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Abstract: Number comparison has long been recognized as one of the most fundamental non-modular
arithmetic operations to be executed in a non-positional Residue Number System (RNS). In this
paper, a new technique for designing comparators of RNS numbers represented in an arbitrary
moduli set is presented. It is based on a newly introduced modified diagonal function, whose strictly
monotonic properties make it possible to replace the cumbersome operations of finding the remainder
of the division by a large and awkward number with significantly simpler computations involving
only a power of 2 modulus. Comparators of numbers represented in sample RNSs composed of
varying numbers of moduli and offering different dynamic ranges, designed using various methods,
were synthesized for the 65 nm technology. The experimental results suggest that the new circuits
enjoy a delay reduction ranging from over 11% to over 75% compared to the fastest circuits designed
using existing methods. Moreover, it is achieved using less hardware, the reduction of which reaches
over 41%, and is accompanied by significantly reduced power-consumption, which in several cases
exceeds 100%. Therefore, it seems that the presented method leads to the design of the most efficient
current hardware comparators of numbers represented using a general RNS moduli set.

Keywords: diagonal function; high-speed arithmetic; magnitude comparison; number comparison;
Residue Number System (RNS)

1. Introduction

Parallel data processing is one of the most viable approaches to meet steadily growing needs for
high-performance computations. Therefore, algorithms and data representations enjoying parallel
structures, which facilitate the processing of a large amount of data efficiently, have been an area of
active research for many years. One of the promising directions in this field relies on using the Residue
Number System (RNS) to represent integers [1,2]. The RNS is a non-positional number system defined
by the set of n (n ≥ 2) pairwise relatively prime positive integers called moduli {m1, m2, · · · , mn}.

Its dynamic range is equal to the product M =
n∏

i=1
mi, which allows it to represent all a-bit numbers,

where a =
[
log2 M

]
. Any non-negative integer X such that 0 ≤ X < M can be uniquely represented in

RNS as X = {x1, x2, · · · , xn}, where the ith digit of X in RNS xi = |X|mi is the remainder of the integer
division of X by the modulus mi, represented in ai =

[
log2 mi

]
bits.
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Indeed, in recent years, an inherent parallelism between RNS and potentially lower power
consumption has motivated researchers to consider its use for implementation in hardware of various
classes of computations, like digital filtering [3–6], multicarrier modulation schemes with error
correction [7], and some cryptographic algorithms [8]. An excellent summary of other RNS applications
for Digital Signal Processing (DSP) systems and analysis of various design issues can be found in [9].
Coprocessors with limited sets of instructions for high-speed and low power consumption executed in
RNS have been proposed [10,11]. Besides these well-established applications, many other emerging
RNS applications have been surveyed [12].

The primary benefit of RNS is the possibility of parallel execution of basic arithmetic operations
(addition, subtraction, and multiplication). Unlike positional number representation, the RNS is
carry-free, which can simplify the processing of large numbers, replacing it with the execution of
parallel arithmetic modular operations on numbers of significantly smaller size. Unfortunately, several
non-modular operations are also indispensable, the execution of which in RNS requires interaction
between different moduli due to the positional nature of these operations: residue-to-binary (reverse)
conversion, magnitude comparison, sign detection, overflow detection, scaling, and division. Among
them, magnitude comparison is one of the most fundamental operations, and it, besides being used
directly, is also the cornerstone of division, sign detection, overflow detection, etc. Unfortunately, it is
a difficult operation in RNS, because a non-positional RNS number representation does not reveal any
information about the magnitude of a number, so that special methods involving handling all residue
digits must be used.

Several techniques for number comparison in RNS have been studied [1,13–25]. The simplest
approach to comparing numbers in RNS relies on first converting them to the positional notation, just to
be compared using a simple number comparator [1]. Such a comparator is based on using any reverse
(residue-to-binary) converter, which can be built on the basis of the Chinese Remainder Theorem (CRT),
the Mixed Radix Conversion (MRC) method, or some variant or a combination of them [1,2,26–28].
Because the reverse converter is available anyway in any RNS-based processor, the only extra hardware
cost is that of the ordinary a-bit comparator of numbers, which can be designed, e.g., according to [29]
(pp. 45–47). Obviously, a comparison relying on traditional reverse conversion techniques inherits
their major drawbacks: the multi-operand addition modulo is a large number (the dynamic range M)
for the CRT or lengthy sequential computations for the MRC, either resulting in excessive delay and
unnecessarily high power consumption.

