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Abstract: A wavelet transform twofold subspace-based optimization method (WT-TSOM) is
proposed to solve the highly nonlinear inverse scattering problems with contraction integral equation
for inversion (CIE-I). While the CIE-I is able to suppress the multiple scattering effects within inversion
(without compromising the accuracy of the physics), proper regularization is needed. In this paper,
we investigate a new type subspace regularization technique based on wavelet expansions for the
induced currents. We found that the bior3.5 wavelet is a good choice to stabilize the inversions with
the CIE-I model and in the meanwhile it also can rectify the contrast profile. Numerical tests against
both synthetic and experimental data show that WT-TSOM is a promising regularization technique
for inversion with CIE-I.

Keywords: contraction integral equation for inversion (CIE-I); highly nonlinear inverse
scattering problems; wavelet transform twofold subspace-based optimization method
(WT-TSOM); regularization

1. Introduction

The electromagnetic inverse scattering problems (ISPs) are to reconstruct the geometric shape,
constitutive parameters of the unknown scatterers by using the measured scattering data outside
the domain of interest (DOI). In recent years, the ISPs have been widely used in target recognition,
nondestructive testing, biomedical imaging, microwave remote sensing and so on [1–3]. The ISPs are
usually cast into optimization problems to minimize the mismatches between the synthetic physical
model and the measured field data. For a long time, ill-posedness and nonlinearity have been the two
major difficulties faced in ISPs. To alleviate the ill-posedness, different regularization techniques can
be employed such as L2 norm total variation in [4–6]. On the other hand, according to the model of
Lippmann–Schwinger integral equation (LSIE), due to the multiple scattering effects of electromagnetic
waves within the DOI, the interaction of the secondary induced current leads to serious nonlinearity
in searching the solutions of ISPs, especially when dealing with strong scatterers (the ones with high
contrast and/or electrically large dimensions). Researchers in mathematical, physical, and engineering
societies have dedicated great efforts in developing more stable and more efficient solvers for decades.

To solve the problem of high computational complexity caused by nonlinear problems,
a linearization method based on Born approximation has been proposed in [7]. In this method,
the total field in the target area is approximated by the incident field, which however is only valid
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for weak scatterers (those with low contrast and small physical dimensions—compared with the
probing wavelength). When dealing with moderate or strong scatterers (those with large medium
contrast and/or large physical dimensions), multiple scattering effects can no longer be ignored.
In this scenario, fully nonlinear optimization schemes counting in all multiple scattering effects are
needed. In recent years, different nonlinear inversion methods have been proposed by researchers.
Some deterministic nonlinear inversion models and algorithms have been proposed, such as distorted
Born iteration method (DBIM) and subspace-based DBIM [8], Gauss–Newton-type methods [9],
contrast source inversion method (CSI) [10–13] and subspace-based optimization method (SOM) [14].
Although these methods are efficient to find the local minima of the ISPs, they are also very sensitive
to initial guesses. These methods above can only handle problems with the limitation of low
nonlinearity. Consequently, some stochastic optimization methods have been used for finding the
global solutions [15,16]. However, those stochastic optimization schemes often consume a very large
amount of computational resources, including CPU/GPU time and memory usages.

In order to reduce the nonlinearity of the model, some new source-type integral equation models
are proposed, such as contrast source extended born (CS-EB) [17], and a family of new integral
equations, namely as contraction integral equation for inversion (CIE-I) [18,19], the former of which
is a special case of the latter. It is found that, with CIE-I, the multiple scattering effects within
inversion are effectively reduced and replaced by a local type nonlinearity, therefore the nonlinearity
of the ISPs is reduced compared with the case of using LSIE. To take care of the new local type
nonlinearity and to stabilize the inversions with CIE-I, proper regularization should be imposed
onto the unknowns to balance the stability of the inversion and the resolvability of handling the
nonlinearity. In [18], Fourier basis type twofold subspace constraint (FFT-TSOM) [20] is used to
stabilize the inversion by imposing strong subspace constrains onto the unknown induced secondary
sources, where numerical tests show that such a type regularization is very effective to stabilize
inversions with CIE-I. Later, in [19], a hybrid regularization inversion method with TSOM and
multiplicative regularization applied directly on the unknowns was proposed to solve the highly ISPs
based on CIE-I, where it shows that the TV regularization can help to release the stringent subspace
constraint from TSOM, therefore could help to increase the resolvability of the inversion method.
Lately, another regularization is also investigated within the inversion model of CIE-I, i.e., the iterative
multiscaling approach (IMSA), and it is shown that IMSA can also help to stabilize the inversions with
CIE-I [21].

Due to the sparse properties property and intrinsic multiresolution property of wavelet bases,
they have been used in solving ISPs, such as in [12,22–25]. Basically, the wavelet transforms are
used to either convert the unknowns or the whole physical problem or both into wavelet spectral
domains, such that the transformed problems enjoy better formulations with less numbers of unknowns
and thus more stabilities. While in [12,25] they have been used in the CSI/SOM-type inversion
methods, all these efforts were carried out within the frame of LSIE. In this paper, we investigate
a wavelet-expansion based subspace regularization technique, namely, wavelet transform twofold
subspace-based optimization method (WT-TSOM), on the unknowns for the inversion with CIE-I to
solve highly nonlinear ISPs. Instead of using Fourier bases, the wavelet bases are used to represent
the induced currents for the CIE-I model within the TSOM frame. The major reason of using wavelet
bases to span the low-dimensional subspace is due to their good flexibilities (having different types
of wavelets) and stability. Through analyses and numerical studies, it is shown that the bior3.5
wavelet could be a good choice to stabilize the inversions with CIE-I, and meanwhile could provide
total-variation like rectifications on the contrast profile. Consequently, the contributions of this paper
could be summarized as, (1) the wavelet bases expansion based subspace regularization method,
i.e., WT-TSOM, for inversions with CIE-I is proposed; (2) by studying the well known db20 and
bior3.5 wavelets for the performances of representing the induced currents (from the direct problem
perspective) and of reconstructing the induced currents (from the inverse problem perspective), it is
found that the bior3.5 wavelet is a better choice in terms of stability and accuracy for reconstructions.
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This paper is organized as follows. In Section 2, the wavelet transform and the CIE-I model are
introduced. In Section 3, the proposed inversion method is provided. Numerical studies of wavelet
bases and several benchmark tests, against both synthetic and experimental data, in Section 4 verify
the interests. A conclusion follows in Section 5.

