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Abstract: To detect behavioral anomalies (disease/injuries), 24 h monitoring of horses each day is
increasingly important. To this end, recent advances in machine learning have used accelerometer
data to improve the efficiency of practice sessions and for early detection of health problems.
However, current devices are limited in operational lifetime due to the need to manually replace
batteries. To remedy this, we investigated the possibilities to power the wireless radio with a
vibrational piezoelectric energy harvester at the leg (or in the hoof) of the horse, allowing perpetual
monitoring devices. This paper reports the average power that can be delivered to the node by energy
harvesting for four different natural gaits of the horse: stand, walking, trot and canter, based on
an existing model for a velocity-damped resonant generator (VDRG). To this end, 33 accelerometer
datasets were collected over 4.5 h from six horses during different activities. Based on these
measurements, a vibrational energy harvester model was calculated that can provide up to 64.04 µW
during the energetic canter gait, taking an energy conversion rate of 60% into account. Most energy is
provided during canter in the forward direction of the horse. The downwards direction is less suitable
for power harvesting. Additionally, different wireless technologies are considered to realize perpetual
wireless data sensing. During horse training sessions, BLE allows continues data transmissions (one
packet every 0.04 s during canter), whereas IEEE 802.15.4 and UWB technologies are better suited for
continuous horse monitoring during less energetic states due to their lower sleep current.

Keywords: animal behavior; horse gaits; horse health; energy harvesting; kinetic energy

1. Introduction

Thoroughbred horses are considered very valuable for the owners, both emotionally and
financially, making the growing equine industry very important and innovative. To provide better
healthcare for the millions of horses in this industry, anomalies, e.g., colic’s, lameness, etc., in the
behavior should be detected as early as possible to enable effective treatment and, thereby reducing
the risk for possible expensive surgeries. Many of these symptoms can be detected for example by
processing continuously collected accelerometer data using heuristics or machine learning models [1,2].
To this end, a wireless sensor node will be attached at the hoof. The placement of the sensor at the hoof
is chosen because it is none-intrusive for the horse. The accelerometer data will be collected, processed
and transmitted periodically over the air for analyzing in the backbone.

In literature different definitions of lameness exist but they all include a pathological condition,
which makes lameness into a clinical problem [3]. Another important health issue is colic. A study
of more than 20.000 horses in 1998–1999 estimated the annual cost of colic in the United States at
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$115,300,000 [4], making the detection of these anomalies very important for horse owners. Depending
on the veterinary practitioner, different diagnostic tests are performed [5].

In addition to these clinical benefits, the accelerometer data can be used for a second important
use case: to improve training sessions [6] of competition horses on a scientific basis. Trainers can
reuse the available accelerometers to identify the gait pattern followed during previous training
sessions, enabling long term evaluation of the horse physical condition. In addition to detecting,
e.g., lameness, this information can also be used to calculate per-horse nutrition plans, matching the
energy quantity and feeding times to the horse energy consumption [7]. These use cases are described
in more detail in, e.g., [1] and motivate the presence of accelerometers in horse wearables. Sensor
nodes, in particular for (animal) health applications, are typically limited by physical constraints
on the dimensions and therefore the battery capacity is also limited. The health monitoring device
requires a robust battery without any exploding risk. To cope with this limited power availability
and the difficulty of switching regularly batteries at the horses leg, the energy for the monitoring
device could be supplied with a piezoelectric energy harvester. The harvesting of energy from the
kinetic movements of humans has gained recent research interest and is studied in several papers.
Saha [8] proposed an unobtrusive piezoelectric device integrated in a human shoe-sole for powering
small electronic devices. The use of piezo-electricity has also been used to power RFID nodes in
sneakers, presented in [9]. Gatto [10] presented four different types of soles with integrated energy
harvesters were used to power a GPS module. Experimental results for a low frequency piezoelectric
energy harvester were demonstrated by Luo [11]. Optimizing energy harvesters for low frequency by
applying non-linear techniques has been done by Mann [12].

We investigated the possibility for designing an energy harvesting node at lateral side of the front
leg of a horse based on an extensive set of collected accelerometer data traces from horses. By extension,
findings of this study can be used in the tracking of wildlife, mainly focusing on ungulates.

The main contributions for this paper are the following:

• The authors determine the order of magnitude for the energy that can be harvested at the leg of
horses based on a second order mass-spring model of an energy harvester applied on multiple
data tracks.

• A comparison between the available energy during different gaits of the horse is made and the
effect for tuning the resonance frequency of the energy harvester is shown.

• The influence of different environmental parameters (surface, leg, physics of the horse, etc.) on
the energy generation is studied and the results are generalized for use in different scenarios.

• The feasibility to transmit data using 6 different wireless technologies (WiFi, BLE, UWB, LoRa,
SigFox and 802.15.4) is evaluated using different duty cycling scenarios.

To the best of our knowledge, this is the first paper that reports on the possible generation of
energy at a horse’s leg. The conclusions are based and validated on a large dataset of 33 tracks with at
each front leg a 3-axis accelerometer, covering different horses, surfaces, sampling rates, etc.

