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Abstract: The paper discusses a measurement approach for the room impulse response (RIR),
which is insensitive to the nonlinearities that affect the measurement instruments. The approach
employs as measurement signals the perfect periodic sequences for Wiener nonlinear (WN) filters.
Perfect periodic sequences (PPSs) are periodic sequences that guarantee the perfect orthogonality of
a filter basis functions over a period. The PPSs for WN filters are appealing for RIR measurement,
since their sample distribution is almost Gaussian and provides a low excitation to the highest
amplitudes. RIR measurement using PPSs for WN filters is studied and its advantages and limitations
are discussed. The derivation of PPSs for WN filters suitable for RIR measurement is detailed.
Limitations in the identification given by the underestimation of RIR memory, order of nonlinearity,
and effect of measurement noise are analysed and estimated. Finally, experimental results,
which involve both simulations using signals affected by real nonlinear devices and real RIR
measurements in the presence of nonlinearities, compare the proposed approach with the ones that
are based on PPSs for Legendre nonlinear filter, maximal length sequences, and exponential sweeps.

Keywords: room impulse response; wiener nonlinear filters; perfect periodic sequences;
cross-correlation method

1. Introduction

Measuring the room impulse response (RIR) is a basic operation for acoustics and audio
signal processing. It is needed for analyzing and characterizing the impulse response,
estimating parameters, like reverberation time, early decay time, center-of-gravity time, clarity,
definition, warmth, brilliance, interaural cross-correlation, lateral energy fraction, etc. [1,2]. It is
required by many audio applications, as room response equalization [3], spatial audio rendering [4],
virtual sound [5], room geometry inference [6], active noise control [7], and many others.

A plethora of approaches have been proposed in the literature for RIR measurement. The early
approaches considered the use of impulsive signals [8,9], which directly estimate the impulse response
of a linear system. Periodic pulses [10,11] were often used to contrast the effect of noise. Time-stretched
pulses [12,13], composed by an expanded pulse excitation, have been proposed to overcome limitations
in the amplitude of the pulses, which, if electronically generated, could damage the loudspeaker or
could activate the protection circuit of the amplifier. Periodic sequences have been largely used in
RIR estimation. An approach that is still popular today is maximal length sequence (MLS) technique
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of [14], where the excitation signal is a MLS, i.e., a binary pseudo-noise periodic sequence having
period 2n − 1 with n ∈ N [15]. The MLSs have an almost perfect autocorrelation function and,
thus, they allow for estimating of the impulse response of a linear system with the cross-correlation
method, i.e., computing the cross-correlation between output and input sequences. In reality, the
estimation, also in noise-less conditions, is affected by a small error, which becomes negligible for
large n. The perfect periodic sequences (PPSs) for linear systems [16–18] have a perfect autocorrelation
function, a train of unit pulses, and thus, in noise-less conditions, allow the perfect estimation of
the impulse response of a linear system with the cross-correlation method. Sweep signals have been
largely employed for RIR: linear sweeps, exponential sweeps, and perfect sweeps. Linear sweeps are
used in the time delay spectrometry technique [19,20]. The exponential sweeps, originally proposed
in [21,22], are today the most popular technique for RIR measurement due to the robustness towards
nonlinearities, as discussed later. Perfect sweeps are PPSs having the form of a periodic sweep and they
have a perfect autocorrelation function [23]. Stepped sines, where the excitation signal is composed by
pure tones in steps of increasing frequency, have also been used for RIR measurement [24].

A problem affecting many of these classical approaches is the sensitivity to the nonlinear
components that are present in the measurement systems. A high volume of the measurement
signal is often used to contrast the effect of noise. At this high volume, below the pain threshold,
the acoustic path can still be considered as a linear system. Nevertheless, nonlinear effects can appear
in the power amplifier or in the loudspeaker used for the measurement. The nonlinear effects are often
the cause of artifacts in the measured signal. For example, the artifacts are particular evident in the
MLS technique, where they assume the form of spikes in the measured signal [25]. The spikes are
caused by the fact that the product of a MLS, b(n), with a delayed version of the same MLS, b(n− i),
originates another delayed version of the same MLS, b(n− j) = b(n)b(n− i) [26]. In order to overcome
these problems, RIR measurement techniques robust towards nonlinearities have been researched.

Nowadays, one of the most popular techniques is that based on exponential sweeps.
The exponential sweep technique was independently developed by different researchers [21,22].
The approach has been improved in [27], where a synchronized exponential sweep technique
is presented, remarking its importance for a proper analysis of higher harmonics. The popularity of the
exponential sweep technique is due to its robustness towards the nonlinearities of the measurement
system. It was shown in [21] that, if the measurement system can be modeled as a Hammerstein system,
i.e., as a memoryless nonlinearity, followed by a linear system [28], the contribution of the nonlinear
terms can be segregated at negative times in the measure RIR and it can be removed by windowing.
In reality, it was later shown that the RIR measure performed according to [21,22,27] is still affected
by the nonlinear kernels of the Hammerstein filter, but the measure can be corrected accounting for
these nonlinear kernels [29] (In [29], but also in other papers [30–32], the exponential sweeps are used
in order to derive an Hammerstein model to emulate nonlinear systems.). This correction is usually
not performed by current measurement systems. Unfortunately, memoryless nonlinearities rarely
occur and the measurement system is generally affected by nonlinearities with memory. It was shown
in [33,34] that nonlinear distortions with memory also affect the exponential sweep technique and alter
its RIR measurement.