2. Some Preliminaries

In this section, we briefly introduce the wavelet transform and the fundamentals of the scattering
model used in the proposed inversion method.

2.1. Review of the Discrete Wavelet Transform

Given the scaling function φ(x) and wavelet function ψ(x), a two-dimensional (2-D) scaling
function Φ(x, y) and three 2-D wavelet functions Ψ(x, y) can be combined as,

Φj,m,n(x, y) = φj,m(x)φj,n(y),

ΨH
j,m,n(x, y) = φj,m(x)ψj,n(y),

ΨV
j,m,n(x, y) = ψj,m(x)φj,n(y),

ΨD
j,m,n(x, y) = ψj,m(x)ψj,n(y),

(1)

where ψj,m(x) = 2−j/2ψ(2jx− k) is derived from the mother wavelet, and φj,m(x) are the corresponding
scaling funcitons, the details of which can be found in the standard textbook, like [26].

A continuous function f (x, y) in L2(R) can be linearly expressed by a terms of scaling function
and wavelet functions in the following form,

f (x, y) =
1√
MN

∑
m

∑
n

Wφ(0, m, n)Φ0,m,n(x, y) +
1√
MN

∞

∑
j=0
{ ∑

i=H,V,D
∑
m

∑
n

Wi
φ(j, m, n)Ψi

j,m,n(x, y)}, (2)

where the approximation coefficients and the j-level detail coefficients are defined as,

Wφ(0, m, n) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)Φ0,m,n(x, y),

Wi
φ(j, m, n) =

1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)Ψi
j,m,n(x, y) i = {H, V, D}.

(3)

For convenience, operator W is denoted as the 2-D discrete wavelet transform, which maps f (x, y)
from L2(R) to a sparse set of coefficients γ in this paper. The 2-D discrete inverse wavelet transform is
denoted as W−1 in this paper, i.e.,

γ = W f ,

f = W−1γ.
(4)

Wavelet transform is a multi-scale signal analysis method. In view of the complete separated
high- and low-frequency components of wavelet bases, the high-frequency spectral signal regarding
with the edge part and the noise signal can be filtered out freely with the complete low-frequency
components. By the nested scheme with more high-frequency components for constructing the signal,
clearer profiles with the detail information can be finally obtained. Compared to the Fourier transform,
the wavelet decomposition can well separate the low- and high-frequency components and the wavelet
bases are more complete.



Electronics 2020, 9, 1760 4 of 16

2.2. Introduction to the CIE-I Model

Herein, the 2-D electromagnetic ISPs with the transverse magnetic (TM) setting are considered,
as in [13,14,18], and the time harmonic fields are deduced with exp(-iωt) assumption from now on.
As depicted in Figure 1, the domain of interest (DOI) D located within a free space background with
permittivity ε0 and permeability µ0 is invariant along the z-axis of the rectangular coordinate system.
The nonmagnetic scatterers are located in the DOI. In practice, the DOI is discretized into a total
number of M subunits, with the centers of the subunits located at rm, m = 1, 2, ..., M. There are finite
number of Ni transmitting antennas located at ri

p with p = 1, 2, ..., Ni on the domain of S to illuminate
the area of D. For each incidence, the scattered fields are measured by the receiving antennas located
at rq

p, where q = 1, 2, ..., Nr. Similarly, Nr denotes the number of receiving antennas here.

Figure 1. Configuration of ISPs with homogeneous background.

Herein we use ¯̄X and X̄ to denote the matrix and vector of the discretization of parameter
X, respectively.

The traditional Lippmann–Schwinger integral equation (LSIE) reads as

Etot(r) = Einc(r) + iωµ0

∫
D

g(r, r′)[−iωε0(εr(r′)− 1)Etot(r′)]dr′ f or r ∈ D, (5)

where Etot, and Einc are the total field and incident field in the DOI, respectively, g is the Green’s
function of the background medium, and εr is the relative permittivity. With the contrast function χ(r)
being denoted as εr(r)− 1, the induced current can be denoted as

I(r) = −iωε0χ(r)Etot(r) f or r ∈ D, (6)

The second equation describes the scattered field as a re-radiations of the induced current,

Esca(r) = iωµ0

∫
D

g(r, r′)[−iωε0χ(r′)Etot(r′)]dr′ f or r ∈ S. (7)

For the pth incidence, the above equations can be written as discrete form,

Īp = diag(χ̄) · [Ēinc
p + ¯̄GD · Īp], (8)

Ēsca
p = ¯̄GS · Īp, (9)
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where the Green’s function ¯̄GD maps the induced current to the scattered fields in the DOI, and ¯̄GS
represents the mapping between the induced current in the DOI and the scattered fields of the
measurement domain S.

In order to reduce the nonlinearity of the ISPs, a new source-type integral equation proposed
in [18] is used for modeling, which is denoted as CIE-I and can be expressed as,

Īp = diag(R̄) · [β Īp + Ēinc
p + ¯̄GD · Īp], (10)

where R̄ = 1
βχ̄+1 is denoted as modified contrast function. β has a positive real part and a nonpositive

imaginary part. It is shown that by choosing an appropriate β value, the multiple scattering effects can
be effectively alleviated in inversions such that the nonlinearity of ISPs can be reduced accordingly.
More details can be found in [18].

