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Abstract: Telemedicine over Internet of Things (IoT) generates an unprecedented amount of data,
which further requires transmission, analysis, and storage. Deploying cloud computing to handle
data of this magnitude will introduce unacceptable data analysis latency and high storage costs.
Thus, mobile edge computing (MEC) deployed between the cloud and users, which is close to
the nodes of data generation, can tackle these problems in 5G scenarios with the help of artificial
intelligence. This paper proposes a telemedicine system based on MEC and artificial intelligence for
remote health monitoring and automatic disease diagnosis. The integration of different technologies
such as computers, medicine, and telecommunications will significantly improve the efficiency of
patient treatment and reduce the cost of health care.
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1. Introduction

Telemedicine is an emerging mode of modern medical services, which can not only meet the
real-time monitoring and health management of people’s daily health at home, but also greatly relieve
the pressure of outpatient visits in hospitals. Considering the two major current conditions of the global
population, the health problems of people have risen to become concerns of the whole society. The first
is that the aging population is becoming increasingly serious. In the future, many elderly people will
have to face the problem of the difficulty in receiving medical treatment in hospitals. The second is
that the sub-health phenomenon of young people is becoming more common with the increasing
pace and pressure of the current society. The in-depth integration of the healthcare industry with the
Internet of Things (IoT), 5G, Artificial Intelligence (AI), big data, cloud computing, and other advanced
technologies will hopefully solve the abovementioned health problems. In particular, the 5G-enabled
IoT and AI are continuously driving innovative applications in the telemedicine industry.

In the fields of medical health and medical sciences, the application scenarios of telemedicine
mainly include remote monitoring, remote ultrasound, remote consultation, remote surgery, mobile
medicine, as well as intelligent control of medical drugs and equipment to achieve personal medical
management and health data management.

At present, wearable biomedical devices for vital signs monitoring are developing rapidly. Low cost,
low power consumption, small size, and intelligence are the keys to developing wearable biomedical
devices. Wearable health devices have many advantages such as the continuity of medical services and
real-time perception of health data. They can realize real-time monitoring of human life characteristics
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and health conditions, helping people understand their physical conditions and detect symptoms early.
Advanced semiconductor technology has greatly reduced the cost and power consumption of wearable
devices, where the performance has been greatly improved. The combination of AI and the IoT has
enhanced the degree of intelligence of wearable devices. The research and development of wearable
biomedical devices have become an important direction in the field of telemedicine. In addition, it is
important to guarantee the rapid development of telemedicine. It is expected that wearable devices
related to medicine and health will occupy the majority of the entire wearable device market.

In recent years, the 5G network has attracted great interest in various vertical industries due to its
high speed, large connections, and low latency, among others. The high-speed characteristic of 5G
enables it to support the 4K/8K remote high-definition consultation and high-speed transmission and
sharing of medical image data; furthermore, it allows experts to conduct consultations anytime and
anywhere, improves diagnosis accuracy and guidance efficiency, and extends high-quality medical
resources to the patients’ homes. The large-connection characteristic of 5G makes it possible to connect
a large number of medical sensor terminals, related video devices, and wearable biomedical devices
to achieve real-time perception and measurements, capture and transfer patient health information,
and to realize the continuous and accurate monitoring of health information without time and space
restrictions. In addition, in special wards such as radiology wards and infectious wards, medical staff

can also control the medical assistant robot to move to the designated bed and complete the remote
nursing service under the premise of protecting medical staff.

Various medical sensors and wearable biomedical devices can collect real-time patient health
indicators, including body temperature, heart rate, blood pressure, blood glucose, and electrocardiogram,
among others. These devices can be connected to the cloud; the latter performs AI analysis of patient
health-related data, records the patient’s health status, provides disease analysis for doctors and
patients, and provides auxiliary decision-making for patient treatment. The doctor remotely evaluates
the patient’s condition and provides immediate feedback on the patient’s health. Some wearable health
monitors can perform local data analysis without connecting to the cloud. For example, a heart rate
monitor that can independently analyze health data can provide the necessary response immediately
to alert caregivers when patients need help.

IoT devices in the medical health field will generate massive data, including some highly sensitive
data, and some health data require quick analysis and an immediate decision. The telemedicine
applications based on IoT cannot be executed locally on the terminals, due to the limited computing,
storage capabilities, and the restricted energy supply of the IoT devices. However, uploading all
health data to the cloud will not only cause tremendous pressure on the cloud, but also cause huge
challenges to the network bandwidth and end-to-end delay. Moreover, the cloud computing center
cannot provide location-aware applications. 5G-based mobile edge computing (MEC) provides a better
infrastructure network architecture for telemedicine. MEC provides computing, storage, and other
infrastructures close to the end users or data sources. The essence of MEC is the extension of the
traditional cloud computing to the edge aggregation nodes (e.g., at base stations). It integrates computing,
storage, network, and application capabilities at the edge of the network. Unlike traditional cloud
computing, network capabilities are one of the core capabilities of MEC. MEC has the characteristics of
decentralization, data localization, and low latency. The combination of MEC and telemedicine is of
great significance.