In [35,36], a novel approach for RIR measurement robust towards nonlinearities with memory
was proposed. In this approach, the entire measurement system, composed of the power amplifier,
the loudspeaker, the acoustic path, and the microphone, is directly modeled as a Legendre nonlinear
(LN) filter. LN filters are nonlinear filters with memory and they are linear combinations of polynomial
basis functions. The basis functions are products of Legendre polynomials of the input samples
and they are orthogonal for white uniform inputs [37]. LN filters admit PPSs, which, in the context
of nonlinear filters, are periodic sequences that guarantee the perfect orthogonality of the basis
functions over a sequence period. The PPSs for LN filters have samples with an approximate
uniform distribution. Applying a PPS input, the coefficients of a LN filter can be estimated
computing the cross-correlation between the system output and the basis functions, i.e., with the
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cross-correlation method. The first-order kernel of the LN filter can be estimated by simply computing
the cross-correlation between the output and PSS input signals.

Another family of polynomial filters having orthogonal basis functions is the Wiener nonlinear
(WN) filters, which derive from the truncation of the Wiener nonlinear series. Their basis functions
are orthogonal for white Gaussian inputs. Additionally, WN filters admit PPSs [38] and, in this
case, the sample distribution is approximately Gaussian. For this reason, the PPSs for WN filters
appear more appealing for measuring RIRs: for the same input power, they less excite the highest
amplitudes. Indeed, with a uniform distribution 42% of the samples have magnitude larger than
the standard deviation, while with a Gaussian distribution the value reduces to 32% of the samples.
In this paper, we extend the approach of [36] and consider the robust RIR measurement using PPSs
for WN filters. This measurement was first proposed by the authors in the conference paper [39]
and it is fully detailed in the current manuscript. We first review the theory of WN filters and
their identification with PPS. The PPSs for WN filter were originally developed in [38], but those
sequences are not suitable for RIR measurement: their period increases geometrically with the filter
memory length and already for small memories it becomes prohibitively large. Thus, in this paper
it is fully detailed how PPSs that are suitable for RIR identification with period proportionate to the
filter memory length can be developed. Their derivation is nontrivial and is different from that of
the PPSs for LN filters of [36]. A detailed analysis of RIR measurement under different non-ideal
conditions, e.g., memory underestimation, order of nonlinearity underestimation, and noise effect,
is also performed. The analysis of the noise effect provides novel results that were not discussed
in [36]. The paper also provides novel experimental results that compare the proposed approach
with competing approaches, i.e., MLSs, exponential sweeps, PPSs for LN filters. We consider both
simulations that invove recorded signals affected by real nonlinear devices and convolved with a
measured RIR, and real measurements performed in a room with professional equipment.

The main original contributions of this paper are the following: (i) full study of a novel RIR
measurement approach based on PPSs for WN filters robust towards nonlinearities. (ii) Detailed
derivation of PPSs for WN filters suitable for RIR measurement (the derivation is different from that
for LN filters). (iii) Full analysis of detrimental effects that can affect the measurement, including
an original study of the effect of Gaussian and non-Gaussian noises. (iv) Novel experimental
results, including measurements performed in a room, when comparing the proposed approach
with competing approaches (MLSs, exponential sweeps, and PPSs for LN filters).

It has to be pointed out that the proposed approach, like that of [35,36], is ineffective against the
sub-harmonic distortions that may sometimes affect loudspeakers [40–43]. Single-input single-output
polynomial models, like the WN, the LN, or the Volterra filters, simply cannot describe the
sub-harmonic distortions [44].

The rest of the paper is organized, as follows. Section 2 reviews the WN filters and discuss their
properties. Section 3 details the RIR measurement using PPSs for WN filters. Section 4 describes how
PPSs that are suitable for RIR measurement can be developed and what are their limitations. Section 5
provides an analysis of RIR measurement under different non-ideal conditions. Section 6 presents the
experimental results and illustrates the effectiveness of the proposed approach also in comparison
with competing approaches. Section 7 provides the paper conclusions.

2. Wiener Nonlinear Filters

Like the Volterra filters derive from the double truncation with respect to order and memory of
the Volterra series, the WN filters derive from the same double truncation of the Wiener series [28].
By applying the Stone–Weierstass theorem [45], it can be proved that WN filters can arbitrarily well
approximate any discrete-time, time-invariant, finite-memory, causal, continuous, nonlinear system
with input-output relationship

y(n) = f [x(n), x(n− 1), . . . , x(n− N + 1)] (1)
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where f is a continuous function from RN to R and N is the memory length of the filter [46].
WN filters are the linear combination of polynomial basis functions, which are the product of

Hermite polynomials of variance σ2
x of the delayed input samples. The Hermite polynomials can be

generated with the recursive relation [47],

Hj+1[ξ] = x(n)Hj[ξ]− jσ2
x Hj−1[ξ], (2)

where Hj[ξ] the Hermite polynomial of degree j and the recursion starts with H0[ξ] = 1 and H1[ξ] = ξ.
The first five Hermite polynomials of variance σ2

x are reported in Table 1. For compactness, in what
follows, the Hermite polynomials of order 0 and 1 will be indicated as 1 and ξ in place of H0[ξ] and
H1[ξ], respectively, while the Hermite polynomials of order j = 2, 3, . . . will be indicated with Hj[ξ].
The Hermite polynomials are orthogonal for ξ ∈ N (0, σ2

x), i.e.,

E{Hi[ξ]Hj[ξ]} = 0 for i 6= j and ξ ∈ N (0, σ2
x). (3)

Table 1. Hermite polynomials of variance σ2
x .

H0(ξ) = 1
H1(ξ) = ξ
H2(ξ) = ξ2 − σ2

x
H3(ξ) = ξ3 − 3σ2

x ξ

H4(ξ) = ξ4 − 6σ2
x ξ2 + 3σ4

x
H5(ξ) = ξ5 − 10σ2

x ξ3 + 15σ4
x ξ

The WN basis functions can be formed following the same procedure of [37,48]. The Hermite
polynomials are first written for ξ = x(n), x(n− 1), . . . , x(n− N + 1):

1, x(n), H2[x(n)], H3[x(n)], . . .