The remainder of this paper is structured as follows. First, Section 2 provides an overview of
existing health trackers for horses and also provides an overview of energy harvested sensor nodes in
other papers whether or not applied on horse related data. In Section 3, a description of the acquisition
of the data sets is provided and the results are discussed and interpreted, discussing, e.g., different
variables (surface, physics of the horse, etc.). Next, the used energy harvester model and the conversion
to electrical energy is discussed in Section 4. The results of the analysis are presented in Section 5.
An overview and discussion of different wireless technologies that can be used for transmitting the
accelerometer data is given in Section 6. Finally, Section 7 concludes the paper.
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2. Related Works

In this section, we discuss (i) the state-of-the-art research related to energy harvesting in
constrained wireless (sensor) devices, and (ii) research tracks related to continuous monitoring
of horses.

2.1. Energy Harvested Wireless Sensor Networks

The emerging Internet-of-Things (IoT) technologies have made rapid progress in smart
applications and industry 4.0. As a subcategory of IoT, wireless sensor networks are a hot topic
in different research domains as they can collect data for thoroughly interpretation of environmental
conditions (weather, animals, traffic, etc.). For this purpose, low power electronic chips are available
targeting energy harvester applications and the sensors themselves are smaller and consume less
power. Remote nodes are deployed on a large scale for monitoring environmental [13] and physical
conditions and send their information to a central node for processing and saving.

One of the largest constraints in these networks is the limited battery capacity and need for costly
battery replacement. When tracking wild animals [14,15], the node should stay online as long as
possible, to collect the maximum amount of data. One potential solution is the use of a battery-less
node that harvests the required energy from his environment [16]. The most common technique
is solar energy [17–19] for powering the mobile nodes. Other types of energy harvesting include
thermal [20,21], RF-based [22,23] and kinetic energy harvesters [24,25].

The final goal of this paper is to assess the feasibility of a monitoring device placed at the horseshoe,
hoof or lower leg of the horse, since this location provides the most rich and usable accelerometer
data [2] and is the least intrusive for the horse. Solar energy can’t be guaranteed at the hoof and leg
of the horse and the energy RF and thermal can currently provide are not sufficient for powering
the node [26,27]. To overcome these limitations, we will investigate the feasibility of a kinetic energy
harvester at the hoof of the horse.

2.2. Horse Health and Behavior Tracking

Horse owners, biologists and other researchers are interested in tracking animals, in particular
horses, for multiple reasons: analyzing their socio-dynamical behavior, automatic and early detection
of lameness, colics and other anomalies, health monitoring and gait analysis.

Research interest for horse monitoring includes the collection of spatio-temporal data from
32 horses in the Donana National Park, Andalusia, Spain [28], after which this data is used for
mapping dynamical group behavior. The horses were followed with battery-powered wireless nodes.
The classification and characterization of horse gaits based on accelerometer data have been studied
in [29], exploiting the landing pattern of the limbs, and EquiMoves [2], combining 8 wireless nodes for
analyzing a horse gaits and detecting lameness in the horse gait [2]. provides an objective measurement
system supporting equine veterinarians in assessing lameness and gait performance. The system
captures horse motion from up to eight synchronized wireless inertial measurement units, can be
used in various equine gait modes, and analyzes both upper-body and limb movements. Research
with heart rate sensors has been done to detect lameness in canter [30]. To monitor the horse’s health,
a solution of the dire need of accessible, portable and affordable technology measuring the heartbeat
and vital signs is proposed in [31].

Some off-the-shelf commercial systems already exist, providing information about horse or
environment to the owners. Commercially available devices for tracking the horse’s behavior include,
e.g., [32,33]. By measuring heart rate, temperature or accelerometer data, the owner can evaluate
the conditions of his precious horse and his stables. However, most of these devices need battery
replacement after a few days, are too big in size or do not provide real time interpretation of the
data. One of the possibilities to overcome the battery replacement constraints is the use of an energy
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harvester as primary power source. To the best of our knowledge, we can state that no such commercial
or research system already exists.

3. Kinetic Accelerometer Data: Collection And Interpretation

To determine the available energy during different activities, accelerometer data is collected
from multiple horses. All accelerometer data sets are collected using two off-the-shelf 3-axis logging
accelerometers (Axivity AX3 [34] devices) attached to both front legs of the horse. The devices include
a quart-crystal, temperature sensor, battery and flash memory for storing the data.

3.1. Acquisition of the Data

The data sets are recorded in different conditions: using multiple horses, different sampling rates,
different surfaces and both at the left and right front leg. The x-direction is pointing towards the
ground, the y-direction is along the horse and the z-direction is inside the horse leg when the hoof is
resting on the ground (Figure 1). A sensor is attached to both the left and the right leg. In total 6 horses
were available for this study.

Figure 1. The accelerometer logging sensors are attached at the lateral side of both front legs.
The x-direction is pointing downwards, the y-direction backwards and the z-direction sidewards
of the horse.

During the collection of the datasets, the horses moved with different gaits. We selected the 4
most common natural gaits (stand, walk, trot and canter) to be most representative for generating
energy. Their relative occurrence in the datasets is given in Figure 2. The gaits are manually annotated
to the given datasets with specialized video annotation software, however the annotation is not
limited to this set of 4 gaits. Many annotation categories (change between gaits, cross canter, manual
adjusting sensors, etc.) are not available in sufficient datasets for a complete in-depth analysis. They
are grouped in “other”. The dataset is collected for 6 different horses, where horse 3 is limping, horse 5
is categorized as a Friesian horse and horse 6 as a pony.