However, MEC and cloud computing need to work closely together to better meet the needs of
various scenarios, thereby maximizing the value of cloud computing and edge computing services.
The data collected by the medical health-related terminal devices are uploaded to the MEC servers,
where the data are processed and stored locally. In addition, some emergency data are processed and
analyzed in real time, and feedback is immediately made. As most of the data are not uploaded to the
remote cloud computing center, the end-to-end delay is greatly reduced, and the bandwidth pressure
on the backhaul link is also reduced. However, this does not mean that the cloud computing center
will not participate in the telemedicine process. Some data still need to be transferred from the edge
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nodes to the cloud computing center. The cloud computing center performs big data analysis and
mining, data sharing, and simultaneously carries out training and upgrading of the AI algorithm model.
The trained or upgraded AI model is pushed to the edge nodes, allowing the real-time intelligent
decision-making of health data at the edge nodes to become possible. Moreover, the medical health
data also need to be stored and backed up in the cloud computing center to ensure storage reliability
and facilitate data sharing among different medical institutions.

Stimulated by commercial profits, some technology giants have attached importance to the layout
and application of smart healthcare. IBM invested $1 billion in 2014 to establish the Watson business
group. IBM Watson is a technology platform that uses AI technology to gain insight into the regularity
of the unstructured data [1]. At present, the system has been applied to the diagnosis and treatment
of tumors, cardiovascular diseases, and diabetes, and has been used in other fields, as well. Tencent
launched its first AI product, Tencent Miying [2], in the medical field in August 2017. It integrates
image recognition and deep learning (DL) with medical science to assist doctors in screening for
esophageal cancer, effectively improving screening accuracy and promoting accurate treatment. It also
supports early screening for lung cancer, diabetic retinopathy, breast cancer, and other diseases.

In 2019, Ghulam et al. [3] proposed a new intelligent pathology detection system using DL,
cloud computing, and edge computing. The sensor will capture the human electroencephalogram
(EEG) signal, which will be sent to a nearby edge computing server. The server inserts preprocessing
steps and assigns them to available edge devices. Then, the advanced signals will be sent to the cloud
computing server. In the cloud server, the proposed tree-based depth model replaces the EEG signal
to extract depth features. The classification decision of whether it belongs to a normal person or a
pathological person will be sent to the stakeholders. Li et al. [4] proposed an Edge Learning as a Service
(EdgeLaaS) framework to process health supervision data locally. Under this framework, edge learning
nodes can help patients choose better suggestions from the right guardians in real time when certain
emergencies occur. Prabal et al. [5] proposed a remote patient health monitoring system based on
fog computing in smart homes. It uses IoT devices to monitor patients in smart home environments.
It implements event classification based on fog computing for real-time response and provides real-time
decision-making information to doctors and caregivers in various situations.

The proposed work is able to obtain the physiological indicators of users through electrocardiogram
(ECG) data. Existing algorithms for the automated ECG analysis of cardiac arrhythmia are based on the
assessment of morphological features. After feature extraction, analysis is done by K-Nearest Neighbor
(KNN) [6], support vector machine (SVM) [7], and Random Forest (RF) [8] traditionally. Recent
state-of-the-art performances achieved by deep learning methods in pattern recognition problems
have motivated researchers to implement these techniques to the field of biomedical signal processing.
Deep learning technology is based on neural networks for feature extraction and decision-making, of
which the convolutional neural network (CNN) and recurrent neural network (RNN) are the two main
neural network paradigms. In addition, [9] and [10] utilize the CNN to realize localized origins of
premature ventricular contraction and Human Identification through ECGs. Attention-based recurrent
neural network (MLDA-RNN) is used for the automated diagnosis of myocardial infarction severity
stage [11].

Other than the previous work, our proposed system can provide users with remote medical
services through IoT, MEC, and machine learning technologies by monitoring the user’s physical
indicators in real time and predicting the patient’s health. The system obtains health-based statistical
information and user environment data effectively, including electrocardiogram (ECG) data, global
positioning system (GPS) data, weather, and temperature data. In the MEC layer, the collected data are
first pre-processed, and AI technology is then used for data analysis to obtain indicators for health
monitoring. The physiological indicators monitored by the system come from ECG mostly, so achieving
fast and accurate ECG automatic diagnosis and properties recognition are of great significance to
the entire system. Therefore, an ECG diagnosis model based on AI is deployed in the MEC layer
to improve the whole system. After data analysis, the analysis results and health information are
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finally transferred to the cloud server for storage and management. Compared with only cloud
computing, edge computing platforms perform sensor data analysis tasks at the edge of the network,
which reduces the distance of data transmission, thereby making the system run faster. As the nodes
of data analysis are closer to the nodes of data generation, it is more difficult for hackers to tamper
with the data. The system can reduce or avoid communication delays with the cloud so that key
decisions can be immediately implemented at the edge through the deployed machine learning model.
The machine learning algorithm proposed in this paper is a one-dimensional convolutional neural
network (1D-CNN) model, which can diagnose and predict the type of heart disease. Experimental
results prove the effectiveness of the algorithm. Putting the proposed 1D-CNN model on the MEC
layer can make full use of the advantages of the proposed system and can provide users with real-time
heart disease detection.