1, x(n− 1), H2[x(n− 1)], H3[x(n− 1)], . . .

...

1, x(n− N + 1), H2[x(n− N + 1)], H3[x(n− N + 1)], . . .

and then the terms with different variables are multiplied in any possible manner, taking care to avoid
repetitions. Let us define the diagonal number D as the maximum time difference between the input
samples involved in the basis functions. Subsequently, Table 2 provides the WN basis functions of
orders 1, 2, 3, memory length N, and diagonal number D. The basis function of order 0 is the constant 1
and for sake of simplicity it will be neglected in the following. The complete set of WN basis functions
of memory N can be obtained by setting D = N − 1, but it has been shown in the literature that the
basis functions with diagonal number D � N − 1 are often sufficient to accurately model many real
systems [49].
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Table 2. Basis functions of Wiener nonlinear (WN) filters.

Order 1:
x(n), x(n− 1), . . . , x(n− N + 1)

Order 2:
H2[x(n)], H2[x(n− 1)], . . . , H2[x(n− N + 1)],
x(n)x(n− 1), . . . , x(n− N + 2)x(n− N + 1),

...
x(n)x(n− D), . . . , x(n− N + D + 1)x(n− N + 1).

Order 3:
H3[x(n)], H3[x(n− 1)], . . . , H3[x(n− N + 1)],

H2[x(n)]x(n− 1), . . .
. . . , H2[x(n− N + 2)]x(n− N + 1),

...
x(n)x(n− 1)x(n− 2), . . .
. . . , x(n− N + 3)x(n− N + 2)x(n− N + 1),

...
x(n)x(n− D + 1)x(n− D), . . .

. . . , x(n− N + D + 1)x(n− N + 2)x(n− N + 1),

A WN filter of order P, memory lenght N, and diagonal number D is the linear combination
of all WN basis functions up to the order P, memory N, and diagonal number D. Neglecting the
constant term, a WN filter of order 3, memory N, and diagonal number D is the linear combination
of the basis functions in Table 2. The filter can also be implemented in the form of a filter bank with
following relation

ŷ(n) = h1(n) ∗ x(n) +
D

∑
i=0

h2,i(n) ∗ b2,i(n) +
D

∑
i=0

D

∑
j=i

h3,i,j(n) ∗ b3,i,j(n) (4)

where b2,i(n) and b3,i,j(n) are the zero-lag basis functions of 2-nd and 3-rd order (the first elements of
the rows of Table 1). Specifically,

b2,0(n) = H2[x(n)],

b2,i(n) = x(n)x(n− i) with i = 1, . . . , D,

b3,0,0(n) = H3[x(n)],

b3,0,j(n) = H2[x(n)]x(n− j) with j = 1, . . . , D,

b3,i,i(n) = x(n)H2[x(n− i)] with i = 1, . . . , D,

b3,i,j(n) = x(n)x(n− i)x(n− j) with i = 1, . . . , D− 1 with j = i + 1, . . . , D.

The naming convention of Volterra filters is used in the following. Thus,

• h1(n) is the first order kernel, i.e., a length N sequence collecting the coefficients of the linear
terms x(n− i).

• h2,i(n) for i = 0, . . . , D are the diagonals of the second order kernel and are sequences of
length N − i.

• h3,i,j(n) for i = 0, . . . , D and j = i, . . . , D are the diagonals of the third order kernel and have
length N − j.

It should be noted that the nonlinear kernels are, in practice, band matrices with matrix
bandwidth D [50].
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We must remark that the first order kernel of WN filters does not coincide with the nonlinear
filter impulse response, i.e., with the first order kernel of a Volterra filter, which is

ĥ(n) = lim
A−→0

ŷ[Aδ(n)]
A

where ŷ[Aδ(n)] is the filter response to a pulse of amplitude A. In fact, all odd order basis functions
H2k+1[x(n − i)] with k ≥ 1 and i = 0, . . . , N − 1 include a linear term that contributes to the
impulse response.

For the orthogonality property of Hermite polynomials in (3), the WN basis functions are
orthogonal for a white Gaussian input with variance σ2

x , i.e., when x(n) ∈ N (0, σ2
x)

E[bi(n)bj(n)] = 0 (5)

for any pair of basis functions bi(n) and bj(n) with i 6= j.
It was also shown in [38,51] that the WN filters admit PPSs that guarantee the same orthogonality

of the WN basis functions on a finite period. The PPSs that were developed in [38,51] are periodic
sequences whose samples have approximately a Gaussian distribution. With a PPS input, a WN filter
can be identified with the cross-correlation method, computing the cross-correlation between the basis
functions and the system output. Let < · >P denote time average over the period P. For a PPS input,
for any pair of basis functions bi(n) and bj(n) with i 6= j,

< bi(n)bj(n) >P= 0.

Accordingly, the coefficient of bi(n) can be obtained by computing the cross-correlation
< bi(n)y(n) >P. For the RIR measurement, only the first order kernel of the WN filter has to be
estimated and it is given by

h1(m) =
< y(n)x(n−m) >P

< x2(n) >P
. (6)

The cross-correlation can be performed in the time domain or, more efficiently, in the frequency
domain, resorting to fast convolution.

3. Room Impulse Response Measurement

This section discusses the RIR measurement while using PPSs. The approach is the same of [35,36],
with the difference that now WN filters are used in place of LN filters to model the measurement chain,
and PPSs for WN filters are applied to measure the RIR.