Datasets 30, 32 and 33 are recordings from a rolling move of the horse, 18 is a pawing move and 19
is measured when the horse is watching his flank, therefore these tracks are mostly defined as “other”
gait and shorter than the others. The other tracks have recording times between 6.31 and 16.94 minutes
containing different gaits. The characteristics of the datasets are listed in Table 1.
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Figure 2. The collected datasets have different relative distributions for the different gaits. The majority
of the datasets contains data for the horse in the four different natural gaits (Stand, Walk, Trot and
Canter). Some of the datasets capture other types of movement (rolling: datasets 30, 32 and 33; pawing:
dataset 18 and flank-watching: dataset 24).

Table 1. For this study, 33 datasets have been collected. The different properties of the datasets allow
to study the impact of different environmental conditions.

number of datasets 33
number of horses 6
horse age 7–19
Sampling rate 25–1600 Hz

Surface
sand mixed
with GEOPAT polyflakes (31 datasets)
hard (1 dataset)/ field (1 dataset)

length datasets 1.93× 106 samples
total dataset time 5.36 h
datasets with standing 27
datasets with walking 30
datasets with trot 25
datasets with canter 23

3.2. Analysis of the Data

Gravitational forces will give a constant acceleration of ±9.81 m/s2 along the x-direction. To filter
this and all the other DC components in the signal, a high pass filter with a passband frequency of
0.1 Hz is applied before the data is analyzed.

3.2.1. Motion Frequency

Kinetic energy harvesters are typically optimized for specific operating frequency. As such,
we first analyze the data for the most important frequency. The frequency is caused by the repetitive
nature of the movements of horse. As a result, the most dominant frequencies are heavily dependent
on the gaits that are available in the dataset. In Figure 3 the spectrum of one of the datasets is given.
The spectrum of the dataset peaks at 1.39 and 1.7 Hz. Looking to the gaits themselves, one peak can be
contributed to canter, another one to the trot gait. The peak in the spectrum for canter is at a higher
frequency than the peak in the spectrum for trot.

The original, not filtered signal has a large DC component that was filtered out before the analysis
of the signal. The most dominant motion frequency in the dataset will also vary with the gait the
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horse is moving in. In Figure 4, a spectrogram of the data is visualized, accompanied by the original
accelerometer data. The different gaits are annotated and the track is colorized. During the standing
phase, almost no power is available in the dataset. For the 3 other gaits some energy can be noticed.
For canter the dominant motion frequency is higher than for the other gaits. In canter the highest
power can be observed from the spectrogram, during walking the power is much lower and at lower
frequencies as well.

The other axes of the accelerometer, the other leg and the other datasets give similar conclusions.
Depending on the distribution of the gaits in the dataset, the most dominant motion in the track
slightly changes. The highest peak is mostly at 1.27 Hz or 1.76 Hz.
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Total

Other

Canter
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Figure 3. The total power spectrum is the sum of the separate spectra for dataset 19. For canter the
maximum lies at a higher frequency as for trot. Both gaits contribute to the general spectrum of
the dataset.
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Figure 4. The different dominant frequencies in the x-axis for multiple gaits (top the spectrogram) is
shown for frequencies between 0 and 5 Hz. The bottom graph shows the accelerometer data on the
same time scale. In the dataset, the different gaits alternate each other and the transition between the
different gaits is labeled as ‘other’. In the gaits themselves, small variations between most energetic
frequencies and energy levels can be seen.
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3.2.2. Average Absolute Deviation

An indication of the amount of motion that is present in the data can be useful. This information
is provided by the average absolute deviation of the acceleration, D (m/s2), and can be calculated with
following equation, with a(t) the accelerometer signal and ā(t), the moving average of the accelerometer
data set taken over the 1 s interval before the current time t:

D =
1
T ∑

T
|a(t)− ā(t)| (1)

In Figure 5 the amount of motion is given for the same data trace as Figures 3 and 4. The moment
when the horse is standing is clearly distinguishable. When the horse is moving in canter, the amount
of motion is the highest. Figure 6 generalizes the conclusion over all datasets for the different gaits.
The amount of motion in canter is about 1.5, 3.5 and 27 times more than during trot, walking and
standing respectively. The y-direction has the highest average absolute deviation, both left and right
for all different gaits. The average absolute deviation for all movements not labeled as stand, walk,
trot or canter have a wide variation with high dependence on the actual movements in the dataset.

Figure 5. The top y-axis shows the accelerometer data track, where higher accelerations can be seen
during canter (purple) than during walking (orange) and trot (yellow). The bottom uses the same time
scale, shows the amount of motion (colorized for the different gaits) and the general trend (black line)
for the amount of motion. The amount of motion during canter is higher than during trot, walking
and stand.