The proposed work created a multi-layer system to provide telemedicine for users, which can
reduce the medical burden and provide better medical services. However, three problems need to be
solved to build the system: First, continuous massive sensor data transmission; second, large amounts
of medical data processing with low latency for effective response to emergency medical situations;
third, intelligent algorithm for ECG diagnosis with high accuracy. The proposed system combines
5G, MEC, and AI to provide telemedicine services and solve the above problems. The AI model for
automatic ECG analysis tackled the problem of data analysis. 5G and MEC guarantee the transmission
of massive data with high quality of service (QoS) and allow the computation near the data source to
avoid unnecessary data movement, which accelerate service delivery to improve the practicality of the
system. Besides being close to the data sources, MEC provides the ability to process the collected data
by deploying the AI model on it, and the task of data processing and storage can be done. There are
many works using MEC to tackle the problems that exist in telemedicine. For example, one study
proposed a three-tier network architecture for mobile-health applications based on MEC [12]. Another
discussed the benefits of healthcare systems with MEC-based architecture [13].

The rest of this article is organized as follows. Section 2 introduces the system model with details
on the network framework for telemedicine and machine learning-based 5G MEC. Section 3 develops
our ECG diagnosis model, including wavelet-transformed data preprocessing and 1D-CNN automata.
Section 4 presents the experimental simulation results to justify the performance of our scheme,
followed by Section 5 to conclude the paper.

2. System Model

2.1. Network Framework for Telemedicine

The proposed system consists of the IoT layer, MEC layer, and cloud computing layer. The three
layers are responsible for different tasks. Medical data are generated in the lower IoT layer, and then
transmitted to the MEC layer in the middle for data processing. Finally, it reaches the upper cloud
layer for storage and further analysis. These three layers are combined together to form the complete
system. The system combines edge computing and AI technology to provide predictive functions,
which can monitor abnormalities occurring on the IoT device in real time. The system recognizes
ECG abnormalities on the IoT edge device itself instead of the cloud, and notifies the system to take
the necessary measures. Edge computing technology provides a way to deploy the proposed ECG
diagnostic model on the edge. Figure 1 illustrates the entire system framework. The proposed system
performs data preprocessing and data analysis at the MEC layer, and then transmits the analysis results
and user health information to the cloud layer for storage and management. Therefore, compared
to using cloud computing only, edge computing platforms undertake sensor data analysis tasks at
the edge of the network. This reduces the distance of data transmission, thus making the system run
faster. It can also eliminate or mitigate transmission noise in sensor data to some extent. The nodes of
data analysis are closer to the nodes of data generation, making it difficult for hackers to steal them.
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The system can reduce or avoid transmission delays to the cloud, so key decisions can be implemented
immediately at the edge by deploying machine learning models.Electronics 2020, 9, x FOR PEER REVIEW 5 of 17 
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Figure 1 illustrates the workflow of the entire system in a hospital scenario. The IoT layer is
composed of a multiple-sensor network deployed around the hospital beds to obtain physiological
and environmental data and transmit them to MEC layer. There are many schemes to accomplish the
transmission task with Wi-Fi, zig-bee, 4G, or 5G. Among them, the system chooses 5G to connect the IoT
with the MEC layer directly to transmit large quantities of IoT sensing data with high QoS every second.
As shown in Figure 1, the data stored in the cloud layer can be accessed by the authorized entities,
which includes associated hospitals and the Center for Disease Control and Prevention if needed.
In addition, the authorized doctors are able to directly acquire the ECG data and analysis results of
their patients from the MEC layer. With the aid of artificial intelligence algorithms for automatic ECG
diagnosis in the MEC layer, doctors can make a quick decision on what treatment to use or whether
to further evaluate the patient’s condition based on the diagnosis results generated by the proposed
ECG diagnosis model. Furthermore, nurses can monitor the patients’ physical condition in real time
through the monitoring terminal, which is connected to the MEC layer, so they can make a quick
response in emergencies.

The IoT-based user subsystem is responsible for the real-time acquisition of health-based statistical
information and user environmental data, including ECG data, GPS data, weather, and temperature
data. These data are obtained from wireless sensing devices connected to the human body. The wearable
sensor node is composed of sportswear inlaid with electrodes and processing hardware. Sportswear is
made of soft and stretchable materials. The hardware module is responsible for ECG signal detection,
digitization, and wireless data transmission, which can achieve reliable ECG measurements. The cloud
subsystem is responsible for storing various user data and the final result of ECG analysis. It consists of
a large amount of storage space. In addition to storing the analysis results, it will also summarize the
medical information of each user and share it among authorized medical personnel, users, and hospitals.
Users and authorized entities can access medical records anytime and anywhere. The MEC layer will
periodically send the collected ECG data information to the cloud system for permanent storage to
facilitate the management of historical ECG data. It can also be accessed by any other server in the
MEC layer at any time. Similarly, the historical alarm messages of the user’s cardiovascular health
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status are also stored on the cloud server for further analysis by experts to provide emergency plans in
case of emergency.

The proposed system can provide high-quality telemedicine services through IoT, MEC, and AI
technologies. Telemedicine is a medical service based on advanced technology. Telemedicine is a
promising and cost-effective method that can prevent death and improve the functional recovery
of patients. This technology has been proven effective and is a viable option for future healthcare.
Compared with alternative methods such as conventional care, successful telemedicine can provide
high-quality care at low costs.