3. Inverse Problem

3.1. Inversion with WT-TSOM

Based on the subspace optimization method (SOM) [14], in the inversion, the induced current is
accordingly divided into two parts, i.e., the deterministic part Īd

p and the ambiguous part Īa
p,

Īp = Īd
p + Īa

p. (11)

According to [14], singular value decomposition (SVD) of ¯̄GS tells

¯̄GS = ∑
n

µ̄nsnν̄∗n . (12)

With sorted singular values in a descending order, i.e., s1 ≥ s2 ≥ ... ≥ sL0 ≥ sL0+1 = ... = sM = 0,
the deterministic part of the induced current Īd

p corresponding to the singular value sL, L ≤ L0 can be
uniquely calculated by

Īd
p =

L

∑
j=1

µ̄∗j · Ēsca
p

sj
νj. (13)

The ambiguous part of the induced current Īa
p is obtained through the optimization process. In the

WT-TSOM, a suitable wavelet basis is selected to reconstruct the Īa
p, that is,

Īa
p = W−1γ̄p, (14)

where γ̄p denotes the wavelet coefficients of the ambiguous part of the induced current. We adopt
the nested inversion scheme (multi-round optimization) as mentioned in [18,20]. In the first round
of optimization, the background air and null γ̄p as the initial guess of the unknown target, and the
reconstruction result of the previous round is used as the initial guess of the next round. Similar to the
case with FFT-TSOM, in the first round of optimization, a small number of low-frequency components
(approximation wavelet coefficients) are used for the inversion. With the inversion proceeding,
more wavelet components are used in the subsequent round. In the next section, we will study how to
choose the number of wavelet components to reconstruct the induced currents.

With this current expression, the object equation and data equation can be written as follows:

Īd
p + W−1γ̄p = diag(R̄) · [β( Īd

p + W−1γ̄p) + Ēinc
p + ¯̄GD( Īd

p + W−1γ̄p)], (15)

Ēsca
p = ¯̄GS · ( Īd

p + W−1γ̄p), (16)
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the mismatches of which can be given as,

4 f ie
p = ¯̄GS · ( Īd

p + W−1γ̄p)− Ēsca
p , (17)

4cur
p = Īd

p + W−1γ̄p − diag(R̄) · [β( Īd
p + W−1γ̄p) + Ēinc

p + ¯̄GD( Īd
p + W−1γ̄p)]. (18)

Consequently, the objective function is given as,

f (γ̄1, γ̄2, ..., γ̄p, R̄) = ΣNi
p=1(
‖ 4 f ie

p ‖2

‖Ēsca
p ‖2 +

‖ 4cur
p ‖2

‖Ēinc
p ‖2 ). (19)

The unknown variables, i.e., the wavelet coefficients γ̄p and the modified contrast R̄ are to be
found by searching the minimum of the object function. The CSI/SOM-type iterative inversion method
is summarized as:

1. Calculate the Green’s functions in terms of ¯̄GS and ¯̄GD, which can be defined as

¯̄GS(q, m) =
ik0πa

2
J1(k0a)H(1)

0 (k0|rs
q − rm|), (20)

¯̄GD(m, m
′
) =


ik0πa

2
J1(k0a)H(1)

0 (k0|rm − rm′ |), m 6= m
′
,

ik0πa
2

H(1)
1 (k0a)− 1, m = m

′
,

(21)

where a =
√

SD
π denotes an equivalent radius so as to approximate every square subunit as

a small circle of the same area, and SD is the area of the subunit. m = 1, 2, ..., M represents the mth
subunit in DOI. q = 1, 2, ..., Nr denotes the qth receiver in domain S. Then do SVD to ¯̄GS, and the
deterministic part of the induced current Īd

p can be calculated by (13). Set K = 1 for the first round
of optimization.

2. Initialization with n = 0 and set the initial searching direction ρ̄p,0 = 0. For the K = 1, a large
value of β and a small number of wavelet coefficients (i.e., a small Mw) should be chosen. Set the
initial values R̄ = 0, and γ̄p,0 = 0 with the dimensions of Mw × 1 (Mw represents the number
of the selected wavelet coefficients). In the subsequent rounds of optimization, i.e., K > 1, β

decreases and Mw increases as K increases, and the initial values of R̄ and γ̄p,0 are the results of
the previous round of optimization.

3. n = n + 1. Update the wavelet coefficients γ̄p. Firstly, taking the derivative of the object function,
gradient of the object function with respect to the wavelet coefficients (19),

ḡc
p,n = 5γ̄p f =

W( ¯̄GH
S · 4

f ie
p )

‖Ēsca
p ‖2 +

W{( ¯̄I − diag(βR̄))∗ · 4cur
p − ¯̄G∗D · (diag(R̄)∗ · 4cur

p )}
‖Ēinc

p ‖2 , (22)

where c denotes that full wavelet coefficients are used, the superscript ∗ and H represent
transpose and conjugate transpose of the matrix, respectively. If we use m̄ to represent the index
number of the selected wavelet coefficients, then the actual used derivative can be expressed
as ḡp,n = ḡc

p,n(m̄). One can use the Polak-Ribière conjugate gradient (CG) search directions,
which can be calculated as (22),

ρ̄p,n = ḡp,n +
Re[(ḡp,n − ḡp,n−1)

H · ḡp,n]

‖ḡp,n−1‖2 ḡp,n−1, (23)

Similarly, ρ̄c
p,n(m̄) = ρ̄p,n.
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The exact search step size can be calculated by

Num = −(
( ¯̄GS ·W−1(ρ̄c

p,n))
H · 4 f ie

p,n−1

‖Ēsca
p ‖2 +

B̄H
p · 4cur

p

‖Ēinc
p ‖2 ), (24)

Den =
‖ ¯̄GS ·W−1(ρ̄c

p,n)‖2

‖Ēsca
p ‖2 +

‖B̄p‖2

‖Ēinc
p ‖2 , (25)

dp,n =
Num
Den

, (26)

where B̄p = ( ¯̄I − diag(βR̄)) ·W−1(ρ̄c
p,n)− diag(R̄) · ( ¯̄GD ·W−1(ρ̄c

p,n)).