Stand Walk Trot Canter Other Total

Gait

0

3.12

x

y

z

D

[m/s2]

Figure 6. Average absolute deviation D (m/s2) for different gaits for all datasets, the y-direction
(orange) has the highest average absolute deviation compared to x (blue) and z (yellow) directions.
For the higher energetic gaits, the spread over the different datasets is larger.
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4. Energy Harvesters

4.1. Model

Next, in this section, we calculate the actual available energy in the above data sets.
A velocity-damped resonant generator (VDRG) can be modeled as a second order mass-spring system
(Figure 7a) [35–38] with several different parameters (Figure 7b). The VDRG model has been used
before for analyzing accelerometer data in [38–42]. The generated power, Pt, will increase when the
proof mass of the system is increased or when the constraint on the maximal displacement of the
energy harvester is broadened.

The damping in the energy harvester is modeled by two dampers. First, a mechanical damping
factor (bm) representing mechanical parasitic losses in the system such as air resistance, structural losses,
internal friction losses, hysteresis losses, etc., [37,43,44] and a second electromechanical damping,
resulting in the usefull conversion of energy (be) in the energy harvester, with the total damping
factor [45–47]

b = bm + be.

(a) Schematic

Mass m kg
Mass displacement limit ZL m
Spring constant k kg . s2

damping factor b kg/s
Resonance frequency fr Hz

Acceleration a(t) m/s2

Power P(t) W
Displacement z(t) m
Energy conversion efficiency η

(b) parameters

Figure 7. Second-order mass-spring model and associated parameters of a velocity-damped
resonant generator.

The harvester quality factor Q determines the spectral width of the energy harvester and is
calculated as follows:

Q =

√
k ∗m
b

(2)

The quality factor of a harvester is dependent on both his mechanical and electromechanical
quality factors [48]. The quality factor resulting from the mechanical damper, modeling parasitic
damping effects, should be equal or higher than the electromechanical for optimal power
harvesting [37,47]. A high quality factor, tuned more precisely around the resonant frequency, permits
high harvesting power in resonant operations. On the opposite, a lower Q factor increases the spectral
width of the energy harvester with a low peak value [38] but higher bandwidth. With other techniques
such as multimodal, frequency-up conversion and nonlinear techniques this spectral width can be
tuned even further. For this application on horse energy harvesters at low frequencies and high
variability in the frequency, we will use a rather low quality factor to enable the harvesting of energy
in non-resonant scenarios and to increase the robustness of the harvester against influences on the
quality factor, e.g., temperature. The resonance frequency of the harvester is dependent on k and m:

fr =
1

2π

√
k
m

(3)
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This second order spring model of the energy harvester is implemented in MATLAB [49] and
Simulink. The model can be tuned for specific implementations to maximize the power output. Yet,
m and ZL are limited by the physical restrictions on the size and weight of the device. For the analysis
of the collected accelerometer data, we will use the m (0.001 kg) and ZL (0.01 m) corresponding to one
of the investigated configurations in [40]. Higher displacements are difficult to reach due to material
brittleness. Finding the optimal harvester parameters k and b is challenging and therefore done with
this analytical model without targeted a specific design. The mechanical damping bm will be kept
constant and the electromechanical damping be will be optimized. The value of k will be used to match
the resonance frequency of the harvester with the dominant motion frequency in the captured datasets,
providing the maximal power output.

4.2. Energy

The conversion from accelerometer data to generated energy harvester power is based on a widely
used analytical model for a VDRG [38]. First, the acceleration a(t) (Figure 8, top) is converted to the
displacement of the proof mass z(t) using the Laplace domain transfer function [38]:

z(t) = L {z(s)} = a(s)

s2 + (2π
fr
Q )s + (2π ∗ fr)2

(4)

Next, this displacement is saturated at ZL using a Simulink saturation block (Figure 8, middle
y-axis). The power generated by the harvester, P(t) (Figure 8, bottom y-axis), is then determined as:

P(t) = be ∗ (
dz(t)

dt
)2 (5)

Nowadays, state-of-the-art energy circuit management ICs for piezoelectric energy harvesters,
like the LTC3588-1 [50] typically reach energy conversion efficiencies between 30% and 90%, but in our
analysis we will take a more conservative efficiency, η, of 60% which is more realistic for practical
applications [38,41].

This factor is applied in the model to be able to approximate the effective available electric power
in the device.

-41.52

-9.81

23.22a
t

[m/s2]

-0.01

0.01Z
t

[m]

0 50

Time [s]

0

0.11
Power

 [mW]

Figure 8. Movements of high accelerometer signals (top) axis corresponds to large displacements
(middle axis) and higher resulted powers (bottom). Only when movement is present in the
accelerometer signal, power can be generated according to the analytical model.

5. Energy Availability

The 33 collected datasets are first evaluated with the standard parameters for the energy
harvester from Section 4.1, based on the research from [38,45]. The parameters are: m = 0.001 kg;
be = 0.0055 kg/s; bm = 0.02 kg/s; ZL = 0.01 m; η = 0.6 ; k = 0.17 kg·s2; fr = 2.08 Hz and Q = 0.46.

The resonance frequency ( fr = 2.08 Hz) is not matched with the most dominant motions in the dataset.
Therefore, it will only be possible to give a general insight on the order of the harvested power, not on
the maximal achievable power after tuning.
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An optimization for the resonance frequency of the energy harvester will give a total view on the
maximal harvested power in the device. The energy conversion rate will stay at 0.6 during the rest of
the paper. If this ratio can be improved, the node can be supplied with even a bigger current.