One of the most promising approaches to handle non-positional arithmetic operations in RNS that
has been proposed relies on computation of some positional characteristics of RNS numbers, according
to which it would be possible to determine the magnitudes of numbers and hence their comparison.
This idea relies on a hypothesis that computations involving such a positional characteristic can be
implemented more efficiently than reverse conversion, due to using simpler arithmetic operations.
One is the core function introduced in 1977 by Akushskii [13] and used for comparison. Its faster version,
making it possible to avoid lengthy iterative computations, relied on introducing a redundant modulus
and was proposed in [14]. The other approach uses the so-called diagonal function, which is defined
as the sum of the quotients of division of the number by all system moduli, introduced in [16] and
further developed in [18] and [21]. One of the methods based on the diagonal function, called the Sum
of Quotients Technique (SQT), was claimed to be one of the most efficient hardware approaches [18].
Unfortunately, a more accurate performance estimation of the latter, presented recently in [23], revealed
that the direct implementation of the comparator using the diagonal function according to [16,18]
leads to inefficient circuitry. (Because the design method proposed here is based on some ideas of
the diagonal function, while aiming to avoid its drawbacks, it will be detailed in Section 2.) Some
other general approaches to RNS number comparison were presented in [15,17,22,26,27]. In [15],
a comparison was proposed based on parity checking, provided that the basic moduli set consists
of odd moduli only and that the redundant modulus is added. Those proposed in [26,27] make it
possible to compute the positional characteristic using CRT without the expensive operation of finding
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the remainder of a division. The comparison algorithm based on the new CRT-II, suggested in [17],
makes it possible to reduce the maximum size of the modulo addition from M to approximately
√

M, where M is the dynamic range. The method of [22] relies on the approximate calculation of
positional numbers according to CRT, whereas that of [24] makes it possible to compare signed numbers,
but it also requires sign detection for each compared number. Finally, some comparators have been
proposed for RNSs using special bases, e.g., the 4-moduli set composed of two pairs of conjugate
moduli

{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+1 + 1
}
, as well as the 3-moduli sets { 2n

− 1, 2n, 2n + 1 } [20] and{
2n
− 1, 2n+x, 2n + 1

}
[25].

In summary, the drawbacks of the previous magnitude comparison algorithms are: the need
for using a redundant modulus, restricting the moduli set or time-consuming modulo operations
involving large numbers (the size of the dynamic range or close). Here we will show how to extend the
idea of diagonal function so that a high-speed and efficient comparator in RNS can be implemented in
hardware. The new approach proposed here relies on integrating techniques from [16,26], and it is
based on modifying the diagonal function of the numbers represented in RNS. The major advantages
of this method are that, in addition to not requiring the computation of a remainder of division, it also
leads to computations involving numbers of smaller sizes than in [26].

This paper is organized as follows. Section 2 presents the method of comparison using the SQT
based on the diagonal function. Section 3 thoroughly details the theoretical background of the modified
diagonal function proposed here, leading to significantly improved performance of the comparator.
Performance estimations and comparison against existing circuits are provided in Section 4. Finally,
some conclusions and suggestions for future research are given in Section 5.

2. Number Comparison Using the Sum of Quotients Technique (SQT)

In this section, we will present all key ideas related to the SQT method of [16], which will facilitate
understanding of our method relying on a modification of the SQT method, which will be presented in
Section 3. The main idea of the SQT method relies on the observation that in the finite n-dimensional
space determined by the number of moduli n, the integers are ordered along straight lines, which are
parallel to the main diagonal of the space. In MRC, each line represents the most significant digit
of the number. However, these diagonals can be renumbered in a natural order of integers. In this
case, the comparison of two numbers can be done by considering the numbers of the diagonals to
which they belong. For fast determination of the diagonal to which a number belongs, a monotonically
increasing function called the Sum of Quotients (SQ) was defined:

SQ =
n∑

i=1

Mi (1)

where Mi = M/mi. Let us define the following constant:

ki =

∣∣∣∣∣− 1
mi

∣∣∣∣∣
SQ

(2)

where hi =
∣∣∣1/mi|SQ is the multiplicative inverse of mi mod SQ (1 < hi < SQ), i.e., such an integer that

|hi ·mi|SQ = 1. (Recall that a multiplicative inverse exists provided that mi and SQ are co-prime, which is
indeed the case here.) It was shown that for the set of constants ki the following congruence holds:

|ki + k2 + . . .+ kn|SQ = 0. (3)

These notions are essential to defining the diagonal function as

D(X) =

∣∣∣∣∣∣∣
n∑

i=1

ki · xi

∣∣∣∣∣∣∣
SQ

(4)
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which was shown to be monotonically increasing over a set of integers 0 ≤ X < M. This method is
called the Sum of Quotients Technique (SQT), because the following important equality holds:

D(X) =
n∑

i=1

[
X
mi

]
(5)

The comparison of RNS numbers using SQT is summarized in the following algorithm,
whose hardware implementation is shown in Figure 1.