Then update the wavelet coefficients,

γ̄p,n = γ̄p,n−1 + dp,nρ̄p,n, (27)

γ̄c
p,n(m̄) = γ̄p,n. (28)

4. Update the induced current:
Īp = Īd

p + W−1(γ̄c
p,n). (29)

5. Calculate the total field, Ētot
p = Ēinc

p + ¯̄GD · Īp, then use the least squares method to update the
modified contrast function.

6. If the maximum iteration is reached, output the obtained contrast. Otherwise, go to Step 7.
7. If the termination condition is not met, go to Step 3. If termination condition is met, the Kth round

of optimization is terminated. In this case, if K does not reach the maximum value, set K = K + 1
before going to Step 2. Otherwise, output the obtained contrast.

In breif, the proposed method adopts the new wavelet bases to span the subspace needed in
inversions, replacing the subspace spanned by the Fourier bases in [18]. Note that such a subspace
regularization technique was firstly developed in [20] for inversions with LSIE. In the next subsection,
two types of wavelet bases will be investigated and compared with the Fourier bases.

3.2. Wavelet Choices

Here, we use the well known “Austria” profile to study the efficiency of the two different wavelets,
db20 and bior3.5, to represent the induced currents from the perspective of direct problem (knowing
the induced currents). The rectangle domain with the side length of 2 m is selected as the DOI, and its
center is located at (0, 0) m. The operating frequencies are 400 MHz and 800 MHz, i.e., the wavelengths
of the incident wave are 0.75 m and 0.375 m in the background medium air, respectively. As shown
in Figure 2, the “Austria” profile (with εr = 2.0) consists of two discs and one ring. The radius of the
two discs both are 0.2 m, and the centers are located at (0.3, 0.6) m, and (−0.3, 0.6) m. The ring has
an inner radius 0.3 m and an exterior radius 0.6 m, and the center is located at (0,−0.2) m. There are
16 line sources and 32 line receivers are evenly placed on the circle of radius 3 m. In the forward
problem, the scattered fields can be obtained by the full-wave solver with 100× 100 grid meshes and
the scattering data matrix size is 32× 16.
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Figure 2. The exact profile of “Austria” profile (with εr = 2.0). The colorbar shows the value of
relative permittivity.

The wavelet bases are not unique and a suitable choice of wavelet bases is crucial for the inversion.
Herein, the strategy for choosing the wavelet is to compare the compression performance of various
decomposition bases for the induced currents with “Austria” profile, such as db20 wavelet bases,
bior3.5 wavelet bases and Fourier bases. Tables 1 and 2 show the compression performances with the
selected 3-level and 2-level wavelet approximate components and low-frequency Fourier components
on the expansion of induced currents. Figure 3 shows the retrieved results of the induced currents
with low-frequency components for two types of strong scatterers with different bases. Figure 3a
depicts the modulus of the induced currents in the DOI at the 0◦ incidence. Figure 3b depicts the
results by using 64 low-frequency Fourier components, 3-level bior3.5 and db20 wavelet approximate
components. Figure 3c depicts the results by using 256 low-frequency Fourier components, 2-level
bior3.5 and db20 wavelet approximate components. From these results, it is obviously shown in each
case that bior3.5 wavelet bases have the best energy compression ratio even when dealing with strong
scatterers (ones with high contrast and/or electrically large dimensions). Note that the total number of
freedom is 4096 (with 64 by 64 grids). When comparing the 2-level and 3-level wavelet representations,
we see that with more level decomposition, we use less number of basis functions, and thus the energy
drops in all the cases. Again, we see that bior3.5 wavelet has less of a decrease in all the three different
cases (in terms of percentages). This means that when using the same number of basis functions,
the bior3.5 wavelet bases could provide better representations of the induced currents. On the other
hand, we also notice that when testing on the case with large electrical dimensions (higher frequency
one), the losses of the energy due to the decrease of the number of basis functions are large. This could
imply that we need to use lower level wavelet decomposition (such that more basis functions) to
represent the induced currents in such a circumstance, which is physically reasonable due to the more
spatial variations of induced currents appear in an electrical large domain.
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Figure 3. (a) The modulus of the induced currents in the domain of interest (DOI) at the 0◦ incidence. (b)
The 1st, 2nd, and 3rd columns correspond to approximation results by using 64 low-frequency Fourier
components, 3-level bior3.5 wavelet approximate components, and 3-level db20 wavelet approximate
components, respectively. (c) The 1st, 2nd, and 3rd columns correspond to approximation results
by using 256 low-frequency Fourier components, 2-level bior3.5 wavelet approximate components,
and 2-level db20 wavelet approximate components, respectively.
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Table 1. Energy compression ratio of induced currents using 3-level wavelet approximate components
and low-frequency Fourier components (64 bases).

Fourier bior3.5 db20

εr = 3.5 ( f = 400 MHz) 37.0100% 58.8128% 33.9199%
εr = 4.0 ( f = 400 MHz) 29.8401% 57.4138% 20.2189%
εr = 2.0 ( f = 800 MHz) 4.3777% 9.7365% 3.3093%

Table 2. Energy compression ratio of induced currents using 2-level wavelet approximate components
and low-frequency Fourier components (256 bases).