Figure 1 describes the measurement system, which is composed of a power amplifier,
a loudspeaker, the room acoustic path, and a microphone. At the sound pressure levels (SPLs) that are
normally used in the measurements, the room acoustic path is modelled as a linear system (harmonic
distortions appears in the acoustic path only for SPLs greater than 140 dB SPL [52]). Given the low
levels of the acquired signals, the microphone nonlinearities can also be neglected. The main sources of
nonlinearities in the measurement system are to be found in the power amplifier and the loudspeaker,
which are often over-driven during measurements to contrast the effect of noise. The measurement
objective is to estimate the RIR hR(n), which is assumed to have length M.

The power amplifier and the loudspeaker are first considered as linear systems with impulse
response h1(n) having memory length N, with h1(n) that can also include the microphone
impulse response. The entire measurement chain is a linear system with impulse response

hT(n) = h1(n) ∗ hR(n). (7)

having memory length L = M + N − 1.
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hT(n)

x(n)
ŷ(n)

m̂(n)

h1(n) hR(n)

Figure 1. The measurement system.

In these ideal conditions, any measurement system can obtain a good estimate of hT(n), which is
generally considered the measured room impulse response. According to (7), the measure of the true
RIR hR(n) is, in reality, affected by the convolution with h1(n), the impulse response of the power
amplifier and loudspeaker. h1(n) can be measured in an anechoic chamber and, according to some
researchers, it can be used to improve the estimate of hR(n) by equalizing the equipment. For this
purpose, in [53], the use of the Kirkeby algorithm was suggested. The algorithm is implemented,
as follows:

hR(n) = IFFT
[

FFT[hT(n)] · FFT[h1(n)]∗

FFT[h1(n)] · FFT[h1(n)]∗ + ε(ω)

]
, (8)

where FFT[·] and IFFT[·] are direct and inverse fast Fourier transform (FFT) operators, respectively,
the division is performed at the single frequencies, and ε(ω) is a frequency-dependent regularization
parameter. It has to be pointed out that the approach in (8) can obtain the RIR hR(n) only in the case of
a perfectly omnidirectional loudspeaker. Because this is never the case, it is usually considered to be
satisfactory the knowledge that h1(n) affects the measurement mildly and in a known manner.

The power amplifier and the loudspeaker are next considered the source of nonlinear effects.
The input-output relationship of the power amplifier and loudspeaker system is assumed to be a WN
filter of order K, memory length N, and diagonal number D. For the simplicity of presentation the
case of K = 3 is considered in the following and the input-output relationship of the power amplifier
and loudspeaker system is given by (4). h1(n) is the first order kernel of the WN filter and it has length
N. The input output relationship of the entire measurement system becomes

m̂(n) = hR(n) ∗ ŷ(n) = hR(n) ∗ h1(n) ∗ x(n) +
D

∑
i=0

hR(n) ∗ h2,i(n) ∗ b2,i(n)

+
D

∑
i=0

D

∑
j=i

hR(n) ∗ h3,i,j(n) ∗ b3,i,j(n), (9)

which is the input–output relationship of a WN filter with order K, diagonal number D, and memory
length L = M + N − 1. Its first order kernel is hT(n) = hR(n) ∗ h1(n). Using as input a PPS for
WN filters of order K, memory length P, and diagonal number D, hT(n) can be measured with (6).
The orthogonality of the WN basis functions for a PPS input signal guarantees that the measurement
of hT(n) is not affected by the nonlinear kernels h2,i(n) and h3,i,j(n) for all i, j. As argued for the
linear case, hT(n) can be regarded as a measure of the true RIR hR(n). The measure is again affected
by the convolution with h1(n), the first order kernel of the power amplifier and loudspeaker system.
h1(n) can be measured in an anechoic chamber by using the same PPS and the same signal power
used in measurement. Experiments showed that, in most cases, its frequency response is similar to
that of the loudspeaker. In case the loudspeaker is omnidirectional, h1(n) could be used to estimate
the true RIR hT(n) by equalizing the equipment with the Kirkeby algorithm in (8). For the properties
of PPSs, the resulting RIR will not be affected by the power amplifier and loudspeaker nonlinearities
in any way.
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4. PPSs for RIR Measurement

This section explains how PPSs that are suitable for RIR identification with period proportional
with the memory length can be developed.

We are interested in developing a PPS xp(n) of period P for a WN filter of order K, memory NT,
diagonal number D, and Gaussian input variance σ2

x . In order to allow reproduction with digital to
analog converters, the PPS should be bounded by 1, i.e., |xp(n)| < 1 ∀n.

PPSs for WN filters were developed in [38,51]. The approach that is used for their derivation
is very different from that of LN filters [35,36]. In LN filters, PPSs are derived by imposing the
orthogonality of all basis functions over a period of the PPS. In contrast, with WN filters, the approach
imposes that all joint moments estimated over a period involved in the filter estimation (i.e., up to
order 2K) assume the ideal values of a Gaussian noise N (0, σ2

x). Specifically, for a full WN filter of
order K, memory N, the following system of nonlinear equations is imposed

< xr0
p (n) · . . . · x

rNT−1
p (n− NT + 1) >P= µr0 · . . . · µrNT−1 , (10)

for all r0, . . . , rNT−1 ∈ Nwith r0 > 0 (for the periodicity of the sequence), r0 + . . . + rNT−1 ≤ 2K. In (10)
µr is the r-th moment of the Gaussian process N (0, σ2

x),

µr = E[xr(n)] =

{
0 for r odd,
σr

x(r− 1)!! for r even,
(11)

and q!! the double factorial, q!! = q · (q− 2) · (q− 4) · . . . · 1.
The system in (10) is a nonlinear equation system in the variables xp(n), for n = 0, . . . , L− 1.