Algorithm 1: Comparison of RNS numbers using SQT.

Input: X = {x1, x2, . . . , xn}, Y =
{
y1, y2, . . . , yn

}
Output: “100” if X < Y, “010” if X = Y, and “001” if X > Y.
Step 1. Calculate D(X) and D(Y).
Note: These computations are independent and therefore they can be executed in parallel, provided that two
circuits implementing the diagonal function are available.
Step 2. Compare the values of D(X) and D(Y):
1. if D(X) < D(Y) then return “100”;
2. if D(X) > D(Y) then return “001”;
3. if D(X) = D(Y) then:
3.1. if x1 < y1 then return “100”;
3.2. if x1 = y1 then return “010”;
3.3. if x1 > y1 then return “001”.
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Figure 1. Hardware implementation of the basic number comparison algorithm using the diagonal
function [25,28].

The main disadvantage of Algorithm 1 is that the computation of the remainder of the division
over the modulus SQ, executed by the n-operand multi-operand modular adder (MOMA) mod SQ,
is both hardware and time-consuming. (It will be seen later that for sample moduli sets the difference
between the bit sizes of M and SQ could be from 3 to 5-bits.) In [16], it was suggested that in the case
of the equality D(X) = D(Y) (the diagonal function is not strictly monotonic), an extra comparison
must be executed. However, in [23], it was shown that this additional comparison can actually be done
in parallel, so that the only delay penalty is two gate levels (this observation was taken into account in
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Figure 1). In the following section, we will show how to modify SQT to replace the MOMA mod SQ
with a significantly faster and simpler circuit modulo with a power of 2.

3. Comparison Using the Modified Diagonal Function

Here, we will describe the new method for comparison of RNS numbers based on introducing
the modified diagonal function (MDF). It is based on the observation that if all constants ki are
divided by SQ, i.e., similarly as was done for the CRT-based sign detector proposed in [26], then it
is possible to move the computations from the residue class [0, SQ− 1) to the computations in the
interval [0, 1), so that computations involving integer parts of real numbers are not really needed.
In other words, the operation of finding the remainder of the division by SQ is replaced with the more
efficient operation of discarding an integer part of a number. However, the major concern with such
an approach is its accuracy, because in most cases the fractional numbers cannot be represented exactly
using a finite number of bits. Nevertheless, the accurate passing from computations on fraction parts
to computations on integers can be done as follows:

1. Multiply each real constant by 2N, where N is the number of bits of the fraction part,
which guarantees sufficient accuracy.

2. For each real number, say Z, calculate [ Z ], i.e., the smallest integer not less than Z.
3. Execute all computations modulo 2N (it is sufficient to ignore all carries generated from the

(N − 1)-th position).

Note: The only limitation for the above conversion could occur when SQ divides 2N (i.e., SQ is
a power of two), because in this case, the method suggested reduces to the original one. Nevertheless,
because in most cases SQ does not divide 2N, we will therefore henceforth consider only this case.
To determine the smallest N which guarantees sufficient accuracy, we proceed as follows.

First, notice that the constants can be recalculated as

ki =

[
ki · 2N

SQ

]
=

ki · 2N

SQ
+ Ri, 1 ≤ i ≤ n (6)

where Ri =
[

ki2N

SQ

]
−

ki2N

SQ and Ri ∈ [0, 1). Because according to Equality (3) the sum
n∑

i=1
ki is divisible by

SQ, it implies that R =
n∑

i=1
Ri is an integer. Furthermore, because 0 < Ri < 1 then 1 ≤ R < n.

Now we can define the following positional characteristic of a number, which will be called the
modified diagonal function (MDF):

D(X) =

∣∣∣∣∣∣∣
n∑

i=1

ki · xi

∣∣∣∣∣∣∣
2N

(7)

Theorem 1. Let mnbe the largest modulus of the moduli set. If N ≥
[
log2(SQ · (mn − 1))

]
then the MDF

D(X) is strictly increasing for any 0 ≤ X < M, i.e., for any 0 ≤ Xi < X j ≤M− 1 we have D(Xi) < D
(
X j

)
.

