumulation of a
pigment in these tissues. The increased content of this pigment in the pathological mucosa may be
used for the future development of noninvasive diagnostic methods for colorectal cancer detection.

Keywords: optical properties of tissues; tissue spectroscopy; differentiated pigment content;
colorectal cancer; optical cancer detection; absorption coefficient; scattering coefficient; scattering
anisotropy; light penetration depth

1. Introduction

Human colorectal cancer is a major concern worldwide, with high numbers of incidence per year,
most of them resulting in fatality [1]. With the objective of developing new noninvasive optical methods
to replace the ionizing radiation methods currently used to detect and treat diseases such as cancer,
the research in the field of biophotonics has strongly increased in the last three decades [2]. To develop
such alternative optical methods, knowledge on the optical properties of normal and pathological tissues
is necessary for a wide wavelength range. Current optical diagnostic and therapeutic methods work at
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wavelengths within the traditional tissue windows: I (625–975 nm), II (1100–1350 nm), III (1600–1870 nm),
and IV (2100–2300 nm) [3,4]. Complementary to these wavelength ranges, where light penetration
depth presents local maxima for natural tissues [2,5], the use of optical clearing treatments can induce
other optical diagnostic and treatment windows, as it was recently demonstrated for the ultraviolet
(UV) range with transmittance efficiency peaks at (230 ± 30), (275 ± 25 nm), and (300 ± 40 nm) [6,7].

Considering the current optical methods that work at visible and near infrared (NIR) wavelengths,
the above-indicated recent discovery of UV-windows to diagnose and treat pathologies and the
emerging techniques at THz frequencies [8], it becomes urgent to map the optical properties of normal
and pathological tissues for a wide spectral range. A set of optical properties can be considered as
the identity card of any biological material, meaning that their evaluation can be used to discriminate
between normal and pathological tissues. Their knowledge is also necessary to create individual light
propagation models, which are necessary for the development of noninvasive optical diagnostic and
treatment procedures [9–11]. Various studies were made to evaluate the wavelength dependencies for
the various optical properties of different biological tissues [5,9,12–19]. Between the several optical
properties that can be used to characterize a particular biological material, some of them, such as the
absorption coefficient (µa), the scattering coefficient (µs), the scattering anisotropy factor (g), and the
refractive index (RI) are fundamental, but others that derive from these are also commonly used [2,19].
One of those derived properties is the reduced scattering coefficient (µ′s), which can be calculated from
µs and g [2,5,10]:

µ′s = µs(1− g). (1)

Another very useful optical property is the light penetration depth, δ, which quantifies how deep
light can penetrate in a tissue. Considering the diffusion approximation, its calculation is made using
µa and µ′s [2,13]:

δ =
1√

3µa(µa + µ′s)
. (2)

In general, for the UV range, both µs and µ′s have high values, leading to low values for δ,
but with the application of optical clearing treatments, such values can increase at some particular
UV wavelengths, as indicated above. In opposition, for longer wavelengths, in the visible and
near-infrared (NIR) range, scattering is low and δ reaches higher values [19,20]. Steven Jacques in
his widely cited review paper (more than 2500 citations in Google Scholar) has summarized the
wavelength dependencies of the optical properties of different biological tissues [20]. According to this
paper, the absorption coefficient shows a decreasing behavior with increasing wavelength, since major
chromophores, such as proteins, DNA and hemoglobin present their absorption bands in the UV
and visible range [6,20]. In addition, due to the presence of water or lipids, some other absorption
bands might occur in the NIR range. The wavelength dependence for µa, in a tissue, is the sum of the
absorption contributions from all tissue components [20].

Considering the UV-NIR range, the scattering coefficients also show a decreasing behavior
with increasing wavelength and such dependence is a combination of Rayleigh and Mie scattering
regimes [15,20]:

µs or µ′s = a′
 fRay

(
λ

500 (nm)

)−4

+
(
1− fRay

)( λ

500 (nm)

)−bMie
, (3)

where a′ is a scaling factor that represents µs or µ′s at 500 nm, f Ray is the Rayleigh scattering fraction,
and bMie characterizes the mean size of Mie scatterers. Such equation has been successfully applied to
fit the wavelength dependence for data of many biological soft tissues [20–22].