2.2. 5G MEC with AI

Preventive telemedicine needs a high data transmission rate and very low delay with massive data
analysis to achieve the best performance. The traditional base station-centered mobile communication
and cloud infrastructure is unable to load a large amount of data, which brings about the high delay
and redundant data transmission. The exponential growth of mobile communications has significantly
improved the quality of human interactions regardless of distance [14–18]. Mobile edge computing
and 5G technology will help the proposed system overcome these problems. Figure 2 shows how the
MEC server works with the help of 5G. Moreover, if the large amounts of data are directly handed over
to medical experts for analysis, it will prolong the diagnosis time and increase costs. It is necessary to
use AI technology as a part of data analysis to implement efficient and accurate diagnosis.
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Figure 2 shows the general workflow of the data transmitting and processing over the MEC layer
in a nonspecific scenario. The ECG data are generated by users from the sensors in the IoT layer
and transmitted to the MEC servers via 5G for further data processing. The tasks of the MEC layer
include data receiving, temporary data storage, artificial intelligence-based ECG automatic diagnosis,
diagnosis results generation, and data access. In a hospital, the abundance of patient physiological
data and environmental data are important factors for doctors to make accurate decisions on disease
diagnosis and treatment. Therefore, the hospitalized patients use a sensor network to obtain multiple
types of data to accurately reflect their health status. Moreover, the nonhospitalized users could use a
similar sensor network at home, or only a wearable device for ECG detection attached on their skin.
It depends on the application scenario and the level of health monitoring service the user needs.

Recently, AI technology has flourished. The DL model has been widely used in image recognition,
speech recognition, and other fields. Compared with the common machine learning model based on
feature extraction, the performance of the DL model has significantly improved. For the classification
of arrhythmias, many scientists have put forward their own opinions. Ziman et al. used spectrum
transformation technology to input ECG data into a convolution recurrent neural network after
spectrum transformation. Hannun et al. used the 34-layer CNN model to analyze the 30 s single lead
ECG rhythm, and then classified the arrhythmia. Murugesan et al. used the spatial and temporal
characteristics of ECG combined with the characteristics of the long short-term memory (LSTM) and
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CNN models for analysis. The combination of the neural network, MEC layer, and 5G transmission
will greatly improve the efficiency of the whole system.

The proposed system is designed to provide health monitoring services for large-scale users in
multiple scenarios. The IoT layer is responsible for collecting the user’s physiological and environmental
data through a variety of sensors and uploading them to the cloud, while the cloud provides
corresponding computing resources for ECG automatic diagnosis and data storage, and allows
authorized individuals or entities to perform further disease analysis or recording through the stored
data. It is a data-intensive service related to medical care, so the proposed system utilizes the MEC
layer between the IoT layer and cloud layer to shorten data transmission and processing delays,
reduce transmission pressure, and increase the response speed to emergency medical conditions.
The MEC layer is closed to the nodes of data generation. Compared to using cloud computing only,
edge computing undertakes data analysis tasks at the edge of the network. This reduces the distance
of data transmission, thus making the system run faster and greatly improves the practicability of the
overall architecture of the proposed system. MEC is developed from the edge network. Some MEC hosts
can be deployed close to the end users. MEC hosts have sufficient computing and storage capacities.
The main advantage of the MEC layer is to reduce the network delay through the storage and computing
capacity of the MEC host. In this case, the base station acts as the real server. In addition, it reduces the
bandwidth of the device and overcomes the limitations of existing resources such as storage capacity
and processing capacity. The main objective of the previous generations of wireless networks is to
provide faster internet access to realize the transition from voice-centric networks to multimedia-centric
networks. The task of the 5G network is to maintain the stability of communication, computing, control,
and content delivery. It is a completely different and more complex task. The purpose of the 5G
network is to not only connect users, but also provide a connection for any device or application in
the access network. The evolution of mobile technology is a key part of the overall development of
machine-to-machine communication and IoT. 5G technology will have a significant impact on many
telemedicine scenarios.

3. ECG Diagnosis Model Design

3.1. Denoising with Wavelet Transforms

When the wearable devices are used to collect the ECG signal of the user, it is necessary to use
electrodes to detect and record the electrical activation from the user’s skin. Unavoidably, the recorded
electrical signals may be biased due to the improper electrode sticking or the influence of the body’s
life activities. Moreover, the current flow in the wearable device changes all the time; the magnetic
field generated by the current will also have certain interference on the stage of ECG record acquisition.
These unavoidable situations will introduce noise into the recorded ECG. These noises mainly consist
of baseline wandering and some high-frequency vibration. The baseline wandering may be caused by
incorrect electrode contact or the user’s breathing behavior, showing a low-frequency characteristic,
which is manifested as the baseline of the ECG changing periodically. To eliminate baseline wandering
and high-frequency vibration in recorded signals, this study uses wavelet transforms to accomplish
data preprocessing.

The wavelet transform is a kind of mathematical tool for signal processing with many algorithms
like continuous wavelet transforms and discrete wavelet transforms (DWTs, which is the algorithm this
study uses). DWTs can provide the time and frequency information in signals and are used to detect
overlapping noise, which is popular in the field of nonstationary signal processing [19]. The DWT
decomposes the signal into approximate coefficients (CA) and detailed coefficients (CD). Then, the CAs
are divided into new CAs and CDs. This process is shown in Figure 3. This process will generate a set
of CAs and CDs at different scales (n) iteratively.
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The ECG denoising approach in this study is composed of three stages: Forward DWT, soft thresholding,
and inverse DWT. The wavelet used in this study is db4 from the wavelet family of Daubechies.
The stage of forward calculation can be expressed by the following equation:

x(t) =
k=+∞∑
k=+∞

An,kϕ(2
−nt− k) +

n∑
j=1

k=+∞∑
k=−∞

B j,k2−2/ jψ
(
2− jt− k

)
(1)