Proof. First, we find the value of D(X − 1) for any 0 < X < M. Because for any 1 ≤ i ≤ n[
X − 1

mi

]
=


[

X
mi

]
i f xi , 0[

X
mi

]
− 1 i f xi = 0

(8)

therefore, according to Equality (5), we have

D(X − 1) =
n∑

i=1

[
X
mi

]
−

n∑
i=1

z(xi) = D(X) −
n∑

i=1

z(xi) (9)
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where

z(xi) =

0 i f xi , 0

1 i f xi = 0

Consider

D̃(X) =
D(X)

SQ
=

∣∣∣∣∣∣∣
n∑

i=1

ki
SQ
· xi

∣∣∣∣∣∣∣
1

(10)

where |Z|1 denotes discarding of an integer part of Z. Obviously, because D̃(X) ≥ D̃(X − 1), D̃(X − 1)
can be determined using Equality (10):

D̃(X − 1) =
D(X)

SQ
−

1
SQ
·

n∑
i=1

z(xi) = D̃(X) −
1

SQ
·

n∑
i=1

z(xi) (11)

Now we will determine the properties of the functions D̃(X) and D̃(X − 1). By applying the
notation introduced earlier, we obtain

D(X) =

∣∣∣∣∣∣∣
n∑

i=1

(
ki · 2N

SQ
+ Ri

)
· xi

∣∣∣∣∣∣∣
2N

=

∣∣∣∣∣∣∣
n∑

i=1

ki · 2N

SQ
xi +

n∑
i=1

Ri · xi

∣∣∣∣∣∣∣
2N

=

∣∣∣∣∣∣∣2N
·

n∑
i=1

ki
SQ

xi + 2N
·

∣∣∣∣∣∣∣
n∑

i=1

ki
SQ

xi

∣∣∣∣∣∣∣
1

+
n∑

i=1

Ri · xi

∣∣∣∣∣∣∣
2N

(12)

which leads to

D(X) =

∣∣∣∣∣∣∣2N
·̃D(X) +

n∑
i=1

Ri · xi

∣∣∣∣∣∣∣
2N

(13)

Now according to Equality (11) and by taking into account that in RNS X − 1 ={
|x1 − 1|m1

, |x2 − 1|m2, . . . , |xn − 1|mn

}
, we obtain

D(X − 1) =

∣∣∣∣∣∣∣2N
·̃D(X − 1) +

n∑
i=1

Ri · |xi − 1|mi

∣∣∣∣∣∣∣
2N

=

∣∣∣∣∣∣∣2ND̃(X) −
2N

SQ
·

n∑
i=1

z(xi) +
n∑

i=1

Ri · |xi − 1|mi

∣∣∣∣∣∣∣
2N

(14)

Because for any 0 ≤ i ≤ n

|xi − 1|mi
=

xi − 1 i f xi , 0

mi − 1 i f xi = 0

in Equality (14) we have

n∑
i=1

Ri · |xi − 1|mi
=

n∑
i=1

Ri · xi −R +
n∑

i=1

z(xi) ·Ri ·mi (15)

which hence becomes

D(X − 1) =

∣∣∣∣∣∣∣2N
· D̃(X) +

n∑
i=1

Ri · xi −
2N

SQ
·

n∑
i=1

z(xi) −R +
n∑

i=1

z(xi) ·Ri ·mi

∣∣∣∣∣∣∣
2N

(16)

From the formulas derived above, it is obvious that D(X) −D(X − 1) is the additional term of the
expression equal to

D(X) −D(X − 1) =

∣∣∣∣∣∣∣− 2N

SQ
·

n∑
i=1

z(xi) −R +
n∑

i=1

z(xi) ·Ri ·mi

∣∣∣∣∣∣∣
2N

(17)
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By considering that

2N
· D̃(X) +

n∑
i=1

Ri · xi −
2N

SQ
·

n∑
i=1

z(xi) −R +
n∑

i=1

z(xi) ·Ri ·mi= 2N
· D̃(X − 1) +

n∑
i=1

Ri · |xi − 1|mi
> 0, (18)

we obtain

2N
·̃D(X) +

n∑
i=1

Ri · xi >
2N

SQ
·

n∑
i=1

z(xi) + R−
n∑

i=1

z(xi) ·Ri ·mi (19)

For the function D̃(X) to be strictly increasing, it is necessary to satisfy the two following conditions.

Condition 1. 2N
·̃D(X) +

∑n
i=1 Ri · xi < 2N

This inequality makes it possible to pass from computation of the remainder of the division to the
computation mod 2N for D(X) in Equality (13), and hence in Equality (16) as well.

Condition 2. 2N

SQ ·
∑n

i=1 z(xi) + R−
∑n

i=1 z(xi) ·Ri ·mi > 0

If this inequality holds and both Condition 1 and Inequality (19) are satisfied, it implies that the
value of D(X) calculated by Equality (13) is larger than the value of D(X − 1) calculated by Equality
(16).