Fourier bior3.5 db20

εr = 3.5 ( f = 400 MHz) 88.2031% 90.5244% 86.0935%
εr = 4.0 ( f = 400 MHz) 86.5821% 90.3015% 83.8552%
εr = 2.0 ( f = 800 MHz) 74.9336% 89.6045% 67.1049%

To be more specific, there are two strategies for choosing the number of wavelet coefficients in
handing these two types of highly nonlinear ISPs (i.e., the ones with high contrast and electrically
large dimensions): (1) when dealing with the strong scatterers with high contrast, the 3-level wavelet
decomposition could be used, where in the first round optimization the highest level bases are used,
like 64 in the above energy test, and more number of bases need to be included in the subsequent
rounds of optimization. (2) When dealing with the strong scatterers with electrically large dimensions,
the 2-level wavelet decomposition is used, so as to have more wavelet bases in the first round
optimization. Then more bases are needed in the subsequent rounds of optimization. Note that in
choosing the number of wavelet bases, unlike in the case with Fourier bases, one has only a certain
limit choices, such as, in 3-level decomposition case, one has only 64, 128, 256, etc., which are basically
the 1/(2n) portion of the number of cells along x and y directions. Regarding the selection of β,
there is a detailed description in [18]. β should has a big value in the first round and be reduced in the
subsequent rounds. The obtained results from the current round of optimization will be used as the
initial guesses of the next round. As more and more bases are used, the fine features of the profile will
be obtained.

In this subsection, we provide analyses from the direct problem perspective on the two types of
wavelets, db20 and bior3.5, by using the energy compression ratio. We here emphasize that, due to the
many possible choices of wavelets, there certainly exist other good or even better choices, so does for
the criterion to evaluate the suitabilities of these wavelets.

4. Numerical Tests

In this section, in order to test the inversion performance of the proposed WT-TSOM, we use both
synthetic data and experimental data from the Fresnel Institute [27] to verify the method. All tests
in this section, the DOI is discretized into 64× 64 grid meshes, 10% additive white Gaussian noise
(AWGN) is added on the synthetic data. To evaluate the quality of reconstructed images, the mean
square error of the estimation is designed as

ERRtot =

√√√√ 1
M

M

∑
i=1

|ε̄rec
r,i − ε̄real

r,i |2

|ε̄real
r,i |2

, (30)

where M denotes the total number of subunits, ε̄rec
r,i denotes the relative permittivity of the reconstructed

images at the ith subunit, ε̄real
r,i denotes the real relative permittivity of the scatterers at the ith subunit.

To further evaluate the reconstruction qualities exactly on the unknown scatterers, another type of
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relative reconstructed error ERRsct is defined with the summation of indexes over only the domain
where scatterers distribute.

As did in [18], the inversion also adopts a nested optimization scheme, that is, multiple rounds
of optimization are performed, and the results of the previous round are used as the initial values of
the next round. In order to ensure that each round of optimization has converged, the optimization is
terminated when the change of the unknown γ̄p,n is smaller than a predefined threshold. Such a change
is defined as,

δ2D =

√√√√ 1
Ni

(
Ni

∑
p=1

‖γ̄p,n − γ̄p,n−1‖2

‖γ̄p,n−1‖2 ), (31)

which is calculated at every iteration, and once it is less than 0.001 in the first round of optimization,
or less than 0.0001 in the subsequent rounds of optimization, we stop the current round optimization.

4.1. Tests with Synthetic Data

In the first example, the “Austria” profile with the relative permittivity of εr = 3.5 (a strong
scatterer with high contrast) is used as the unknown target. According to above strategies, we choose
the values of β being 6, 3, 0.5, and 0 for the four rounds of optimization, coupled with Mw being 64,
128, 256, 1024 and the L0 is set to 15. Under the same parameter settings, we tested the inversion
performance of the WT-TSOM by using the db20 wavelet bases and the bior3.5 wavelet bases.
Figure 4a,b depict the reconstructed results after the four rounds of optimization by WT-TSOM
with two different wavelet bases. It can be clearly seen that, compared with the db20 wavelet bases,
the WT-TSOM using the bior3.5 wavelet bases can get much better reconstructed profiles. Table 3
shows the number of iterations (NoI) required for each round of optimization and the corresponding
errors of the reconstructed results, so do the following tables. Both the reconstructed results and the
errors all validate that the WT-TSOM with bior3.5 wavelet bases to expand the ambiguous part of
the induced current outperforms the one with the db20 wavelet bases. In addition, we also observe
that, using bior3.5 wavelet, the obtained reconstructed result by the last round of optimization is well
rectified that contrast values within scatterers vary within a small range, which is also reflected by the
errors in Table 3.

In the second example, in order to test the capability of the proposed WT-TSOM to handle strong
scatterers (the ones with the high contrast), we increase the relative permittivity of “Austria” profile to
4.0 with the contrast being 3.0. The parameter settings are exactly the same as the previous example.
The reconstructed results are shown in Figure 5. Errors of reconstructed results at the final round,
i.e., ERRtot, and ERRsct are 0.6002 and 0.1017, respectively. From this example, we clearly see that
WT-TSOM is effective in dealing with strong scatterers with high contrast. Similar to the previous case,
the obtained reconstruction profile at the end is rectified.