5.1. Average Harvested Power in the Datasets

The horse is generating 24% of his energy during canter and 37 during trot, however it is
performing only 8.5% and 26% of the time in canter and trot respectively for the collected data.
On the other side, while the horse is standing still for an important part of the time (>20%), only a
negligible amount of the total harvested energy is generated. The z-direction is the least interesting
direction to harvest energy on, the y-direction (forward direction in movement) is the most favorable
(Table 2). During the low-energy movements (stand, walk, trot), the results of the distinct datasets are
close together and the average power is quite predictable. For canter, the possible range for average
harvested power in the different dataset is larger, resulting in larger standard variations. In general,
higher energy harvesting gaits and directions have a higher standard deviation in their datasets.

Table 2. The average values for the harvested energy are the highest in the y-direction and reaches up
to 25.71 µW of average harvested power during canter. The total datasets averages at 6.23 µW for the
y-direction of the sensor.

x y z
(µW) (µW) (µW)

stand 0.01 0 0
walk 1.76 3.07 0.43
trot 4.28 11.82 1.56

canter 8.56 25.71 4.23
other 2.25 6.49 1.39
total 2.41 6.23 0.99

5.2. Optimization of the Energy Harvester Parameters

The parameters used in the first step of the energy analysis are similar to the ones from [38] but as
they have been targeting human applications, they can be further tuned to maximize the generated
energy output for horse applications. The parameters that we tune, are k and be. The spring constant
parameter, k, is proportional with the resonance frequency as the mass is kept constant (Equation (3)).
The latter damping factor, be, influences the bandwidth of the energy harvester. It should be taken into
account that the optimal set of parameters has to be determined via an exhaustive search algorithm
(testing all combinations). However, this algorithm is very time consuming and a more heuristic
approach is desirable. To limit the simulation time to an acceptable duration, we will first tune the
parameter k, so that the resonance frequency of the energy harvester is mapped with the dominant
motion frequency in the dataset. After determining the optimal value for k, we will tune the variable
be and corresponding damping b and Quality factor, Q. The final optimal Q value is still rather low,
with values changing from 1 to 5 for the different datasets. When only walking will be the main energy
source for a horse, the Q factor can be increased, when canter is targeted, more variation in desired
frequency exist and the system can benefit from a smaller Q value.

We will tune the energy harvester for each of the 6 axes in each dataset and try to formulate the
ideal parameters set for generating the highest power. This optimization and tuning of the energy
harvester for the different datasets and their characteristic distribution of gaits resulted in a total
increase of the average power with 150% over the whole dataset. As the resonance frequency of the
energy harvester is tuned towards the most energetic frequency available in the dataset and the gaits
distribution is not equal in all datasets, different optimizations per dataset are found. The low quality
factor defined in Section 4 also enables robustness to environmental influences and a higher frequency
bandwidth of the energy harvesting node. The harvested powers for all datasets in the three axes are
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given in Figure 9 and summarized for the y-axis in Table 3. After optimization, the y-direction is still
the most suited for energy harvesting. Further optimization and frequency tuning can be done with
wideband and multimodal approaches, nonlinear techniques, frequency up conversion and circuit
management [12,37,51]. To obtain more appropriate results for optimizing the vibrational energy
harvesters, more comprehensive and multiphysics models also exist in literature that take the previous
inaccuracies into account.

Table 3. Energy available in the sensor node when the horse is in different gaits. Canter has the highest
average power, during stand almost no power is generated. Optimization of the resonance frequency
can give high improvements, in particular for the higher energetic gaits.

Before After Total Number
Optimization Optimization of

(µW) (µW) Samples

stand 0 0.01 3.17× 104

walk 3.07 7.39 1.46× 105

trot 11.82 30.19 1.02× 105

canter 25.71 64.04 3.36× 104

other 6.49 16.12 8.34× 104

total 6.23 15.52 3.96× 105

Stand Walk Trot Canter Other Total

Gait

0

85.61

x

y

z

Power

[µW]

Figure 9. The harvested power with optimal parameters (µW), for the x (blue), y (orange) and z
(yellow) axis. Canter is the most profitable gait, the y-direction is the best suited orientation with most
possibilities. The best dataset could reach an average of 85.61 µW during canter, although a lot of
difference between the energy levels of canter in the different datasets has to be noticed.

5.3. Harvested Energy Per Step

Next, we look at the energy harvested per step, rather than over time. With a general peak
detection algorithm, the horse’s steps are counted per gait. In all the datasets combined, 13,159 steps are
counted where the most are in the walk and trot gait as these gaits are the most recorded. The average
harvested energy during one step of the horse is given in Table 4 for the left y-direction. The length
of the steps is different per gait with 0.63 s in canter, 0.8 in trot to 1.3 s when the horse is walking,
matching with the previous found frequencies in the accelerometer signals in Section 3. During canter,
the energy per step is high and every step can provide enough energy for a packet transmission with
the required energy provided in the further Section 6.

Table 4. Number of total recorded steps and their average energy in the gaits.