Whether any of these two conditions is satisfied, it depends on N. Now we will show how to
determine the smallest N, for which both Conditions 1 and 2 hold. As the function D̃(X) is monotonic,
hence D̃(X) ≤ D̃(X − 1). Thus, according to Equality (2)

D̃(M− 1) =

∣∣∣∣∣∣∣
n∑

i=1

k1

SQ
· (mi − 1)

∣∣∣∣∣∣∣
1

= 1−
n

SQ
(20)

Additionally, because 0 < Ri < 1 and max
1≤i≤n

mi = mn, therefore

n∑
i=1

z(xi) ·Ri · xi < n · (mn − 1) (21)

Because Condition 1 leads to the inequality

2N
·

(
1−

n
SQ

)
+ n · (mn − 1) < 2N (22)

therefore

1−
n

SQ
+

n · (mn − 1)
2N < 1 (23)

which in turn leads to 2N > SQ · (mn − 1), and finally to

N > log2(SQ · (mn − 1)) (24)

From Condition 1, and assuming that Inequality (24) holds, we have

D(X) −D(X − 1) =
2N

SQ
·

n∑
i=1

z(xi) + R−
n∑

i=1

z(xi) ·Ri ·mi (25)

Now consider the inequality

2N

SQ
·

n∑
i=1

z(xi) + R−
n∑

i=1

z(xi) ·Ri ·mi > 0 (26)
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If the inequality
2N

SQ
> mi ·Ri −R (27)

holds for 1 ≤ i ≤ n, then Inequality (26) is true for X with any number of zeros in its RNS
representation. Therefore, we can estimate N from Inequality (27). Recalling that 0 ≤ Ri < 1,
1 ≤ R < n, and max

1≤i≤n
mi = mn, therefore

mi ·Ri −R < mn − 1, (28)

which implies that Inequality (27) holds if

2N

SQ
> mn − 1, (29)

To estimate N, we calculate the logarithm of the last inequality

N > log2(SQ · (mn − 1)), (30)

which is identical to Inequality (24). Therefore, if Inequality (24) holds, then both Conditions 1 and 2
are satisfied, which concludes the proof. �

Inequality (24) can be considered as the condition that guarantees strict monotonicity of the MDF
D(X): if it holds, to compare two RNS numbers X and Y, it suffices to compare the values of D(X) and
D(Y). The above considerations can be formally summarized as the following algorithm.

Algorithm 2: Comparison of RNS numbers using MDF.

Input:X = {x1, x2, . . . , xn}, Y =
{
y1, y2, . . . , yn

}
Output: “100” if X < Y, “010” if X = Y, and “001” if X > Y.
Step 1. Calculate D(X) and D(Y).
Note: These computations are independent and therefore they can be executed in parallel, provided that two
circuits implementing the MDF are available.
Step 2. Compare the values of D(X) and D(Y).
1. if D(X) < D(Y) then return “100”
2. if D(X) > D(Y) then return “001”
3. if D(X) = D(Y) then return “010”

In summary, the diagonal function D(X) of [16,18] is monotonic for 0 ≤ X < M, whereas the MDF
D(X) proposed here is strictly monotonic over this set (which makes it possible to compare numbers
directly).

The differences between D(X) and D(X) are illustrated for a sample 3-moduli RNS {5, 11, 17}.
Figure 2 shows the diagrams of the values of the functions D(X) and D(X) for the first 15 values of X,
which clearly reflect their monotonic properties and demonstrate their differences.

Example 1. Consider a sample set of n = 3 moduli m1 = 13, m2 = 15, nad m3 = 17 whose dynamic
range is M = 3315. Here, we have M1 = M

m1
= 255, M2 = M

m2
= 221, M3 = M

m3
= 195, which implies

SQ = M1 + M2 + M3 = 255 + 221 + 195 = 671, so that N =
[
log2((mn − 1) · SQ)

]
= 14 and the four

constants

k1 = 214
·
|−1/13|671

671
= 6300, k2 = 214

·
|−1/15|671

671
= 12, 014, k3 =214

·
|−1/17|671

671
= 14, 456
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Let us compare three integers

X = 950 RNS
→ {1, 5, 15}Y = 951 RNS

→ {2, 6, 16}Z = 952 RNS
→ {3, 7, 0}

for which we have
D(X) = |1 · 6300 + 5 · 12, 014 + 15 · 14, 456|214 = 4682
D(Y) = |2 · 6300 + 6 · 12, 014 + 16 · 14, 456|214 = 4684
D(Z) = |3 · 6300 + 7 · 12, 014 + 0 · 14, 456|214 = 4694

Recall that according to Theorem 1, the function D(X) is strictly monotonic for any 0 ≤ X < M.
Indeed, it is seen that: (i) D(X) < D(Y) implies X < Y and (ii) D(Z) > D(Y) implies Z > Y.