Table 3. Errors of the reconstructed results by WT-TSOM with the bior3.5 and db20 wavelet bases.

bior3.5 Wavelet Bases db20 Wavelet Bases

NoI ERRtot ERRsct NoI ERRtot ERRsct

1st-Round 305 0.7188 0.2153 488 0.9933 0.2058
2nd-Round 568 0.7880 0.1824 1458 1.1952 0.1833
3rd-Round 1160 0.5298 0.1371 1517 0.7828 0.1508
4th-Round 1612 0.4326 0.0786 2526 1.0265 0.1801
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Figure 4. Reconstructed results by WT-TSOM with (a) the bior3.5 wavelet bases and (b) the db20
wavelet bases for “Austria” profile with εr = 3.5. The 1st, 2nd , 3rd, and 4th rows correspond to the
reconstructed results of the first, second, third, and fourth rounds of optimization, respectively. The 1st,
2nd, 3rd, and 4th rounds of optimization correspond to β being 6, 3, 0.5, and 0, coupled with Mw being
64, 128, 256, and 1024, respectively.
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Figure 5. Reconstructed results of (a) first round of optimization, (b) second round of optimization,
(c) third round of optimization, and (d) fourth round of optimization by WT-TSOM for “Austria” profile
with εr = 4.0. The real (first row) and imaginary (second row) of the reconstructed results. The 1st,
2nd, 3rd, and 4th rounds of optimization correspond to β being 6, 3, 0.5, and 0, coupled with Mw being
64, 128, 256, and 1024, respectively.

In the third example, to validate the versatility of the WT-TSOM, a lossy and corrugated
(e.g., rectangles) profile is utilized for reconstruction. Figure 6a depicts the real part (upper) and
imaginary part (down) of the exact profile, which consists of two disks, a coated rectangle and
background material. The radius of each disk is 0.3 m. They have the same relative permittivity εr of
3.5. Their centers are located at (−0.4, 0.6) m and (0.4, 0.6) m, respectively. The lossy coated rectangle is
centered at (0, −0.3) m. The inner rectangle has a long side of 1.0 m and a short side of 0.6 m, and the
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outer rectangle has a long side of 1.6 m and a short side of 1.0 m. The relative permittivity of the
inner rectangle is 2.5 + i0.5, and the one of the outer rectangle is 1.5 + i0.2. The parameter settings are
exactly the same as the previous example, and the L0 is set to 5. The reconstructed results are shown in
Figure 6b–e, and Table 4 shows the details of the results. It can be seen from the results that after four
rounds of optimization, the lossy profile can be well reconstructed, although some artifacts exist in the
imaginary parts. Please note that the reconstructed results by the last round of optimization clearly
show the effects of noise, meaning that when more and more high-frequency wavelet components
are used, results tend to be affected by noise, similar to the case with FFT-TSOM. For the results after
three round optimization, shown in Figure 6d, the rectangular shapes of the bottom scatterers are well
reconstructed, showing again the rectification effect on the contrast profile with bior3.5 wavelet.
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Figure 6. (a) The real part (first row) and imaginary part (second row) of the exact profile. (b–e)
Reconstructed results correspond to fourth rounds of optimization, respectively. The real (first row) and
imaginary (second row) of the reconstructed results. The 1st, 2nd, 3rd and 4th rounds of optimization
correspond to β being 6, 3, 0.5 and 0, coupled with Mw being 64, 128, 256, and 1024, respectively.

Table 4. Errors of the reconstructed results by WT-TSOM.

1st-Round 2nd-Round 3rd-Round 4th-Round

NoI 437 664 909 1326
ERRtot 0.5512 0.5075 0.3510 0.3167
ERRsct 0.2164 0.1647 0.1468 0.1347

In the fourth example, we choose “Austria” profile with the relative permittivity of 2.0 as the
unknown target , but the operating frequency is increased to 800 MHz, with the measurement and
inversion setting the same as in the previous examples. At 800 MHz, the electrical size of the DOI
becomes 5.3× 5.3 λ, meaning “Austria” profile is a strong scatterer with electrically large dimensions.
In the first round of optimization, more wavelet bases should be used represent the induced currents,
as mentioned in the previous section. So in this example, we choose the values of β being 6, 3,
and 0.5 for the three rounds of optimization, coupled with Mw being 256, 512, 768, and L0 is set to
5. The reconstructed results of the three rounds of optimization are shown in Figure 7a–c, in which
the first and second rows show the real and imaginary parts of the reconstructed results, respectively.
Table 5 shows the errors of the reconstruction results after each round of optimization. It can be
seen from the reconstruction results and errors that WT-TSOM can also handle strong scatterers with
electrically large dimensions well.
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Figure 7. Reconstructed results for the “Austria” profile at 800 MHz by the WT-TSOM. (a–c)
Reconstructed results correspond to three rounds of optimization, respectively. The real (first row) and
imaginary (second row) of the reconstructed results. The 1st, 2nd, and 3rd rounds of optimization
correspond to β being 6, 3, and 0.5, coupled with Mw being 256, 512, and 768, respectively.

Table 5. Errors of the reconstructed results by WT-TSOM.

1st-Round 2nd-Round 3rd-Round

NoI 1146 696 386
ERRtot 0.2406 0.2023 0.1726
ERRsct 0.0912 0.0798 0.0627

To summarize, above testing results show that, if proper wavelet bases are chosen, the WT-TSOM
provides very good performances in stabilizing the inversions with CIE-I, which are at least equivalent
if not better than those by FFT-TSOM in [18]. In addition, the rectification on the profiles by the
proposed WT-TSOM is a very welcome advantage, since no additional computational costs is needed
to achieve this. Note that, as discussed in [18], all these results are far better than those obtained by
inversion methods with LSIE model, as these cases are too nonlinear to be properly handled by the
LSIE model.