An,k is the approximation coefficients at scale n; B j,k denotes the detailed coefficients at scale j;
and ψ(t) and ϕ(t) are the wavelet function and scaling function, respectively. Wavelet thresholding can
be employed where the noisy signal is decomposed into several levels, denoised, and reconstructed.
In this study, each of the detailed coefficients is thresholded using the soft thresholding method,
in which the threshold is computed using the Rigorous SURE (Stein’s Unbiased Risk Estimator)
criterion. The soft thresholding can be described as follows:

B̂ j,k =

sign
(
B j,k

)(∣∣∣B j,k
∣∣∣− t

) ∣∣∣B j,k
∣∣∣ ≥ t

0 otherwise
(2)

Suppose the B j,k denotes the coefficients of wavelet transforms in scale j, an approximate coefficient
B̂ j,k can be generated by a suitable soft threshold t. The function sign (B j,k) is used to extract the sign
of the number, and the threshold t is selected using the Rigorous SURE criterion. After the stage of
inverse DWT, the denoised ECG records are obtained.

3.2. Machine Learning Structure Design

One of the important waveforms existing in ECGs is called the QRS complex [20]. The QRS
complexes in an ECG record always appear periodically. When analyzing an ECG waveform, it is
necessary to capture the morphological features of QRS complexes at different time steps. The difficulty
in analyzing ECGs is to distinguish the subtle differences between different features to make an accurate
decision. This study trains a 1D-CNN model to accomplish the tasks of important features captured in
different time regions, the high-dimensional abstraction of features, and decision-making.

The structure of the model is shown in Figure 4. Hierarchical residual units similar to those in
ResNet are used to construct the main body of the model [21,22], and the pre-activation structure of
residual units is used. The shortcut connection provided by the residual unit can connect the input
and output of the unit together. This structure allows the network to learn a simpler function that
represents a residual value of the input relative to the output and mitigates the gradient vanishing
effect, thereby reducing the difficulty of model training. According to [20], the general form of residual
units is as follows:

yl+1 = xl +F (xl,Wl) (3)

xl+1 = f (yl+1) (4)
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In (2), F (xl,Wl) is the residual function learned by the model, xl+1 is the output of the l-th layer,
xl is the input of the l-th layer,Wl is the weight of the l-th layer, and f is generally a rectified linear unit
(ReLu) function. After the general unit, He et al. constructed a variety of variants based on the original
structure of the residual unit, and finally proposed a full pre-activation structure. This structure uses the
function f as another identity mapping such that xl+1 = yl+1; then, the structure of full pre-activation
can be expressed as follows:

xL = xl +
L∑

i=l

F (xi,Wi) (5)

This allows the feature xl located in the lower layer l to be passed to any high-level L-th layer
without obstruction. The output feature xL of the L-th layer can be represented as the feature xl of the
lower layer l plus the residual function of all the middle layers, which forms a shortcut connection
at the scale of the entire network. According to this structure, a max pooling layer was added after
each element-wise addition operation of shortcut connections to extract key features and reduce the
dimension of features, so that low-level features were continuously modified by the mapping of the
max pooling layer and had an impact on the high-level features.

In each residual unit of the model, there are three ReLu activation function layers, batch
normalization layers, and convolutional layers. These layers respectively form three units of hierarchical
structures to extract a variety of abstract features in the ECG records with convolutional manner.
The ReLu activation function is:

f (x) = max(0, x) (6)

This function is usually used to generate nonlinear transformation for the results obtained by the
linear transformation of neurons in the network. This function has a simple form and its gradient is
easy to calculate, so it is widely used in DL networks to provide the hierarchically connected layers
with nonlinear mapping.

The batch normalization (BN) layer in the model is capable of adjusting the distribution of its
input in every mini-batch [23,24], which will reduce the internal covariate shift and allow the model to
converge faster. Suppose the number of input features of a BN layer in one mini-batch is M, and each
feature has a length of N with several channels. The operation of a BN layer on the input can be
expressed as:

µc =
1

NM

M∑
i=1

N∑
j=1

xi jc (7)

σ2
c =

1
NM

M∑
i=1

N∑
j=1

(
xi jc − uc

)2
(8)
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x̂i jc =
xi jc − µc
√
σ2 + ε

(9)

yi jc = γcx̂i jc + βc (10)

In the above equations, xi jc denotes a feature value of a particular channel c in one mini-batch,
where i ∈ [1, M] and j ∈ [1, N]. µc and σ2

c represent the mean and variance of the feature corresponding
to the c-th channel across the whole mini-batch, respectively. x̂i jc is the normalized value of xi jc, and yi jc
is the scaled and shifted value after the operations of a BN layer. The layer calculates the mean and
variance of the input activation values inside each channel during every iteration and adjusts the
mean of the input to 0 while the variance is adjusted to 1. Finally, the input features will be adjusted
to a reasonable distribution through two trainable parameters γc and βc of a particular channel c.
By adjusting the data distribution, the internal covariate shift effect in the deep network can be reduced,
so the speed of the convergence of the network can be accelerated.