Figure 3 shows the general scheme of the new comparator that implements Algorithm 2 (here
bi = min

{[
log2(mi · ki)

]
, N

}
). Obviously, it is necessary to add more extra hardware than its simple

counterpart using any reverse converter followed by the a-bit comparator, because only the latter small
circuit must be added to the RNS-based processor. In our circuit, both the circuit computing D(X)

and the N-bit comparator must be added. Nevertheless, the new comparator has two potential major
advantages over the latter: (i) higher speed, because of the delay of the n-operand MOMA mod 2N is
certainly significantly smaller than of the n-operand MOMA mod M [30,31] in the CRT-based version
of the reverse converter or of its MRC-based version (a slightly larger size of the operands handled by
the final N-bit comparator (N = a +

[
log2 n

]
vs. a) has little impact on the area or delay of the final

N-bit comparator); and (ii) lower power consumption, because of the significantly smaller circuitry
involved in performing the comparison. Either claim will be confirmed by performance estimations
obtained for ASIC implementations of various basic general RNS number comparators, presented in
the next section.
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Figure 3. Hardware implementation of the new comparator built using the MDF.

4. Performance Estimations

In this section, we first present an approximate evaluation of the performance of hardware
implementations of the new general RNS comparators and their three best-known counterparts,
and then we provide more accurate estimations for ASIC implementations of all circuits considered.

Suppose that all n RNS moduli are l-bit numbers. Then, the basic parameters of operands involved
in modulo operations handled by four general RNS number comparators can be summarized as listed
in Table 1. First, recall that all these circuits have a number of steps growing logarithmically in the
function of the number of moduli n, i.e., they all have O(log n) delay. Second, notice that the following
inequalities hold:

√
M < SQ < M < 2N and a√M < aSQ < a < N. The three circuits based on the CRT,

SQT, and MDF have a similar structure, composed of the n-operand modulo adder, with the major
difference made by the modulus. Because neither M nor SQ is a power of 2 and a > aSQ, then it seems
that the SQT-based circuit should involve less hardware and be faster than the CRT-based one. On the
other hand, because the MDF-based circuit proposed here uses the n-operand adder modulo a power of
2 (2N), it enjoys the major advantage of all arithmetic circuits mod 2N: significantly smaller delay and
exceptional hardware efficiency compared to all its counterparts modulo any odd modulus involving
cumbersome and lengthy operations of finding the remainder of the division by a large and awkward
number M or SQ. The simplicity and the speed gained by the latter outweighs the minor delay/area
differences due to a slightly larger final comparator of N-bit vs. a-bit and aSQ-bit numbers. As for
the comparator based on the CRT-II of [17] it executes

[
log2 n

]
iterative steps on operands of growing

size and involving computations modulo a size growing up to about
√

M. On one hand,
√

M is not
only the smallest of the moduli involved in computations by all comparators considered, but it is also
involved only in the final stage of iterative computations, which suggests that it would result in some
advantages. On the other hand, the estimation of delay/area performance of this circuit is difficult,
because each iterative step involves modulo computations which, despite being executed on relatively
small size moduli are nevertheless time-consuming and executed serially.
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Table 1. Summary of basic parameters of four RNS comparison methods for general moduli sets.

Method
Operands

Modulus
Size [bits] Number

CRT a ≤ n · l n M

SQT
aSQ ≤ (n− 1) · l +[

log2 n
] n SQ

CRT-II † a√M ≤ [(n · l)/2] [n/2]
√

M

MDF
N ≤

n · l +
[
log2 n

] n 2N

CRT—the direct method based on CRT; SQT—the method by Dimauro et al. [16]; CRT II—the method by
Wang et al. [17]; MDF—the new method proposed here; † only the largest sizes of operands and moduli are indicated.

To obtain more accurate complexity estimations, we synthesized all four comparators described
above for various RNS moduli sets, which are grouped into two classes, listed in Table 2. Class 1
consists of 4-moduli sets; each set composed of moduli of the same size p. Varying the size of moduli
p ∈ {5, 7, 9, 11, 13} makes it possible to observe comparators’ performance in the function of the
dynamic range M, which grows only with the size of the moduli but not with their number (which
remains constant). Class 2 consists of moduli of the same size (we chose p = 7 bits), whose number n
varies from 3 to 8, allowing to observe comparators’ performance in the function of the number of
moduli. All sets of selected moduli consist of the largest existing pairwise prime moduli for a given n.

Table 2. Sample sets of moduli and their characteristics.