4.2. Tests with Experimental Data

In the last example, the experimental data from Institute Fresnel is utilized to test the proposed
method. The used FoamTwinDiel data set is collected with 18 transmitters and 241 receivers at the
different frequencies (from 2 GHz to 10 GHz) [27]. As shown in Figure 8a, the FoamTwinDiel consists of
three scatterers, i.e., two smaller cylinders with diameter being 3.1 cm and the relative permittivity of
3.0, and a larger cylinder with diameter being 8 cm and εr = 1.45. In the inversion, the 20× 20 cm2

DOI with 64× 64 subunits is selected, and the L0 is set to 5. Through numerical testing, it is validated
that 9 GHz is the highest frequency which the proposed method can handle. The background air
and null γ̄p as the initial guesses, and the δ2D is set to 0.001, 0.0001, and 0.0001 for three rounds of
optimization. We choose the values of β being 6, 3, and 0.5 for the three rounds of optimization,
coupled with Mw being 256, 512, 768, which are the same as those used in the 800 MHz case.
The reconstructed results of the three rounds of optimization at 9 GHz by the proposed method
are shown in Figure 8b–d, respectively, and the first and second rows show the real and imaginary
parts of the reconstructed results, respectively. The errors of reconstructed results ERRtot are 0.2948,
0.2680, and 0.1591, whereas ERRsct are 0.2436, 0.1346, and 0.0864, which are obtained after three rounds
of optimization with 336, 2678, 1626 iterations, respectively. Again, we see good reconstruction results
with the proposed method, esp. the well rectified profile with the coated cylinder on the right hand
side, as shown in Figure 8d.
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Figure 8. (a) Exact profile “FoamTwinDiel”; (b–d) Reconstructed results against FoamTwinDiel data set at
9 GHz, corresponding to three rounds of optimization, respectively. The real (first row) and imaginary
(second row) of the reconstructed results. The 1st, 2nd, and 3rd rounds of optimization correspond to
β being 6, 3, and 0.5, coupled with Mw being 256, 512, and 768, respectively.

5. Conclusions

This paper presents a wavelet based twofold subspace-based optimization method, i.e., WT-TSOM,
for solving highly nonlinear ISPs by using of the CIE-I model. While the nonlinearity of the ISPs can be
alleviated and the multiple scattering effects within inversion can be suppressed by the CIE-I model,
the wavelet-expansion-based regularization on the unknown induced currents can effectively stabilize
inversions with CIE-I. With nested optimization scheme, profiles of strong scatterers can be roughly
reconstructed with one or two rounds of optimization, based on which the fine features of the profiles
can then be retrieved with another one or two rounds of optimization. Although the number of
wavelet bases cannot be chosen flexibly as with Fourier bases, different types of wavelets provide more
possibilities. In this paper, we have studied the well known db20 and bior3.5 for the performances
of representing the induced currents (from the direct problem perspective) and of reconstructing the
induced currents (from the inverse problem perspective), and have found that the latter is a better
choice in terms of stability and accuracy for reconstructions. Numerical tests against both synthetic
and experimental data have validated that the WT-TSOM with the bior3.5 wavelet bases exhibits
promising reconstruction performances in tackling highly nonlinear inverse scattering problems and
therefore provides a new regularization tool for the CIE-I model.

Author Contributions: Conceptualization, K.X. and Y.Z.; methodology, K.X.; software, L.Z.; validation, L.Z.,
K.X. and Y.Z.; formal analysis, K.X.; investigation, L.Z.; resources, K.X.; data curation, K.X.; writing—original
draft preparation, L.Z. and Z.M.; writing—review and editing, K.X. and Y.Z.; visualization, L.Z. and K.X.;
supervision, K.X.; project administration, K.X. and Y.Z.; funding acquisition, K.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Zhejiang Provincial Natural Science Foundation of China under Grant
LY19F010012, in part by the National Natural Science Foundation of China under Grant 61971174, in part by the
Talent Project of Zhejiang Association for Science and Technology under Grant SKX201901, and in part by the
China Postdoctoral Science Foundation under Grant 2019M661984.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chandra, R.; Zhou, H.; Balasingham, I.; Narayanan, R.M. On the opportunities and challenges in microwave
medical sensing and imaging. IEEE Trans. Biomed. Eng. 2015, 62, 1667–1682. [CrossRef]

2. Caorsi, S.; Massa, A.; Pastorino, M.; Donelli, M. Improved microwave imaging procedure for nondestructive
evaluations of twodimensional structures. IEEE Trans. Antennas Propag. 2004, 52, 1386–1397. [CrossRef]

http://dx.doi.org/10.1109/TBME.2015.2432137
http://dx.doi.org/10.1109/TAP.2004.830254


Electronics 2020, 9, 1760 15 of 16

3. Wang, X.; Qin, T.; Witte, R.S.; Xin, H. Computational feasibility study of contrast-enhanced thermoacoustic
imaging for breast cancer detection using realistic numerical breast phantoms. IEEE Trans. Microw. Theory
Tech. 2015, 63, 1489–1501. [CrossRef]

4. Xu, K.; Zhong, Y.; Song, R.; Chen, X.; Ran, L. MultiplicativeRegularized FFT twofold subspace-based
optimization method for inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 2015, 53, 841–850.

5. Abubaker, A.; Van Den Berg, P.M. Total variation as a multiplicative constraint for solving inverse problems.
IEEE Trans. Image Process. 2001, 10, 1384–1392. [CrossRef] [PubMed]

6. Van den Berg, P.; Kleinman, R. A total variation enhanced modified gradient algorithm for profile
reconstruction. Inv. Probl. 1995, 11, L5–L10. [CrossRef]

7. Wang, Y.; Chew, W. An iterative solution of two-dimensional electromagnetic inverse scattering problem.
Int. J. Iamging Syst. Technol. 1989, 1, 100–108. [CrossRef]

8. Ye, X.; Chen, X. Subspace-based distorted-born iterative method for solving inverse scattering problems.
IEEE Trans. Antennas Propag. 2017, 65, 7224–7232. [CrossRef]

9. De Zaeytijd, J.; Franchois, A.; Eyraud, C.; Geffrin, J. Full-wave three-dimensional microwave imaging
with a regularized Gauss–Newton method—theory and experiment. IEEE Trans. Antennas Propag.
2007, 55, 3279–3292. [CrossRef]