Stand Walk Trot Canter Other Total

Energy (µJ) 0.23 9.47 21.00 35.37 17.39 14.34
steps 30 4317 4713 1939 2067 13,159

Length step (s) 7 1.3 0.8 0.63 7 7
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5.4. Differences in Datasets

A variety of environmental factors influences the results of the energy that can be harvested.
In Table 1, different statistics of the data acquisition were given. To be able to make the system as
robust as possible, we study the influence of the leg, horse, surface, etc., on the average power per gait
in the datasets.

• Horse: For the collection of the data, 6 different horses were measured. Horse 3 is limping and
the average energy that can be harvested during canter is noticeable higher for this horse than
for the others (Figure 10). Moreover, a Friesian horse (5) and pony (6) are measured as their
physical conditions completely differ from the other 4 horses. Every horse has a different amount
of collected data traces (Table 5). For the pony and Friesian horse only 1 accelerometer trace
is available. The limping horse (3) is generating a higher average power than the other horse
during canter and trot. For walking and standing almost no differences exist between the horses.
The pony generates more energy during canter, trot and ‘other’ than the other 4 horses (1, 2, 4, 5).

• Surface: The surface of 31 of the experiments was sand mixed with GEOPAT poly flakes. As the
surface has a certain damping factor during moving, we measured an extra measurement on a
hard (concrete) surface and one track on the field, both performed by horse 2. While we expected
to see a clear variation in harvested power between the different surfaces (and damping factors),
we could not find a statistically significant difference between the surfaces.

• Leg: Both front legs were used simultaneously for the data collection. The magnitudes of the
harvested power are similar for both legs for the symmetrical gaits (Figure 11).

• Longeing/riding: A significant difference in average power between longeing and riding could be
noticed during the canter gait (Figure 12). While during riding, the average power is more stable
and less deviations occur, since the movements are more controlled by the rider, the harvested
energy during riding is therefore also more predictable.

• Other movements: In some of the data tracks movements other than the 4 important natural
gaits are also available. The data for these movements is rather limited but we can already
conclude some trends on movements with possible high energy harvesting. A selection of special
movements includes roll, paw, itching, kicking backwards and cross canter. The average power,
before and after optimization, the number of samples and the number of datasets where these
movements occur, are given in Table 6. Kicking back has good possibilities for the harvesting of
energy. Cross canter has the same order of magnitude as canter.

1 2 3 4 5 6

Horse

0

50

Power

[µW]

Stand

Walk
Trot

Canter

Other

Total

Figure 10. Harvested power for the four different horses. The limping horse (3) has a significant higher
power generation during canter than the other ones.
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Stand Walk Trot Canter Other Total

Gait

0

55.27

Power

[µW]

Left Right

Figure 11. The average generated power in both legs is similar for stand, walk and trot. In canter,
the right front leg generates a higher average power.

Table 5. The majority of the datasets is collected for horses 2 and 4. Only 1 dataset is measured for the
Friesian horse (5) and pony (6).

Horse 1 2 3 4 5 6
nr datasts 5 12 5 11 1 1

Stand Walk Trot Canter Other Total

Gait

0

55.27

Power

[µW]

Longeing Riding

Figure 12. The average (line) of the longeing (blue) datasets is remarkably higher than the average of
the riding red datasets in canter gait, although no clustering or clear separation can be seen for both
techniques. The longeing datasets clearly have more energetic “other” movements.

Table 6. Different movements will generate different amounts of power with an energy harvester.
Kicking backwards can generate a high average power but this movement is rarely performed by
the horse.

Optimized
Average Power Average Power Nr of Samples Nr of Data-Sets(µW) (µW)

roll 3.62 6.84 2731 6
paw 0.11 0.28 1513 2

itching 0.14 0.25 323 3
cross canter 9.55 33.42 6965 11
kicking back 5.65 41.02 57 1

There exist many other possible influences like the environmental conditions, the tempo of the
horse gait, the radius of the circle where the horse walks and fatigue of the horse. These factors are
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influencing the results and challenging to quantify and we did it to the best of our ability to keep them
stable throughout the data-acquisition.

5.5. Horse-Human Differences

To assess the amount of generated energy of an energy harvester at a horse, we will compare this
analytic results with other papers, using a similar model for velocity-damped resonant generators
but without mechanical damping factor and lower conversion rate. The researchers of [38] report
energies for human walking around 150–200 µW. For running this even increase to averages between
612 and 813 µW. The dominant frequencies at walking (2 Hz) and running (3 Hz) are also double,
compared to the corresponding horse gaits. The average absolute deviation D reported is also higher
with 8–10 m/s2 for running and 2–5 m/s2 for walking, compared to the found maximal value of
3.12 during canter and average of 2.5. For trot and walking the average absolute deviation is only a
limited 1.86 and 0.77 respectively. In comparison to human persons, horses are moving with slower
movements making it harder to harvest energy.