Class n Moduli Set Size of Moduli
[Bits]

Size of M
[Bits]

Size of SQ
[Bits] N

1 4

27, 29, 31, 32 5 20 17 22
123, 125, 127, 128 7 28 23 30
507, 509, 511, 512 9 36 29 38

2043, 2045, 2047, 2048 11 44 35 46
8187, 8189, 8191, 8192 13 52 41 54

2

3 125, 127, 128 7 21 16 23
4 123, 125, 127, 128 7 28 23 30
5 121, 123, 125, 127, 128 7 35 31 38
6 119, 121, 123, 125, 127, 128 7 42 38 45
7 113, 119, 121, 123, 125, 127, 128 7 49 45 52

8 109, 113, 119, 121, 123, 125, 127,
128 7 56 52 59

The circuits were described in parametrized structural VHDL following identical coding guidelines
and synthesized following the similar layout of module hierarchy and primitive components like adders.
The additions and multiplications were implemented with register-transfer level (RTL) operators and
selection of their architectures was left to be done by the synthesis tool. We performed logic synthesis of
the comparators for a range of target moduli sets using Cadence RTL Compiler v. 8.1 and an industrial
65 nm low-power library (STM CMOS065LP). For each design and moduli set, the minimum delay
was found, which we assumed to be the smallest delay target when the synthesis was still able to
achieve a non-negative timing slack. The cell area and total power (including dynamic and leakage
components) reported by the synthesis tool were given an area and power figures.

The complexity characteristics obtained are detailed in Tables 3–8 and visualized in Figures 4
and 5. It can be seen that the delay of the new comparator proposed here grows equally slowly (almost
linearly) while increasing the dynamic range DR or the number of moduli n. It seems that it results
directly from the possibility of replacing cumbersome operations of finding the remainder of the
division by a large and awkward number with significantly simpler multi-operand additions mod
2N. The synthesis results suggest that the new comparator proposed here is faster than all known
similar circuits for all sample moduli sets considered, with delay reduction ranging from over 11% to
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over 75% compared to the fastest circuit designed using existing methods. Only the basic CRT-based
implementation introduces delay slightly larger but only in a few cases. The largest delay comes with
the introduction of the comparator based on the CRT-II of [17].

Table 3. Delay [ps] for 4-moduli sets composed of p] for 4-moduli sets composed of p-bit moduli,
5 ≤ p ≤ 13, p odd (Class 1).

p DR
[bits]

3 4 5 6 Reduction [%]

CRT SQT CRT-II New 3−6
6

4−6
6

5−6
6

5 20 3187 2954 5401 2100 51.76 40.67 157.19
7 28 3993 3626 5903 2427 64.52 49.40 143.22
9 36 3132 4209 6624 2583 21.25 62.95 156.45
11 44 3430 5371 6844 2698 27.13 99.07 153.67
13 52 4099 5719 7248 2810 45.87 103.52 157.94

Table 4. Area [µm2] for 4-moduli sets composed of p-bit moduli, 5 ≤ p ≤ 13, p odd (Class 1).

p DR
[bits]

3 4 5 6 Reduction [%]

CRT SQT CRT-II New 3−6
6

4−6
6

5−6
6

5 20 11537 16193 14398 11109 3.85 45.76 29.61
7 28 21732 23159 20827 15213 42.85 52.23 36.90
9 36 23073 31970 28910 21036 9.68 51.98 37.43
11 44 29733 54727 36486 26901 10.53 103.44 35.63
13 52 47798 67636 46237 32197 48.45 110.07 43.61

Table 5. Power [µW] for 4-moduli sets composed of p-bit moduli, 5 ≤ p ≤ 13, p odd (Class 1).

p DR
[bits]

3 4 5 6 Reduction [%]

CRT SQT CRT-II New 3−6
6

4−6
6

5−6
6

5 20 3108 3939 5784 2015 52.24 95.48 187.05
7 28 6850 6915 10068 3011 127.50 129.66 234.37
9 36 7721 11950 16371 4352 77.41 174.59 276.17
11 44 11338 25169 22576 6150 84.36 309.25 267.09
13 52 20588 32301 30468 7380 178.97 337.68 312.85

Table 6. Delay [ps] for various n-moduli sets, 3 ≤ n ≤ 8] for various n-moduli sets, 3 ≤ n ≤ 8 (Class 2).

n DR
[bits]

3 4 5 6 Reduction [%]

CRT SQT CRT-II New 3−6
6

4−6
6

5−6
6

3 21 2465 3388 3831 1972 25.00 71.81 94.27

4 28 3993 3626 5903 2427 64.52 49.40 143.22

5 35 3479 5099 7861 3127 11.26 63.06 151.39

6 42 3682 6102 10950 3289 11.95 85.53 232.93

7 49 5941 6210 11243 3377 75.93 83.89 232.93

8 56 6115 5877 13521 3623 68.78 62.21 273.20
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Table 7. Area [µm2] for various n-moduli sets, 3 ≤ n ≤ 8 (Class 2).

n DR
[bits]

3 4 5 6 Reduction [%]

CRT SQT CRT-II New 3−6
6

4−6
6

5−6
6

3 21 9814 11281 7370 9690 1.28 16.42 −23.94
4 28 21732 23159 20827 15213 42.85 52.23 36.90
5 35 26130 36701 31836 28150 −7.18 30.38 13.09
6 42 43209 68508 51542 41463 4.21 65.23 24.31
7 49 93113 98583 72575 63926 45.66 54.21 13.53
8 56 107450 129063 103950 76654 40.18 68.37 35.61