Equation (3) describes a smooth wavelength dependence for both scattering coefficients in the
spectral range from UV to NIR. As a result, and considering Equation (1), g will have a smooth
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increasing behavior with increasing wavelength, which can be described by Equation (4) [5] or by
Equation (5) [17]:

g(λ) = a + b
[
1− exp

(
λ− c

d

)]
, (4)

g(λ) = a · exp(b · λ) + c · exp(d · λ). (5)

The estimation of the parameters a′, f Ray and bMie in Equation (3) and a, b, c, and d in Equations (4)
or (5) is made when fitting the discrete µs, µ′s and g data, which are usually estimated along with µa

data, using inverse simulation codes based on the Adding-Doubling [23] or Monte Carlo [24] methods.
To perform such inverse simulations, experimental data from the tissue, such as total transmittance
(Tt), collimated transmittance (Tc) and total reflectance (Rt) are necessary. The RI data is also necessary
to perform these simulations and it can be measured experimentally at discrete wavelengths through
various methods [2]. Once the discrete RI values are obtained from measurements, the corresponding
wavelength dependency (called dispersion) for a specific spectral range can be obtained by fitting
the experimental values with an empirical relation, such as the Cauchy (Equation (6)), the Conrady
(Equation (7)) [25–27], or the Cornu (Equation (8)) equations [2,18,19,28,29]:

n(λ) = A +
B
λ2 +

C
λ4

, (6)

n(λ) = A +
B
λ
+

C
λ3.5 , (7)

n(λ) = A +
B

(λ−C)
. (8)

In opposition to the estimation of all optical properties through traditional simulation methods [23,
24], we have developed a new simplified calculation procedure to obtain the wavelength dependencies
for the optical properties of a biological material directly from the spectral measurements. This method
is simple, and it only needs the adding-doubling simulations to obtain µ′s. All the other optical
properties are directly calculated from the measured spectra. We have used such method to calculate
the wavelength dependencies for all optical properties of human colorectal normal and pathological
mucosa between the deep-UV and NIR (200–1000 nm). The calculation method is so sensitive that it
allowed us to identify the presence of a pigment that accumulates in different proportions in normal
and pathological tissues.

Section 2 explains the experimental and calculation methodology and Section 3 presents the
obtained results and corresponding discussion.

2. Materials and Methods

2.1. Tissue Samples

Following the guidelines of the Ethics Committee of the Portuguese Oncology Institute of Porto,
Portugal, colorectal surgical specimens from patients undergoing treatment at that Institution were
used to collect the tissue samples for this study. The patients have signed a written consent, allowing the
use of surgical resections for diagnostic and research purposes.

Considering the inner layer of the colorectal wall-the mucosa, the normal and pathological areas
(see Figure 1) were separated.
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A total of 10 samples from the normal and 10 from the pathological areas were prepared to be 
used in the present study. All the samples were prepared using a cryostat (LeicaTM, model CM 1850 
UV) with an approximated circular form, with diameter of about 1 cm and uniform thickness of 0.5 
mm. All these samples were submitted to various spectral measurements, as described in the 
following sub-section. 

3.2. Spectral Measurements 

The spectral measurements necessary to calculate the optical properties are Tt, Rt, and Tc. Figure 
2 presents a mixed scheme of the measurement setups to obtain these spectra. 

 

Figure 2. Schematic of the measurement setups to obtain Tt, Rt and Tc spectra. 

Considering Figure 2, the setup to measure Rt is presented inside the left-dashed red line, the 
setup to measure Tc is presented inside the center-dashed black line and the setup to measure Tt is 
presented inside the right-dashed blue line. For the measurements of Rt and Tt, a pulsed high-power 
and broad-band xenon lamp was used, while to measure Tc, a deuterium-halogen lamp was used. In 
all setups, light was delivered and collected with optical fiber cables and collimated lenses. All this 
equipment was acquired from AvantesTM (Apeldoorn, The Netherlands). While in the Rt and Tt 
measurements a 6 mm beam is used to acquire the spectra through an integrating sphere, in the Tc 
measurements, a collimated beam of 1 mm is established by a set of pinholes below and above the 
sample.  

All the 20 samples (10 normal and 10 pathological) were used to perform each of the three 
measurements, so that average results for the optical properties could be calculated. 

3.3. Calculations 

As indicated in Section 1, with the exception of µ′s, our method allows obtaining all other optical 
properties of a tissue through direct calculation from the spectral measurements. Such a method is 
fast, simple, and straightforward, as represented schematically in Figure 3 and described below. 

Figure 1. Surgical resection showing both normal and pathological areas of the colorectal mucosa.