6. Towards Durable Wireless Monitoring

Finally, in this section we evaluate a possible use case for an energy harvested device. The use case
will be evaluated on the potential wireless transmissions, and how these transmissions are behaving in
the different gaits. The use case device consists of energy harvester, microcontroller, wireless radio
and accelerometer. The accelerometer is included for advanced processing and detection for colics,
lameness or other anomalies in the horse’s movement. Sending data statistics will therefore allow the
owner of the horse to be signalized for health issues with his horse with limited latency, increasing the
chances of survival for the horse. Moreover, the owner can see how active the horse has been during
the last minutes, providing useful information about the well being of his horse and adjusting the
nutrition of the horse.

6.1. Feasibility of Sensor Node Based on Kinetic Movement Harvesting

In the wireless node, generally a battery or capacitor will be included for storing limited amounts
of energy for reliable performance of the node. Figure 13 shows the feasibility of the energy harvester
node which is based on the harvester input and the capacity of the rechargeable battery [52]. Three
different operational regions can be distinguished:

• The system will always be feasible if the harvested power is higher than the maximal power
consumption of the device.

• The system is not feasible if the average input power from the energy harvester is lower than
the combined power used for the radio and CPU (deep)sleep mode and the leakage current of
the battery. From the results found in the previous sections, the average (deep)sleep power (and
leakage of the battery) of the device during standby should be below 0.03 µW.

• For systems where the harvested power level falls between these extremes, the designer
has to implement (adaptive) energy saving procedures whereby the system is turned on
periodically. To this end, the system will periodically turn on the radio, CPU and/or accelerometer.
The percentage of time the device is in active mode is also referred to as the duty cycle.
A batteryless wireless node can for example make use of the higher energy availability during
canter by increasing the duty cycle. In contrast, during standing less energy will be available,
and as such lower duty cycles can be used. The relative percentage of different activities of a horse
depends strongly on the type of residency (stable versus field), as well as the training schedule.
As such, in realistic systems activity recognition can be used for dynamically changing the duty
cycle of the sensor node.

In the next section, different duty cycle modes will be calculated for different radios and for the
analyzed gaits.
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Figure 13. An energy harvesting node can never be feasible when its input is lower than the lowest
current consumption of the device and the leakage in the device. In contrary, it will always be feasible
when the harvested power exceeds the device maximum energy consumption.

6.2. Feasible Duty Cycle for Wireless Transmissions

To maintain the connection between horse and central node a wireless link is used. Choosing
the best suited technology for the use case is a complex trade-off between different parameters.
The choice of the technology is based on maximal communication range, energy consumption per
byte, throughput, resilience against interference and multipath effects, cost and availability. In Table 7,
we give an overview of several potentially suited wireless technologies: LoRa [53], SigFox [54], BLE,
WiFi [55,56], UWB [57] and IEEE 802.15.4. In this paper, we will focus on the energy consumption
as this parameter has a direct influence on the feasibility of the wireless transmissions. For these
six technologies, the current consumption during transmission, the current consumption during the
lowest energetic mode (“deep sleep mode”) and the time for sending a 8–12 byte packet are given in
Table 7.

Table 7. Overview of the energy consumption of multiple potential suitable technologies for collecting
the data. The lowest current state is important to calculate the “not feasible” region of Figure 13.
The number of payload bytes is chosen the same across the technologies to be able to compare,
although some technologies (WiFi, UWB, etc.) are more efficient for high throughputs.

Transmit lowest Bytes Time Energy
Technology Chip Current Current Per Packet Per Packet Per Byte

mA (µA) (ms) (µJ)

LoRa SX1272 [58] 18 0.1 10 3.74 22.22
SigFox ATA8520 [59] 27.2 16 12 2080 15,558.00

BLE nRF52840 [60] 4 0.4 10 0.208 0.28
802.15.4 CC2420 [61] 8.5 0.02 8 6 21.04

WiFi CC3100 [56] 160 4 8 11.3 745.80
UWB DW1000 [57] 160 0.05 10 0.17 8.98

Next, we calculate theoretically which of the above technologies are feasible to combine with
the leg mounted kinetic energy harvester. We will use a generalized approach and assume a system
with constant power consumption levels for a microcontroller unit (MCU) and accelerometer based on
off-the-shelf hardware components. For simplicity, we do not take the implementation of the MAC
layer into account. We investigate 4 different scenarios, shown in Figure 14:
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1. The MCU and accelerometer are continuously in active mode. The radio chip is not put in sleep
mode and regularly sends a packet. (Figure 14a).

2. The MCU and accelerometer are continuously in active mode but the radio chip is put in sleep
mode and wakes up for transmitting a packet according to a duty cycle. (Figure 14b).

3. The accelerometer is continuously logging and buffering data, but the radio and MCU
follows a duty cycle. The MCU will process the data after which the data will be
transmitted immediately. (Figure 14c)

4. The MCU and accelerometer are only awake following a duty cycle. After collecting, processing
and sending the data, the MCU and accelerometer will go to sleep for some time (Figure 14d).

(a) scenario 1 (b) scenario 2 (c) scenario 3 (d) scenario 4

Figure 14. Putting the radio (dark blue), microcontroller unit (MCU) (blue) and accelerometer (ACC)
(light blue) in sleep mode can have an extensive current consumption reduction. Increasing the duty
cycle will increase the reduction even more. The current when all three components are in sleep mode
will be the lowest possible current and determines the feasibility of the node. The radio has three states
(TX-idle-sleep), MCU en ACC has two states (idle-sleep).