Table 8. Power [µW] for various n-moduli sets, 3 ≤ n ≤ 8 (Class 2).

n DR
[bits]

3 4 5 6 Reduction [%]

CRT SQT CRT-II New 3−6
6

4−6
6

5−6
6

3 21 2750 3474 2063 1688 62.91 105.81 22.22
4 28 6850 6915 10068 3011 127.50 129.66 234.37
5 35 8523 14188 18247 7748 10.00 83.12 135.51
6 42 15461 31885 36415 12584 22.86 153.38 189.38
7 49 45114 43488 56798 19053 136.78 128.25 198.11
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Moreover, the speed advantage of the new comparators was achieved using less hardware
resources, with only two exceptions. For large dynamic ranges, hardware reduction is significant, as it
can exceed 40% compared to the least complex existing designs. For all cases considered, the SQT-based
method of [25] consumes more hardware resources than any other method. Hardware complexity of
the basic CRT-based comparator deserves some special comments, because most of it is the reverse
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converter, which is used anyway as a stand-alone circuit. Therefore, it should not be considered a
contributor to the overall hardware complexity.

Finally, power-consumption seems the major advantage of the new comparators, as its reduction
ranges from over 50% to over 178% for Class 1 moduli sets and from over 10% to over 130% for Class 2
moduli sets. Moreover, it was achieved using circuits which are faster for all cases considered. In this
context, using specifically designed comparators instead of the CRT-based comparators (which actually
require including the least amount of extra hardware: only the final comparator of a-bit numbers),
could be of some practical interest. This is because once the reverse converter is activated just for the
purpose of comparing numbers, it could be extremely power-consuming, as can be seen from the data
listed in Tables 5 and 8, as well as shown in Figures 4c and 5c.

5. Conclusions

This paper proposes a new general approach to the comparison of the numbers represented in
Residue Number System (RNS). It is based on a newly introduced concept of the modified diagonal
function, which serves as a theoretical basis to develop a significantly faster and more efficient
comparison algorithm. It made it possible to introduce a new positional characteristic of an RNS
number which is strictly monotonic so that it makes it possible to precisely reflect a relative positioning
of numbers. Now, unlike in existing algorithms, computations involving cumbersome operations of
finding the remainder of the division by a large and awkward number are replaced with significantly
simpler computations involving only a power of 2 modulus. The newly proposed comparator and its
most efficient known counterparts applicable for arbitrary RNS moduli sets, designed using various
methods for several sample moduli sets, were synthesized for the 65 nm technology. Performance
estimations obtained suggest that the new circuits enjoy delay reduction ranging from over 11% to
over 75%, compared to the fastest circuits designed using existing methods. Moreover, it is achieved
using less hardware, the reduction can even reach over 41%, and accompanied by significantly reduced
power-consumption which in several cases exceeds 100%. Therefore, it seems that the presented
method leads to the design of what is currently the most efficient hardware comparators of numbers
represented using a general RNS moduli set. The magnitude comparison of RNS numbers, besides
being used directly (like in some implementations of recent cryptographic algorithms using RNS), is also
essential for the implementation of other RNS non-modular operations like division, sign detection,
and overflow detection. Future research will include extensions of the approach proposed to handle
other difficult non-modular RNS operations like sign and overflow detection.
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M.B., M.D. and S.J.P.; Methodology, S.J.P. and A.T.; Project administration, M.B. and A.A.; Software, M.D.
and P.P.; Supervision, N.C. and A.A.; Validation, M.B. and A.T.; Writing—Original draft, M.D., S.J.P. and A.T.;
Writing—Review & editing, M.B., S.J.P. and A.T. All authors have read and agreed to the published version of
the manuscript.

Funding: The reported study was funded by RFBR, project number 20-37-70023 and project NCFU.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations and Symbols

CRT Chinese Remainder Theorem
DR Dynamic Range
MDF Modified Diagonal Function
MOMA Multi-Operand Modular Adder
MRC Mixed Radix Conversion
RNS Residue Number System
SQ Sum of Quotients
SQT Sum of Quotients Technique
a the number of bits to represent M
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ai the number of bits to represent xi
aSQ the number of bits to represent SQ
D(X) the diagonal function
D(X) the modified diagonal function
hi =

∣∣∣1/mi|SQ the multiplicative inverse of mi mod SQ
{m1, m2, · · · , mn} RNS moduli set
n the number of moduli
N the number of bits of the fraction part
xi the residue modulo (mod) mi
{x1, x2, · · · , xn} RNS representation of an integer X
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