Multiple arrhythmia categories may be present in one ECG record at the same time, which gives
the model output multiple diagnosis results. In this study, the model is designed to output each result
in the form of binary classification, using the sigmoid function as the activation function of the neuron
outputs:

y =
1

1 + e−z , (11)

z =Wx + b, (12)

where x represents the input features of the output layer,W and b are the weights and biases of the
layer, and z is the values obtained by the linear mapping of x. The sigmoid function limits the neuron
output values z inside the interval of 0 to 1 through nonlinear mapping. Its output value changes
rapidly around the position where the independent variable value is zero but changes slowly when it
approaches negative infinity or positive infinity. By appropriately transforming the sigmoid function,
the following can be obtained:

ln
(

y
1− y

)
= z = Wx + b (13)

where y ∈ (0, 1), which indicates the probability that the ECG record represented by the input feature x
is a positive example in a certain category; then, 1− y represents the probability that it is a negative
example. The logarithm of the ratio of y and 1 − y is called logit. The larger the logarithmic value,
the greater the probability that the corresponding ECG record is a positive example. This is the method
using a linear regression algorithm to make the model’s diagnosis results approach the logits of the
ground truth labels.

3.3. Loss Function and Optimizer

As the model outputs are in the form of multiple binary classifications, these results will be used
during training to calculate the model deviation of diagnosis through a kind of appropriate loss function
called cross-entropy loss. With the help of a loss function, the model weights can be continuously
adjusted through backpropagation to effectively reduce model classification loss. After a number of
epochs of training, the model loss will achieve an optimal value, which means the model acquires a
good automatic diagnosis and generalization performance. The commonly used cross-entropy loss
function is binary cross-entropy (CE) loss, and the design of this function is as follows:

lCE(y, ŷ) =

−log(ŷ) y = 1

−log(1− ŷ) y = 0
(14)

When the ground truth label of the ECG record is y = 1 or y = 0, the CE loss function lCE has
different expressions for the model prediction value ŷ and the ground truth y, which represents how
severe the model’s diagnostic error on the input ECG record is. During training, as the loss function
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decreases, the model’s distribution of predictions will become closer and closer to the distribution
of the ground truth labels. However, lCE uses the same weights to evaluate the loss produced by the
positive and negative samples in the training set. When the number of positive and negative samples
in the training set is extremely out of balance, it is more appropriate to use the improved CE loss
called focal loss (FL) to address the imbalance problem [25]. As the proportion of the people who
receive an ECG examination suffering from cardiovascular diseases is relatively small, the abnormal
ECG waveform of some kinds of arrhythmia does not appear every time during ECG monitoring.
Therefore, in ECG datasets, the appearance of abnormal ECG patterns of each arrhythmia type occupy
only a small part of all recorded ECG waveforms, which has caused an imbalance of the number of
positive and negative ECG samples in the training set. FL introduces two hyperparameters for CE loss,
which effectively improves the performance of the latter in the imbalanced datasets:

lFL(y, ŷ) =

−α(1− ŷ)γ log(ŷ) y = 1

−(1− α)ŷγ log(1− ŷ) y = 0
(15)

lFL(y, ŷ) represents the focal loss of the ground truth label y and the model prediction value ŷ.
Here, a negative example indicates that an ECG record does not show the characteristics of arrhythmia,
and a positive example shows the opposite. The two hyperparameters γ and α introduced in the
function have different capabilities. α is used to adjust the proportion of the positive and negative loss
function values, so that the integrated loss is not occupied by the loss values caused by a large number
of negative samples, so that the model can obtain more information from the positive samples. γ is
used to increase the proportion of the loss values caused by hard samples in the total loss to implement
weight adjustment for samples with different learning difficulties. With the help of hyperparameter γ,
the model can learn more approaches to make decisions on hard samples.

FL is the basic loss function of the model in this study. When calculating the integrated loss of the
mini-batches during training, a problem of practical application needs to be considered. When users
use wearable devices to collect ECG records by themselves, the collected waveform will be distorted
due to operational error or excessive body movement during the data acquisition process. As a result,
in this type of ECG record, the valid information that can be used for diagnosis is missing. This type
of ECG record is labeled as interference. When constructing the training set, these records cannot
simply be discarded because applications in actual scenarios require the pattern to be discriminated.
Therefore, when designing the integrated loss function, the existence of inferenced ECG records needs
to be considered. The overall loss function structure is as follows:

Lni f (y, ŷ) =
(
1− yi f

) ∑
lab,i f ,

lFL(ylab, ŷlab) (16)

Li f (y, ŷ) = lFL(yi f , ŷi f ) (17)

L(y, ŷ) =
1
k

(
Lni f (y, ŷ) + αi f Li f (y, ŷ)

)
(18)

where i f , ni f , and lab mean the label of inference, labels of not inference, and labels the input
ECG records have, respectively. Li f (y, ŷ) represents the focal loss value of the predicted output of
interference ŷi f and the ground truth label of inference yi f . Lcls(y, ŷ) indicates that when the ground
truth interference label of the input ECG record is marked as 0, the loss value of the predicted results
other than the prediction of interference is generated. If the ground truth label of inference is marked as
1, only the loss generated by ŷi f is considered. k represents the total number of labels on one ECG record.
The integrated loss L(y, ŷ) of input data is the weighted average of the loss value generated by Li f (y, ŷ)
and Lcls(y, ŷ), where the parameter αi f represents the weight on the loss value of interference. The loss
function is constructed this way because of the special characteristic of the category of interference.
The inference category of an ECG record is labeled as 1, denoting that this record is seriously distorted
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and cannot be used for disease diagnosis. However, in some cases, this kind of ECG record consists
of both valid and invalid waveforms, which will cause the model to capture features corresponding
to the valid waveform and make the diagnosis of arrhythmia in view of these features. However,
the behavior of performing a diagnosis on distorted records is unreasonable; no matter what the model
has predicted, these results should not be used as part of the integrated loss. Otherwise it will increase
the difficulty of model convergence.