A total of 10 samples from the normal and 10 from the pathological areas were prepared to
be used in the present study. All the samples were prepared using a cryostat (LeicaTM, model CM
1850 UV) with an approximated circular form, with diameter of about 1 cm and uniform thickness
of 0.5 mm. All these samples were submitted to various spectral measurements, as described in the
following sub-section.

2.2. Spectral Measurements

The spectral measurements necessary to calculate the optical properties are Tt, Rt, and Tc. Figure 2
presents a mixed scheme of the measurement setups to obtain these spectra.
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Figure 2. Schematic of the measurement setups to obtain Tt, Rt and Tc spectra.

Considering Figure 2, the setup to measure Rt is presented inside the left-dashed red line, the setup
to measure Tc is presented inside the center-dashed black line and the setup to measure Tt is presented
inside the right-dashed blue line. For the measurements of Rt and Tt, a pulsed high-power and
broad-band xenon lamp was used, while to measure Tc, a deuterium-halogen lamp was used. In all
setups, light was delivered and collected with optical fiber cables and collimated lenses. All this
equipment was acquired from AvantesTM (Apeldoorn, The Netherlands). While in the Rt and Tt

measurements a 6 mm beam is used to acquire the spectra through an integrating sphere, in the
Tc measurements, a collimated beam of 1 mm is established by a set of pinholes below and above
the sample.

All the 20 samples (10 normal and 10 pathological) were used to perform each of the three
measurements, so that average results for the optical properties could be calculated.

2.3. Calculations

As indicated in Section 1, with the exception of µ′s, our method allows obtaining all other optical
properties of a tissue through direct calculation from the spectral measurements. Such a method is fast,
simple, and straightforward, as represented schematically in Figure 3 and described below.
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Figure 3. Calculation procedure to obtain the optical properties of a tissue from spectral measurements.

The first calculation step consists on obtaining the wavelength dependence for the absorbance
(Ab) of the tissue sample. Such a calculation is made with Equation (9), using the Rt and Tt spectra.

Ab(λ) = 1−
(

Tt(λ) + Rt(λ)

100

)
. (9)

By dividing Ab(λ) by the sample thickness, we obtain µa(λ), which can be used to calculate the
real part of the RI of the tissue, ntissue(λ).

In this calculation, to obtain the tissue’s dispersion, we start by obtaining the imaginary part of
tissue’s RI, κ(λ), through Equation 10 [30]:

κ(λ) =
λ

4π
µa(λ). (10)

With this calculation, κ(λ) can be used in the following Kramers-Kronig (K-K) relation to obtain
ntissue(λ) [30,31]:

ntissue(λ) = 1 +
2
π

∞∫
0

λ

Λ
×

λ

Λ2
− λ2

κ(λ)dΛ, (11)

where Λ represents the integrating variable over a wavelength range under consideration and λ is a
fixed wavelength in that range that can be tuned for better adjustment of the calculated dispersion.
Such better adjustment is obtained if some experimental RI data for some wavelengths and/or a
possible dispersion curve for the tissue in a smaller spectral range than the one to be considered are
available [32].

The following step consists of obtaining the µ′s data through inverse adding-doubling (IAD)
simulations [23]. To perform these simulations, sample thickness, Tt, Rt, Tc, and RI data within
the wavelength range to consider are used as input. The IAD code used in these estimations is the
one developed by Scott Prahl and it is available online at http://omlc.org/software/iad. Such code
also generates µa, but since we have already calculated it from the Tt, Rt spectra and since each
simulation corresponds to a single wavelength, we only collect the µ′s data from the simulations
for later reconstruction of its wavelength dependence. The selection of wavelengths to perform
these simulations is kept to a minimum since the general curve that describes µ′s(λ) is described by
Equation (3). In the present study, we considered wavelengths at each 50 nm between 200 and 1000 nm.
Once all the µ′s values for the selected wavelengths are estimated, the data is fitted with Equation (3),
and a′, f Ray, and bMie are obtained during the fitting.