For sufficiently large P, the nonlinear equation system is underdetermined and it may have infinite
solutions in the variables xp(n). Applying the Newton–Raphson method, a solution to the system
in (10) has always been found. The Newton–Raphson method has been implemented, as in [54] (ch. 9.7).
The iterations start from a random distribution of xp(n) in N (0, σ2

x). To obtain a sequence in [−1,+1],
the samples xp(n) are reflected in that range every time they exceed it. The Newton–Raphson method
converged in all simulations, provided σ2

x was sufficiently small. This property can be understood
when considering that the sample distribution is similar to a Gaussian and the probability of having
samples outside [−1,+1] should be sufficiently small to guarantee the convergence. Solutions to (10)
were found for L = 3Q÷ 4Q, with Q the number of nonlinear equations, and σ2

x ≤ 1/10 [51].
The PPSs that were developed with the system in (10) are not suitable for RIR measurement.

The period P increases geometrically with the memory NT of the filter, and already for small NT
(e.g., of 30–35 samples) it can be prohibitively large. The RIR measurement requires memory lengths of
thousands of samples and the PPSs of [38,51] cannot be used. In reality, in (10) P depends geometrically
on NT, because the PPS has to allow the estimation of all kernels of WN filter. In RIR measurement,
only the first order kernel needs to be computed, as shown in the previous Section. Thus, we can relax
our constraints and impose that only those joint moments involved in the measurement of the first
order kernel assume the ideal values of a Gaussian noise N (0, σ2

x). The resulting nonlinear equation
system becomes

< xr0
p (n) · . . . · x

rNT−1
p (n− NT + 1) >P= µr0 · . . . · µrNT−1 , (12)

for all r0, . . . , rNT−1 ∈ N with r0 > 0 (for the periodicity of the sequence), r0 + . . . + rNT−1 ≤ K + 1,
and with xr0

p (n) · . . . · x
rNT−1
p (n− NT + 1) = xp(n− i)xv0

p (n− j) · . . . · xvD
p (n− D − j), for some i, j ∈

[0, NT − 1] and v0 + . . . + vD ≤ K.
The number of nonlinear equations in the reduced system (12), increases exponentially with the

order K, geometrically with the diagonal number D, but only linearly with the memory length NT.
The Newton–Raphson method has still computational and memory requirements that can be
prohibitively large, since they increase with the cube of number of equations, i.e., Q3. As discussed
in [37,55,56], it is thus very useful to impose specific structures to the PPS in order to further reduce
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the number of equations and variables. The periodic sequence can be a priori structured to exploit the
properties of:

• Symmetry: for any N-tuple of samples a1, a2, . . . , aN , there is also the reversed one aN , aN−1, . . . , a1.
For every couple of symmetric joint moments (e.g., < x(n)x2(n− 2) >P and < x2(n)x(n− 2) >P)
only one has to be considered in (12).

• Oddness: for any N-tuple a1, a2, . . . , aN , there is also the opposite one −a1,−a2, . . . ,−aN . All odd
joint moments are a priori zero.

• Oddness-1: for any N-tuple a1, a2, . . . , aN , there is also the one obtained by alternatively negating
the samples a1,−a2, a3, . . . ,−aN . All odd-1 joint moments are a priori zero.

• . . . ,
• Oddness-2R: for any N-tuple there is also the one obtained by alternatively negating blocks of

2R samples. All odd-2R joint moments are a priori zero (A basis function is defined odd-2R if
alternatively negating blocks of 2R samples inverts the sign of its output.).

Each of these properties allows for almost halving the number of equations and variables in (12).
Structured sequences, which can also be used for any PPS, can be found in [56]. The reduction in the
number of equations comes at the cost of a longer period of the resulting PPS, since a structured PPSs
is formed by a sequence of independent variables and several of its replica, flipped, or modified in sign.
Nevertheless, the reduction of computational cost and memory requirements of the Newton–Raphson
algorithm is remarkable and instrumental to efficiently solve the system in (12).

Many PPSs that are suitable for the RIR identification have been developed solving (12) for
structured periodic sequences. The developed sequences can be freely downloaded from [57]. Table 3
summarizes the characteristics of some PPSs for WN filters suitable for RIR measurement. In the last
column, the symbols S, O, O-R, mean that the sequence exploits symmetry, oddness, oddness-i with i
ranging from 1 to R, respectively. All of the sequences of Table 3 have samples in the interval [−1,+1]
and power 1/12.

Table 3. Perfect periodic sequences (PPSs) for room impulse response (RIR) estimation (NT RIR length,
K WN filter order, D diagonal number, P PPS period, S means symmetry, O oddness, O-R oddness
from 1 to R).

Seq. NT K D P log2(P) Exploits

1 8192 3 0 131,060 17 S,O,O-1
2 8192 3 1 262,132 18 S,O,O-1
3 8192 3 2 524,276 19 S,O,O-1
4 8192 3 3 1,048,560 20 S,O,O-4
5 8192 3 4 2,228,208 21 O,O-4
6 8192 5 0 262,132 18 S,O,O-1
7 8192 5 1 1,114,104 20 O,O-1,O-2
8 16,384 3 0 262,140 18 O,O-1
9 16,384 3 1 524,276 19 S,O,O-1
10 16,384 3 2 1,048,564 20 S,O,O-1
11 16,384 3 3 2,097,136 21 S,O,O-4
12 16,384 5 0 524,276 19 S,O,O-1
13 32,768 3 2 2,097,136 21 S,O,O-4
14 65,536 3 2 8,388,576 23 S,O,O-8

5. Analysis of RIR Measurement Using PPSs

The sequences of Table 3 are specifically tailored for WN filters of a certain order K,
memory length NT, and diagonal number D. This section provides an analysis of what happens
when the measurement system has memory length, order, or diagonal number larger than those that
are considered in the development of the PPS. Moreover, an analysis of the estimation error in different
measurement noise conditions is also provided.
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5.1. Memory Underestimation

We first consider the case where the measurement system can be modeled with a WN filter
of order K and diagonal number D equal to those of the PPS, but has memory length N̂T larger
than the memory length NT considered for the PPS. The measured first order kernel h1(n) is then
affected by an aliasing error. The error mainly alters the first coefficients of h1(n). This can be
easily understood considering N̂T = NT + 1. The coefficient h1(0) is affected by aliasing since
< x(n)x(n− NT) >P 6= 0. In contrast, the other coefficients are correctly measured since the conditions
in (12) means < x(n− i)x(n− NT) >P= 0, for all i = 1, . . . , NT.