After the loss function is determined, the optimizer can be used to optimize the model parameters
through the established loss function [26–28]. As the optimization goes on, the model loss will become
smaller and smaller and the diagnostic accuracy will improve gradually. The optimizer used in this
study is the adaptive moment estimation (Adam) [5]. Adam combines the first and second raw moments
of gradients to update the parameters of the model, which can realize the adaptive learning rate
calculation on different parameters. Its basic form can be expressed as follows:

mt = β1mt−1 + (1− β1)gt (19)

vt = β2vt−1 + (1− β2)g2
t (20)

m̂t =
mt

1− βt
1

(21)

v̂t =
vt

1− βt
2

(22)

Wt =Wt−1 −
α

√
v̂t + ε

m̂t (23)

where t represents the gradient descent at time step t; gt is the gradients of model weightsWt−1 before
the gradient descent; and mt and vt are the moving averages of gradients and the square of gradients,
respectively. The parameters β1, β2∈ [0,1) are used to control the decay of the moving averages at
different time steps. As the estimation of mt and vt is inaccurate at the beginning of the gradient descent,
they need to be corrected respectively to m̂t and v̂t, where βt

1 and βt
2 represent the squares of β1 and β2

for t, respectively. α is the learning rate during gradient descent, and ε is a small value to prevent the
situation where the denominator is zero. Through the corrected value and the model weightWt−1,
the weightWt updated at time step t can be obtained. With the gradient descent, the model will obtain
an optimal configuration of weights.

4. Experimental Simulation Results and Analysis

To train the proposed model and perform tests on it, the ECG dataset used in the present study
contains a total of 160,948 records. The data distribution of the dataset in four categories is shown
in Table 1. It can be seen that the category of normal occupies a large part of the dataset, while the
quantity of other categories is relatively small. The least among them is the premature beat, which only
occupies 6% of all records in the training set. It should be noted that some kinds of abnormal heartbeats
in the dataset are not included in the existing labels. These records are retained, so the total number of
labels in Table 1 will be slightly less than the number of records in the dataset.

Table 1. Data distribution of electrocardiogram (ECG) dataset.

Normal Premature Beat Heart Block Interference

Dataset
Number 66,384 11,065 5722 19,728

Proportion 65% 11% 6% 19%

Figure 5 plots the four categories of the ECG segments in the dataset, each row of which illustrates
12 s with 3000 data points in one ECG record. From top to bottom, the category of each row is normal,
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premature beat, retardant, and interference, respectively. Interference means the corresponding record
cannot be used in the ECG analysis because of a bad waveform or having too much noise.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 17 

𝒲௧ = 𝒲௧ିଵ − 𝛼ඥ𝑣ො௧ + 𝜖 𝑚ෝ௧ (23) 

where 𝑡 represents the gradient descent at time step t; 𝑔௧ is the gradients of model weights 𝒲௧ିଵ 
before the gradient descent; and 𝑚௧ and 𝑣௧ are the moving averages of gradients and the square of 
gradients, respectively. The parameters 𝛽ଵ, 𝛽ଶ∈ [0,1) are used to control the decay of the moving 
averages at different time steps. As the estimation of 𝑚௧ and 𝑣௧ is inaccurate at the beginning of the 
gradient descent, they need to be corrected respectively to 𝑚ෝ௧ and 𝑣ො௧, where 𝛽ଵ௧ and 𝛽ଶ௧ represent 
the squares of 𝛽ଵ and 𝛽ଶ for 𝑡, respectively. 𝛼 is the learning rate during gradient descent, and 𝜖 
is a small value to prevent the situation where the denominator is zero. Through the corrected value 
and the model weight 𝒲௧ିଵ, the weight 𝒲௧ updated at time step t can be obtained. With the gradient 
descent, the model will obtain an optimal configuration of weights. 

4. Experimental Simulation Results and Analysis 

To train the proposed model and perform tests on it, the ECG dataset used in the present study 
contains a total of 160,948 records. The data distribution of the dataset in four categories is shown in 
Table 1. It can be seen that the category of normal occupies a large part of the dataset, while the 
quantity of other categories is relatively small. The least among them is the premature beat, which 
only occupies 6% of all records in the training set. It should be noted that some kinds of abnormal 
heartbeats in the dataset are not included in the existing labels. These records are retained, so the 
total number of labels in Table 1 will be slightly less than the number of records in the dataset. 

Table 1. Data distribution of electrocardiogram (ECG) dataset. 

 Normal Premature Beat Heart Block Interference 

Dataset 
Number 66384 11065 5722 19728 

Proportion 65% 11% 6% 19% 
 
Figure 5 plots the four categories of the ECG segments in the dataset, each row of which 

illustrates 12 s with 3000 data points in one ECG record. From top to bottom, the category of each 
row is normal, premature beat, retardant, and interference, respectively. Interference means the 
corresponding record cannot be used in the ECG analysis because of a bad waveform or having too 
much noise. 