Using the calculated µa(λ) and the estimated µ′s(λ) in Equation (2), the wavelength dependence
for δ, δ( λ), is calculated.

http://omlc.org/software/iad
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To calculate µs(λ), the sample thickness, d, µa(λ), and the Tc spectrum are used in
Bouguer–Beer–Lambert law [2,10],

µs(λ) = −
ln[Tc(λ)]

d
− µa(λ), (12)

where µa(λ) is the one obtained from Tt and Rt spectra through Equation (9).
Finally, g(λ) is calculated from µs(λ) and µ′s(λ) through Equation (1).
The calculation procedure here described was used to obtain the mean optical properties for

human colorectal mucosa (normal and pathological) tissues. By analyzing such calculated properties,
it was possible to identify some spectral signatures and also to detect different pigment accumulation in
normal and pathological mucosa. Such distinct accumulation of this pigment can be used in future for
the development of a noninvasive diagnostic method, based on diffuse reflectance, Rd, measurements.
Section 3 presents the results of this study and corresponding discussion.

3. Results

We initiated the present study by performing the spectral measurements from the normal and
pathological tissue samples. Figure 4 presents the mean of 10 Tt spectra and standard deviation (SD)
bars for normal and pathological mucosa.
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Figure 4. Mean Tt spectra of the normal and pathological mucosa.

We see from the mean spectra in Figure 4 that both tissues present low transmittance in the
deep-UV range. The form and magnitude of the Tt spectra is similar for both tissues, showing an
increasing behavior with increasing wavelength and the absorption bands of hemoglobin near 415 nm
(Soret-oxygenated hemoglobin) and 550 nm (deoxygenated hemoglobin) [33].

Figure 5 presents the mean of 10 Rt spectra and SD bars for normal and pathological mucosa.
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Comparing between the spectra in graphs of Figure 5 we see that both tissues show similar
magnitude and wavelength dependence for Rt. Once again, the occurrence of two absorption bands
near 415 and 550 nm indicate the presence of both oxygenated and deoxygenated hemoglobin [33].

Figure 6 presents the mean of 10 Tc spectra and SD bars for normal and pathological mucosa.
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Figure 6. Mean Tc spectra of the normal and pathological mucosa.

Considering the sensitive Tc measurements presented in Figure 6, we see that, although the
wavelength dependence is similar for both tissues, some differences are visible. The normal mucosa
seems to have higher blood content, since the magnitude of the absorption bands of hemoglobin is
higher than in the pathological mucosa. On the other hand, the Tc magnitude is higher for the normal
mucosa in the entire spectral range, a fact that may mislead in the evaluation of the total blood content
in both tissues.

Using the individual Tt and Rt spectra that originated the mean curves in graphs of Figures 4
and 5 in Equation (9), we calculated 10 absorption spectra, Ab(λ), for each tissue, which were then
divided by the sample thickness, d = 0.05 cm, to obtain the 10 µa(λ) curves. Figure 7 presents the mean
µa(λ) curves and corresponding SD bars for both tissues.
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Both datasets in Figure 7 show that these tissues present a typical wavelength dependence for
µa, since its magnitude decreases with increasing wavelength from the UV to the NIR wavelengths.
These spectra show three absorption bands: the first one at 268 nm, which is a combination of the
absorption bands of DNA (260 nm) and hemoglobin (274 nm), the second at ~415 nm (Soret band),
and the third near 550 nm (deoxygenated hemoglobin) [33].

The mean curves in Figure 7 were used in calculations with Equations(10) and (11) to obtain
tissue’s dispersions. The solid lines in Figure 8 present the result of this calculation for both tissues,
along with the previously estimated Cornu curves (dashed lines) [34], now extended to 200 nm
for comparison.
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Figure 8. Tissue dispersion calculated through K-K relations and by Cornu-fitting of experimental data
for the normal and pathological mucosa.

Considering the datasets for each tissue in Figure 8, the dispersion obtained from the absorption
spectrum (solid line) and the one calculated from experimental RI data (dashed line) [34] show
good agreement.

After calculating the dispersions of both tissues between 200 and 1000 nm, we had all the necessary
data to perform the IAD simulations. Those simulations were performed for both tissues, using the
sample thickness of 0.05 cm, and the spectral data from mean Tt, mean Rt, mean Tc and the calculated
dispersions, as presented in graphs of Figures 4–6 and Figure 8. The estimated µ′s values and the
fitting curves described by Equation (3) are presented in Figure 9.
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As we can see from curves in Figure 9, to obtain a good fitting (R-square > 0.997 in both cases),
we needed to neglect some of the estimated points (points inside blue lines). The estimated curves
show the smooth-decreasing behavior with increasing wavelength, indicating that both tissues have
strong and multiple scattering at short-wavelengths. Since the simulations that generated the µ′s

points presented in Figure 9 were made using the mean experimental spectra, no SD bars are presented.
Comparing both tissues, we see that the magnitude of µ′s in the pathological mucosa is lower for
wavelengths in the NIR range and higher in the deep-UV region, near 200 nm, which suggests a higher
protein content in this tissue as reported by Peña-Llopis and Brugarolas [35].