5.2. Order or Diagonal Number Underestimation

We next consider the case where the measurement system has memory length equal to that
of the PPS, but order K̂ or diagonal number D̂ greater than the order K or the diagonal number D
considered for the PPS. The measurement is again affected by an aliasing error, which now involves
all measured coefficients. Nevertheless, this aliasing error is often negligible when K and D are
sufficiently large and if the PPS exploits some structure. In fact, structured PPSs have many basis
functions with order and diagonal number greater than K and D, respectively, which have a priori
zero cross-correlation with the linear basis functions x(n− i). For example, when the PPS structure
exploits oddness, all even basis functions of whatever order and diagonal number are orthogonal with
x(n− i), for all i.

Let us write the measured signal as

m̂(n) = m̃(n) + ˜̃m(n),

with m̃(n) formed by the linear combination of all first order basis functions x(n− i), for i = 1, . . . , NT,
and of any other basis functions orthogonal with x(n− i), for i = 0, . . . , NT − 1, and with ˜̃m(n) formed
by the linear combination of all basis functions of order and diagonal number greater than K and D,
respectively, not orthogonal with x(n− i), for i = 0, . . . , N − 1. Subsequently, according to (6) the
measurement of the first order kernel is affected by the aliasing error

< ˜̃m(n)x(n−m) >P

< x2(n) >P
.

Even though this error is deterministic, working with a large period P and a large number of
neglected basis functions, for the law of large numbers, the aliasing error can be considered to be
stochastic and Gaussian distributed. Thus, the effect of the error can be considered similar to a
measurement noise.

5.3. Measurement Noise Effect

Let us now assume the measurement system has memory, order, and diagonal number lower
or equal to those considered in developing the PPS, and let us consider the effect of an additive
measurement noise ν(n). The measured signal is

m̂(n) = h1(n) ∗ x(n) +
D

∑
i=0

h2,i(n) ∗ b2i(n) +
D

∑
i=0

D

∑
j=i

h3,i,j(n) ∗ b3,i,j(n) + ν(n), (13)

where h1(n) is the true first order kernel that we want to measure. We separately analyze the case of a
Gaussian and of a non-Gaussian noise.
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5.3.1. Gaussian Noise

We first consider the case ν(n) is a colored Gaussian noise,

ν(n) = hν(n) ∗ ν(n), (14)

where ν(n) is a zero-mean, variance σ2
ν , white Gaussian noise, and hν(n) is the impulse response of the

forming filter with memory Nν. Without loss of generality it is assumed

Nν−1

∑
n=0

hν(n)2 = 1. (15)

Note that, when hν(n) = δ(n), ν(n) is a zero-mean, variance σ2
ν , white Gaussian noise. The first

order kernel h1(n) obtained applying (6) (with y(n) = m̂(n)), for the properties of PPSs is

h1(n) = h1(n) +
< [hν(n) ∗ ν(n)]x(n) >P

< x2(n) >P
. (16)

Since ν(n) is zero mean, E[h1(n)] = h1(n) and the estimation is unbiased.
We can estimate the Mean Square Deviation (MSD) of the coefficients that are defined by

MSD = E
[
(h1(n)− h1(n))2]. (17)

For the PPSs, from (6) it is

MSD =
E
{
< [hν(n) ∗ ν(n)]x(n) >2

P
}

< x2(n) >2
P

(18)

and expanding the numerator it can be proved that

MSD =

σ2
ν

P

∑
m=−Nν+1

< hν(n−m)x(n) >2
P

< x2(n) >2
P

. (19)

When the measurement system is affected by a white Gaussian noise, i.e., when hν(n) = δ(n), the
MSD reduces to

MSD =
σ2

ν

P < x2(n) >P
. (20)

which highlights that the MSD improves proportionally to the period of the sequence, i.e., to the
number of samples used for the measurement.

5.3.2. Non-Gaussian Noise

It is also interesting to note how the measurement behaves when the noise is zero mean,
but non-Gaussian. In this case,

h1(n) = h1(n) +
< ν(n)x(n) >P

< x2(n) >P
. (21)

Because ν(n) is zero mean, the estimation is still unbiased, since E[h1(n)] = h1(n).
According to (6) and (13), for the central limit theorem, the coefficient error will have a Gaussian

distribution with

MSD =
E
[
< ν(n)x(n) >2

P
]

< x2(n) >2
P

, (22)
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which depends on the autocorrelation function of the noise and on the PPS.

6. Experimental Results

The section provides experimental results that illustrate the effectiveness and robustness of the
proposed approach in comparison with competing approaches. Specifically, the results obtained
with the proposed approach are compared with those obtained with the PPSs for LN filters [35,36],
the MLS [14], and the exponential sweeps technique [21,22].