 
Figure 5. Four categories of ECG records in the dataset. 

Figure 6 shows the training curve of the proposed model. The model was trained using the 
training set with the initial learning rate of 0.001 and exponential learning rate decay. After 200 
epochs of training, the model performance tends to be stable. As illustrated in Figure 1, the fluctuation 
of the training curve of the heart block is relatively strong. It is difficult for the model to converge in 
this category because of the small amount. 

Figure 5. Four categories of ECG records in the dataset.

Figure 6 shows the training curve of the proposed model. The model was trained using the
training set with the initial learning rate of 0.001 and exponential learning rate decay. After 200 epochs
of training, the model performance tends to be stable. As illustrated in Figure 1, the fluctuation of the
training curve of the heart block is relatively strong. It is difficult for the model to converge in this
category because of the small amount.Electronics 2020, 9, x FOR PEER REVIEW 13 of 17 
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Fivefold cross-validation was performed on the whole dataset. In Figure 7, the stars denote the
average value of the F1 score in every category, while the vertical lines show the variation in the value
of the F1 score. As can be observed, the difference between the maximum and minimum F1 score of
the category of premature beat is the largest. This may be because the waveform of the premature beat
is intermittent and does not always follow a certain period, which brings uncertainty to the model.

Table 2 shows the detail of the performance of the proposed model in the four categories.
These results are calculated through the test set and include five metrics to measure model performance
from multiple perspectives: acc, spe, sen, ppr, and F1 score. Among the four categories, the performance
of the model in the normal category is the best. It can achieve or exceed 0.90 on the five metrics, and the
ppr even reaches a high score of 0.961, indicating that the positive prediction made by the model
has very high accuracy. In addition to the category of normal, the other three categories have higher
accuracy to distinguish the negative samples from the positive ones. This is because the negative
samples in the three categories occupy the majority of the whole category, respectively. The model
can learn more features for decision making on negative samples. In the ECG dataset used in this
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study, the heart block category has the smallest number of records, and the ratio of positive samples
(samples with heart block) to negative samples (without heart block) is about 1:20. This causes the
model’s decision on the heart block category to tilt toward the negative sample during the training
process, making the score on the two metrics of spe and ppr relatively low. The high value of acc
shows that the model has achieved very good performance in terms of classification accuracy. In ECG
datasets, the records without disease often occupy the majority, while the number of records with
disease is relatively small. The high-quality performance of the model in classification accuracy is
mostly generated from the health records. However, in actual application scenarios, it is particularly
important to make accurate predictions on diseased records.
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Table 2. Performance of the proposed model for ECG diagnosis.

Acc Spe Sen Ppr F1 Score

Normal 0.908 0.896 0.931 0.961 0.928
Premature beat 0.973 0.909 0.981 0.857 0.882

Heart block 0.979 0.818 0.988 0.801 0.809
Interference 0.916 0.883 0.922 0.688 0.773

Figure 8 illustrates the simulation results of the model. The little markers with color plot the
variation in the metrics used in simulation among the four categories. It is obvious that the F1 score
will go down gradually as the number of positive samples decreases in different categories, except the
category of inference. The records of inference gain a low F1 score with a relatively considerable
number of positive samples because there are too many different patterns of interference for the model
to learn.

In the proposed system, the IoT layer continuously generates new data that need to be processed
and analyzed every second. These data come from dozens of entities or thousands of sensors and are
distributed in different regions. However, sending all these data to the cloud poses several immense
problems. First, the volume of data will create capacity issues. Second, it is costly to transmit that much
data from its location of origin to centralized data centers in terms of energy, bandwidth, and compute
power. This clearly outlines operational efficiency issues that need addressing. Third, the power
consumption of transmitting and analyzing data is enormous, and finding an effective way to reduce
that cost and waste is clearly needed. Figure 9 shows the time consumption of the ECG model with the
increase in data volume. The simulation experiment is performed on an Intel Xeon Platinum 8163
CPU, manufactured by Intel Corporation, CA, USA. It takes 2.63 s to process 100 ECG records with
2.77 mega floating-point operations (MFLOPs). However, the time consumption raised to 19.14 s when
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processing 1000 ECG records, which needs an MEC layer with multiple machines to improve the
computational efficiency of the model.
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In addition to improving computational efficiency, introducing an MEC layer to process data
locally reduces transmission costs. However, automated data analysis techniques are also required for
ECG data analysis, and one of the most effective methods is to utilize the capabilities of AI. Therefore,
all servers in the MEC layer are equipped with the ECG diagnosis model based on AI.

5. Conclusions

Mobile edge computing is a promising network paradigm in telemedicine with great potential to
reduce the time of data transmission and further accelerate the data analysis process with the help of
AI technology. MEC makes a cloud computing system more powerful by extending the computation
and storage facilities to the edge of the IoT network. In this paper, a telemedicine system based on
MEC and AI for remote health monitoring and automatic disease diagnosis was presented. The system
consists of an IoT layer, MEC layer, and cloud computing layer. The DL model for ECG diagnosis is
deployed on the MEC layer. In the simulation results, the proposed model shows the high accuracy of
prediction on multiple categories in the ECG dataset, enabling the whole system to present a more
efficient medical information analysis ability.
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