When performing the fitting of the estimated µ′s data, we obtained the following equations for
the curves presented in Figure 9.

µ′s−normal(λ) = 20.76×

0.137×
(

λ

500 (nm)

)−4

+ (1− 0.137) ×
(

λ

500 (nm)

)−1.068, (13)

µ′s−pathological(λ) = 14.47×

0.2806×
(

λ

500 (nm)

)−4

+ (1− 0.2806) ×
(

λ

500 (nm)

)−0.6621, (14)
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The following step consisted on obtaining µs(λ) for both tissues. Considering the 10 Tc spectra
measured from a particular tissue and the calculated µa(λ) curves, 10 µs(λ) curves were calculated with
Equation (12). Figure 10 presents the calculated mean µs(λ), after adjusting with a curve as described
by Equation (3), and SD bars for both tissues.
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Both curves in Figure 10 show the expected smooth-decreasing behavior, and low SD values
along the entire spectral range, meaning that scattering is not too different from one sample to another
within the sample groups of normal and pathological mucosa used in the present study. Similar to
what was observed for µ′s, the pathological mucosa presents higher magnitude values for µs in the
deep-UV, indicating a higher protein content. The curves presented in Figure 10 are described by the
following equations, which were obtained with R-square values of 0.9978 (normal mucosa) and 0.9989
(pathological mucosa).

µs−normal(λ) = 71.14×

0.0244×
(

λ

500 (nm)

)−4

+ (1− 0.0244) ×
(

λ

500 (nm)

)−0.4035 (15)

µs−pathological(λ) = 96.07×

0.0169×
(

λ

500 (nm)

)−4

+ (1− 0.0169) ×
(

λ

500 (nm)

)−0.4665 (16)

After obtaining the curves for µ′s(λ) and µs(λ) for both tissues, we used Equation (1) to calculate
g(λ). Figure 11 presents the results of these calculations.
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Figure 11 shows that both tissues present a good wavelength dependence for g in the entire
spectral range – g increases with wavelength from the deep-UV to NIR. The pathological mucosa
presents higher g values than the normal mucosa in the entire spectral range, which suggests a higher
scattering directionality at all wavelengths. Considering the range between 200 and 230 nm, such higher
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scattering directionality might be due to the presence of a higher protein content in the pathological
mucosa. For the longer wavelengths, higher-sized structures that emerge during cancer development
might be responsible for the higher scattering directionality.

To obtain the equations that describe the curves presented in Figure 11, we used the curve fitting
tool of MATLABTM to fit that data.

g(λ) = 0.6763 · exp
(
2.171× 10−4

· λ
)
− 3.946 · exp

(
−9.055× 10−3

· λ
)
. (17)

g(λ) = 0.8335 · exp
(
8.226× 10−5

· λ
)
− 8.028 · exp

(
−12.25× 10−3

· λ
)
. (18)

These fittings were obtained with R-square values of 0.9998 for the normal mucosa and 0.9997 for
the pathological mucosa. Finally, using µa(λ) and µ′s(λ) in Equation (2), we calculated δ(λ) for both
tissues. The results of these calculations are presented in Figure 12.
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Both curves in Figure 12 show the expected wavelength dependence for δ. These curves also show
the absorption bands of hemoglobin near 415 and 550 nm. For the case of the pathological mucosa,
the occurrence of a double absorption band with peaks near 830 and 930 nm indicates that some lipids
have accumulated in this tissue during cancer development as reported [34]. Comparing the magnitude
of the δ values in curves of Figure 12 with others previously reported for other mucosal tissues, such as
mucous membrane from the human maxillary sinus [36], we see that our results are approximately
10 × less. Wondering why such difference occurs between our calculated and other published data
for mucous tissues, we supposed that some pigment has accumulated in the mucosal tissues used
in our study, leading to a reduced light penetration depth through increased absorption in the entire
spectral range. Other tissue fragments that were retrieved from the same surgical specimens were
analyzed at the Portuguese Oncology Institute of Porto, and consulting the clinical records of those
tissues, we found some information that is vital to interpret our results. According to these records,
as a result of a natural product that was administered to the patients in the two days before the surgical
procedure, a lipofuscin-type pigment has accumulated in the colorectal mucosa. Lipofuscin presents a
wavelength dependence that decreases in an exponential manner with increasing wavelength [37,38].