10. Abubakar, A.; van den Berg, P.M. The contrast source inversion method for location and shape
reconstructions. Inverse Probl. 2002, 18, 495–510. [CrossRef]

11. Gilmore, C.; Mojabi, P.; LoVetri, J. Comparison of an enhanced distorted born iterative method
and the multiplicative-regularized contrast source inversion method. IEEE Trans. Antennas Propag.
2009, 57, 2341–2351. [CrossRef]

12. Li, M.; Semerci, O.; Abubakar, A. A contrast source inversion method in the wavelet domain. Inverse Probl.
2013, 29, 025015. [CrossRef]

13. Van den Berg, P. M.; van Broekhoven, A.L.; Abubakar, A. Extended contrast source inversion. Inverse Probl.
1999, 15, 1325–1344. [CrossRef]

14. Chen, X. Subspace-based optimization method for solving inverse-scattering problems. Trans. Geosci. Remote
Sens. 2010, 48, 42–49. [CrossRef]

15. Pastorino, M. Stochastic optimization methods applied to microwave imaging: A review. IEEE Trans.
Antennas Propag. 2007, 55, 538–548. [CrossRef]

16. Rocca, P.; Benedetti, M.; Donelli, M.; Franceschini, D.; Massa, A. Evolutionary optimization as applied to
inverse scattering problems. Inverse Probl. 2009, 25, 123003. [CrossRef]

17. Isernia, T.; Crocco, L.; D’Urso, M. New tools and series for forward and inverse scattering problems in lossy
media. IEEE Geosci. Remote Sens. Lett. 2004, 1, 327–331. [CrossRef]

18. Zhong, Y.; Lambert, M.; Lesselier, D.; Chen, X. A new integral equation method to solve highly nonlinear
inverse scattering problems. IEEE Trans. Antennas Propag. 2016, 64, 1788–1799. [CrossRef]

19. Xu, K.; Zhong, Y.; Wang, G. A hybrid regularization technique for solving highly nonlinear inverse scattering
problems. IEEE Trans. Microw. Theory Tech. 2018, 66, 11–21. [CrossRef]

20. Zhong, Y.; Chen, X. An FFT twofold subspace-based optimization method for solving electromagnetic
inverse scattering problems. IEEE Trans. Antennas Propag. 2011, 59, 914–927. [CrossRef]

21. Zhong, Y.; Salucci, M.; Xu, K.; Polo, A.; Massa, A. A multiresolution contraction integral equation method for
solving highly nonlinear inverse scattering problems. IEEE Trans. Microw. Therory Tech. 2020, 68, 1234–1247.
[CrossRef]

22. Miller, E.L.; Willsky, A.S. Wavelet-based methods for the nonlinear inverse scattering problem using the
extended Born approximation. Radio Sci. 1996, 31, 51–65. [CrossRef]

23. Winters, D.W.; Veen, B.D.V.; Hagness, S.C. A sparsity regularization approach to the electromagnetic inverse
scattering problem. IEEE Trans. Antennas Propag. 2010, 58, 145–154. [CrossRef] [PubMed]

24. Scapaticci, R.; Kosmas, P.; Crocco, L. Wavelet-based regularization for robust microwave imaging in medical
applications. IEEE Trans. Biomed. Eng. 2015, 62, 1195–1202. [CrossRef]

25. Yin, T.; Wei, Z.; Chen, X. Wavelet transform subspace-based optimization method for inverse scattering.
IEEE Multiscale Multiphys. Comput. Tech. 2018, 3, 176–184. [CrossRef]

http://dx.doi.org/10.1109/TMTT.2015.2417866
http://dx.doi.org/10.1109/83.941862
http://www.ncbi.nlm.nih.gov/pubmed/18255553
http://dx.doi.org/10.1088/0266-5611/11/3/002
http://dx.doi.org/10.1002/ima.1850010111
http://dx.doi.org/10.1109/TAP.2017.2766658
http://dx.doi.org/10.1109/TAP.2007.908824
http://dx.doi.org/10.1088/0266-5611/18/2/313
http://dx.doi.org/10.1109/TAP.2009.2024478
http://dx.doi.org/10.1088/0266-5611/29/2/025015
http://dx.doi.org/10.1088/0266-5611/15/5/315
http://dx.doi.org/10.1109/TGRS.2009.2025122
http://dx.doi.org/10.1109/TAP.2007.891568
http://dx.doi.org/10.1088/0266-5611/25/12/123003
http://dx.doi.org/10.1109/LGRS.2004.837008
http://dx.doi.org/10.1109/TAP.2016.2535492
http://dx.doi.org/10.1109/TMTT.2017.2731948
http://dx.doi.org/10.1109/TAP.2010.2103027
http://dx.doi.org/10.1109/TMTT.2019.2956939
http://dx.doi.org/10.1029/95RS03130
http://dx.doi.org/10.1109/TAP.2009.2035997
http://www.ncbi.nlm.nih.gov/pubmed/20419046
http://dx.doi.org/10.1109/TBME.2014.2381270
http://dx.doi.org/10.1109/JMMCT.2018.2878483


Electronics 2020, 9, 1760 16 of 16

26. Mallat, S.G. A Wavelet Tour of Signal Processing; Academic: New York, NY, USA, 1999.
27. Geffrin, J.-M.; Sabouroux, P.; Eyraud, C. Free space experimental scattering database continuation:

Experimental set-up and measurement precision. Inverse Probl. 2005, 21, 117–130. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0266-5611/21/6/S09
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Some Preliminaries
	Review of the Discrete Wavelet Transform
	Introduction to the CIE-I Model

	Inverse Problem
	Inversion with WT-TSOM
	Wavelet Choices

	Numerical Tests
	 Tests with Synthetic Data 
	Tests with Experimental Data 

	Conclusions
	References