6.1. First Experiment

An emulated environment is first considered in order to perform an exact estimation of the
measured impulse responses. The measured system is composed of a nonlinearity, emulating
the distortion of an amplifier or a loudspeaker, cascaded with a previously measured RIR. A real
device, a Behringer MIC100 vacuum tube preamplifier, was used to introduce nonlinear effects in
the measurement chain. Working at a 48 kHz sampling frequency, different PPSs for WN and LN
filters, MLSs, and exponential sweeps were applied to the pre-amplifier and the corresponding output
has been recorded. In order to exploit the maximum signal to noise ratio of the DAC that drives the
amplifier, the different input sequences had the same peak amplitude. Acting on a potentiometer
of the preamplifier, it was possible to control the amount of nonlinear distortion introduced and ten
different settings were considered. Figure 2 shows the second, third, and total harmonic distortion
in percent on a 1 kHz tone having the same peak amplitude of the input sequences. The harmonic
distortion is defined as the percentage ratio between the power of the selected harmonic and that of
the fundamental frequency. Clearly, many harmonic distortions of Figure 2 are much larger than those
of a regular RIR measurement system, but they have been selected so large to stress the robustness of
the proposed approach and the differences between the compared methods.
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Figure 2. Second, third, and total harmonic distortion of the Behringer MIC100 preamplifier at the
different settings.

The recorded output of the preamplifier was then convolved with a known RIR, measured in an
auditorium (as shown in Figure 3), and a white Gaussian noise was added to the output. The added
Gaussian noise has the same power for all methods and the signal to noise ratio is of 40 dB for the
MLSs, 37 dB for the exponential sweep, 35.2 dB for the PPS for LN filters, and 29.2 dB for the PPS
for WN filters. The auditorium RIR has a memory length that is lower than 8000 samples. Thus,
the PPSs for WN filters 1–5 of Table 3 were considered in the simulations, with sequence orders
ranging from 17 to 21. The sequence order is defined as the base-2 logarithm of the period or length
of the sequence. Similar PPSs have been considered also for the LN filter. The RIR was identified
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also with MLSs and exponential sweeps with orders that range from 15 to 21. The sequence orders
15 and 16 are not available for the PPSs, but they were also included because they are sufficient to
identify the RIR and they allow us to better assess the effect of nonlinearities on these identification
techniques. All of the measurements were performed on one period of the periodic sequences or
on a single exponential sweep. From the measurement, an impulse response of 8192 samples was
extracted and all other samples, including the harmonic distortion components of the exponential
sweeps, were windowed out.

0 2000 4000 6000 8000

Sample

-1

-0.5

0

0.5

R
IR

 

Figure 3. The auditorium room impulse response (RIR).

The simulation results are compared in terms of log-spectral distance (LSD), which allows for
us to evaluate the differences between two audio signals [3,58]. The LSD is defined as the root mean
square value in a band B of the difference between the spectra of the two signals expressed in dB.

When considering B = [k1
FS

NDFT
, k2

FS
NDFT

], with FS the sampling frequency and NDFT the number of
the samples of the discrete Fourier Transform (DFT), the LSD is defined as

LSD =

√√√√ 1
k2 − k1 + 1

k2

∑
k=k1

[
10 log10

|HR(k)|2
|ĤR(k)|2

]2

, (23)

where |HR(k)| is the actual system magnitude response in the DFT domain and |ĤR(k)| is the estimated
system magnitude response, normalized in order to have the same mean of |HR(k)| in the band B.
In the experiments, the LSD was computed in the band B = [100, 18,000] Hz, falling strictly inside the
measurement system passband.

Figure 4 shows the LSD between the identified and actual impulse response of the measurement
chain for the first experiment. Panel (a) of Figure 4 shows the LSD that was obtained using the PPSs
for WN filters, panel (b) using the PPSs for LN filters, panel (c) using the MLSs, and finally panel
(d) using the exponential sweeps. The actual impulse response of the measurement chain has been
estimated in noise absence at the lowest distortion setting (setting 1) while using an exponential sweep
of order 21. Figure 4 shows that, for large distortions, the performance of the MLSs is largely affected.
Better results are obtained with the exponential sweeps, especially for order 17 or greater, with a
smooth deterioration of the LSD increasing the distortion. The PPSs for LN filters also provide very
good results, with a deterioration of the LSD performance that increases with the distortion, but at
a lower rate than with the exponential sweeps. In particular, the larger the diagonal number D of
the PPS, i.e., the larger the order log2(P) and the protection against the nonlinear terms, the better the
performance at highest distortion levels. In contrast, in the considered conditions, the PPSs for WN
filters provide an almost constant LSD for all settings showing great robustness towards nonlinearities.
This improvement is due to the fact that the WN filters with their almost Gaussian sample distribution
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excite the nonlinearities less. At low distortion levels, the LSD obtained with PPS for WN filters is
slightly worse than for the LN filters, because the output signal to noise ratio is 6 dB lower. If the same
signal to noise ratio is imposed for all sequences, the LSD of PPSs for WN filters is at least as good as
that of the other methods.
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Figure 4. Log-spectral distance in the band [100, 18,000] Hz at the different settings for (a) PPSs for
WN filters, (b) PPSs for LN filters, (c) MLSs, (d) exponential sweeps.

Next, the effect of the equalization of the equipment, in particular of the distortion nonlinearity,
is studied. The response of the MIC100 preamplifier is identified and it is used to equalize the measured
RIR with the Kirkeby algorithm in (8). Figure 5 shows the LSD between the auditorium RIR of Figure 3,
and the RIR estimated with the equalization of the equipment. Different panels report, as in the
previous Figure, the LSD obtained, respectively, with PPSs for WN filter, PPSs for LN filter, MLSs,
and finally with exponential sweeps. For large distortion levels, the estimations with MLSs are still
affected by the nonlinearities. The LSDs that were obtained with the exponential sweeps improves at
the highest settings. The improvement can be explained with the fact that the nonlinearity affects, in a
similar manner, the measurement of the impulse response of the equipment and of the room, and the
equalization of the equipment compensates in part the effect of the nonlinear distortion. Additionally,
the LSD that was obtained with the PPS for LN filters improves and, for large orders of the periodic
sequence, the measurement appears unaffected by the nonlinearity. The PPSs for WN filters provide
an almost constant LSD for all settings, confirming the good robustness against nonlinear effects.
In the considered conditions, in the case of PPSs for WN filters, the equalization of the equipment
compensates the frequency response of the preamplifier, but does not take to any further improvement
in terms of reduction of nonlinear effects.
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Figure 5. Log-spectral distance in the band [100, 18, 000] Hz at the different settings with equalization
of the equipment for (a) PPSs for WN filters, (b) PPSs for LN filters, (c) MLSs, (d) exponential sweeps.