Trying to acquire additional information about this pigment that has accumulated in both tissues,
we returned to the µa data presented in Figure 7. Considering the absorption peaks of hemoglobin
in the visible range, we calculated the ratios between the µa values at those peaks and the ones from
the baseline and found that both normal and pathological tissues present a 2.7-fold ratio at 415 and a
1.8-fold ratio at 550 nm. According to Bashkatov et al. [36], these ratios should be higher for the normal
mucosa. On the other hand, they should also be different between normal and pathological mucosa
due to a higher blood content in cancer tissues, as previously reported [17]. By obtaining such equal
ratios at 415 and 550 nm for normal and pathological tissues, we get a confirmation that some absorber
is hiding the true blood content in the mucosa tissues used in our study. To obtain the wavelength
dependence for the µa of such pigment, we tried some curves that have an exponential decreasing
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behavior with increasing wavelength, similar to lipofuscin [37,38]. During these trials, we found that
a curve described by Equation (19) can be subtracted to the µa(λ) of the normal mucosa to produce
acceptable ratios at 415 nm (19.7-fold) and at 550 nm (10.1-fold), which resemble the ratios reported for
other mucosal tissues [36].

µa−pigment(λ) = A× e(3.524−0.0187.λ) (19)

In this equation, µa-pigment is represented in cm−1 and λ in nm. A represents the percentage
content of the pigment in the tissue, which in the case of normal mucosa assumes the value 1 (100%).
Equation (19) has the same mathematical form as the one reported for lipofuscin in cerebral tissues [38],
but its numerical factors needed to be adjusted to fit the wavelength dependence of the lipofuscin-type
pigment in colorectal tissues. The similar curve was also subtracted to the µa graph of the pathological
mucosa, but to obtain reasonable blood content in that tissue, we had to consider A = 1.1 in Equation (19),
a 10% higher content of the pigment in the pathological tissue. Figure 13 presents the µa graphs
for normal and pathological tissues, before and after subtracting the absorption of the pigment.
The absorption of the pigment, as described by Equation (19), is also represented in graphs of Figure 13,
considering 100% content in the normal and 110% in the pathological mucosa.
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Figure 13. Wavelength dependencies of µa for the pigment, for normal (a) and for pathological
(b) mucosa, before and after subtracting the absorption of the pigment.

The results presented in the graphs of Figure 13 present two important results. The first one is that
the lipofuscin-type pigment accumulates differently in the normal and pathological mucosa, since to
obtain these results, we had to consider a 10% higher content of the pigment in the pathological tissue.
The second result is that by subtracting the absorption of the pigment in the two tissues, the pathological
mucosa presents higher blood content than the normal mucosa, as previously reported [17].

4. Conclusions

The present study consisted on calculating the wavelength dependencies for the optical properties
of biological tissues, directly from spectral measurements. With the exception of µ′s, which needs to
be estimated through IAD simulations, the method here introduced allows a fast evaluation of the
basic optical properties of any biological tissue as a function of wavelength, provided that Tt, Rt and
Tc spectra are collected. Such method is sensitive enough to detect spectral signatures in the calculated
optical properties and to allow differentiation between normal and pathological tissues.

By using spectral measurements from human colorectal tissues, it was possible to verify that the
proposed calculation method produces the expected wavelength dependencies for all optical properties.
The use of K-K relations to obtain the real part of the RI of tissues has also been demonstrated effective
and reliable, since the calculated dispersions match almost perfectly the previous calculated curves
that fit experimental RI data between 400 and 1000 nm. Since the dispersions calculated through K-K
relations are obtained from the spectral measurements, they also show spectral signatures, which were
not obtained when fitting the experimental RI data. By comparing the magnitude of the calculated
penetration depth values with previously reported data for other mucosal tissues, it was possible to
identify the presence of an additional absorber both in normal and pathological mucosa tissues and to
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quantify a higher content in the pathological tissue. Such information may be used in the future in the
development of noninvasive spectroscopic diagnostic procedures, based on Rd spectral measurements.
It will be interesting to use this same methodology for the evaluation of the optical properties of other
tissues, both in normal or pathological samples to obtain discriminating information that can be useful
for the diagnostic of different diseases or other types of cancer.
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