From panel (a) and (b) of Figures 4 and 5, we can also appreciate the improvement in the
log-spectral distance obtained by increasing the diagonal number and the period of the PPSs. As a
rule of thumb, the researcher or technician performing the RIR measurement should first choose the
memory length NT according to the considered acoustic scenario, and then he should choose the
largest order K and diagonal number D that still provide a period of the PPS acceptable for performing
the measurement.

6.2. Second Experiment

The second experiment considers the measurement of a real impulse response in the presence
of nonlinearities. The measurement was performed in a living room with dimensions of
3.9 m × 4 m × 3.2 m employing a loudspeaker RCF Ayra Five, a microphone Behringer ECM8000,
and a Focusrite Scarlett 2i2 (2nd gen) audio interface. The nonlinear distortion was generated with
the guitar pedal Behringer DM100 (set in D+ mode). The pedal was used in order to introduce a
measurable strong nonlinear distortion in the measurement chain to stress the differences between the
different measurement methods. The room impulse response was measured with a 48 kHz sampling
frequency using the same PPSs for WN and LN filters, MLSs, and exponential sweeps of the previous
experiment. The measurement was performed with three different settings. In the first setting, the test
sequences are directly applied to the loudspeaker without passing through the guitar pedal. In this
condition, the measurement system introduces a very low nonlinear distortion and the measurement is
used as reference for assessing the performance when the strong nonlinearity is introduced. The second
setting measures the same room impulse response without altering the position of the loudspeaker or
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the microphone, but feeding the test signals through guitar pedal before applying it to the loudspeaker.
The third setting measures the response of the guitar pedal with the same test signals and it allows for
the equalization of the distortion pedal. To give an indication of the nonlinear distortions during the
measurements, Table 4 provides for each setting the second, third, and total harmonic distortions on a
sinusoidal signal with peak amplitude that is equal to that of the test signals.

Table 4. Second, third, and total harmonic distortion (HD) at the different settings.

Setting Second HD Third HD Total HD

1st 0.7% 0.75% 1.6%
2nd 11.0% 0.45% 12.6%
3rd 14.0% 0.90% 19.0%

Figure 6 provides the LSD between the reference RIR and the RIRs that were measured in the
presence of the pedal distortion, as a function of the sequence period. The reference RIR is the impulse
response measured in the first setting with an exponential sweep of length 221. The LSD has been
estimated in the bands B = [100, 18,000] Hz strictly inside the passband. Panel (a) of Figure 6 reports
the LSD values without the Kirkeby equalization of the pedal, whose effect is shown in panel (b).
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Figure 6. Log-spectral distance in the band [100, 18, 000] Hz versus the sequence order log2(P) for the
different measurement sequences (a) without equalization of the equipment, (b) with equalization of
the equipment.

In this experiment, without the equalization of the equipment, the measurements with PPSs
always provide the best results. Similar results are obtained here both with PPSs for LN and WN
filters. The MLSs and exponential sweeps only provide slightly worse results with a LSD increase
of around 0.2 dB. In this experiment, the MLSs provide much better results than in the previous
one: the MLSs appear much sensitive to the third order nonlinearities, but less sensitive to second
order ones. With the equalization of the equipment, all of the methods provide very similar results that
are much better than those without the equalization. When considering that the equalization of the
equipment is rarely performed, the proposed RIR measurement system based on PPSs for WN filters
appears to be a valid candidate for contrasting the effect of nonlinearities in the measurement chain.

7. Conclusions

The paper introduces a novel technique for RIR measurement that is based on PPSs for WN
filters. The proposed technique is robust towards the nonlinearities that may affect the power amplifier
or the loudspeaker of the measurement system. The approach is based on the estimate of the first
order kernel of a WN filter modeling the acoustic path. The first order kernel is estimated with
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the cross-correlation method while using a PPS input signal. The identification of this first-order
kernel has a computational cost similar to the RIR measurement with MLSs, exponential sweeps,
or PPSs for LN filters (The identification costs around PNT operations, i.e., multiplications and
additions, if the cross-correlation is computed in time domain. It costs (2 log2(P) + 1)P operations
if the cross-correlation is computed in the DFT domain, assuming a FFT cost P log2(P) operations.).
The proposed approach provides an improvement in comparison with that based on PPSs for LN filters,
since the almost Gaussian distribution of the PPSs samples for WN filters less excites the nonlinearities
of the measurement system. PPSs for WN filters that are suitable for RIR measurement have also been
developed within the paper. Their properties have been analyzed in theory studying the effect of
an underestimation of the order, diagonal number, of memory length of the WN filter modeling the
acoustic path. The effect of the measurement noise has also been studied. The experimental results,
when considering both an emulated scenario, involving signals that are affected by a real nonlinear
device, and a real room impulse response measurement, highlight the effectiveness and the robustness
towards nonlinearities of the proposed RIR measurement technique. Future research will be dedicated
to the study and development of further periodic sequences suitable for RIR measurement, as the
recently introduced orthogonal periodic sequences [59].
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