The duty cycle that can be maintained will be different depending on the considered technology,
the gait type and the considered scenario. During the comparison the following assumptions are made:

• The leakage current of the battery and other irregularities in the hardware circuits are not taken
into account.

• The time for switching between state is assumed negligible together with the accompanying
different current consumption.

• The MCU will always be turned on during the transmission of packets and an extra fixed interval
for processing and/or compressing.

The minimal power that is required for a feasible system with an BLE or UWB transceiver for
the wireless link is equal to 3.86 µW and 2.71 µW, respectively. The major factor here is the power
consumption during (deep)sleep. UWB and 802.15.4 have the lowest minimal power and are therefore
best suited for low energetic nodes. When only limited amounts of energy are available in the
battery-less node, almost all energy will be used for keeping the components in sleep mode and less
for transmitting packets. The minimum time between sending packets is shown in Table 8 for the
four discussed duty cycling scenarios. As shown in Table 7, the overview of the different technologies,
BLE has the smallest required energy per transmitted byte and will be, in terms of power consumption,
the best technology for transmitting packets.

Table 8 shows the time between packet transmissions for the most energetic gait (canter). Table 9
gives an overview of the time a horse needs to be in other gaits before one packet can be transmitted,
as well as the energy generated from the other axis of the energy harvester. For scenario 3, a practical
implementation of a continuous monitoring node will be unfeasible as only canter and trot provide
enough power to sleep all the components. For scenario 4, the node will be feasible but during design
and implementation it is important to take care of the energy consumption in the node and energy
saving/storing for during the stand period is necessary as not enough for power will be generated for
sleep mode of the components.
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Table 8. Time a device has to spend in the most energetic gait (canter) before a packet of 8-12 bytes can
be send. BLE is the best suited for efficient transmissions between sender and receiver. However, even
for BLE if the transceiver and/or MCU are not put in to sleep after processing and transmission of the
data, the node will never be feasible.

1 2 3 4

LoRa 7 7 10.14 s 6.99 s
SigFox 7 7 7 33,271 s

BLE 7 7 0.06 s 0.04 s
WiFi 7 7 449 s 270 s
UWB 7 7 2.42 s 1.67 s

802.15.4 7 7 4.69 s 3.24 s

Table 9. Time (in seconds) a device has to harvest energy before one BLE packet of 10 bytes can be
transmitted. An overview is given for different gaits and axis of the energy harvester.

Scenario 3 Scenario 4

x y z x y z

stand 7 7 7 7 7 7

walk 7 7 7 7 0.69 s 7

trot 7 0.32 s 7 0.32 s 0.09 s 7

canter 0.28 s 0.06 s 7 0.09 s 0.04 s 0.52 s
other 7 7 7 0.60 s 0.19 s 7

all 7 7 7 0.82 s 0.21 s 7

6.3. Decreasing Data Communication Power

The power required of the data communication is highly dependent on the processing and
compression of the data in the device. For the envisioned use case device targets analyze the horse
health based on accelerometer data, we will compare 2 simplified transmission scenarios on their
relative energy budget and therefore their feasibility:

1. This scenario will collect accelerometer data at 25 Hz from the device and transmit this output to
a central node.

2. This scenario reduces the amount of transmitted data by local processing of the RAW
accelerometer data, sampled at 25 Hz. For example, if we classify the horse’s gait based on
the accelerometer output, we only have to transmit the classification to the horse owner.

Scenario 1: If we assume a sampling rate of 25 Hz for the accelerometer data that is collected.
For 3 axis of 16 bit data output, this accumulates to 150 bytes per second that needs to be transmitted.
For one minute, the total number of bytes that will be transmitted is equal to 60 × 150 = 9000 and a
total energy of 2520 µJ will be consumed for transmission.

Scenario 2: The 150 bytes per second that are necessary to transmit for offline processing of the
accelerometer data can be further reduced to 1 or even less by embedded processing of this output
when classifying the gait with embedded machine learning techniques. Energy measurements for the
machine learning model were carried out on a Nvidia Jetson GPU and resulted in 986 µJ for classifying
1 min of accelerometer data. Therefore, the transmitted data is reduced by a factor 150. For one minute
the total power consumption for this scenario is 986 µJ + 150 × 0.28 µJ = 1028 µJ.

Removing the accelerometer and use of the available energy for health analysis will further reduce
to the total power consumption for one minute by 360 µJ, for both scenarios.

There still exist a gap between predicted power consumption and theoretical predicted power,
but by knowing the theoretical calculated values, we can make thought-out decisions and assess the
actual feasibility of a horse monitoring wearable for different scenarios.
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7. Conclusions and Future Work

The realization of a durable energy harvesting wireless sensor node for horse tracking applications
is very challenging. Such a device should contain an accelerometer for data collection, a microcontroller
(MCU) for processing and a radio chip for sending (compressed) data in real time. This study
investigates if such a device can be powered by a kinetic energy harvester at the leg of the horse,
and how often data can be transmitted.

To this end, 33 large scale datasets were collected and analyzed with a model for a velocity-damped
resonant generator (VDRG). The energy that is available is dependent on the gait the horse moves
in. During canter, the horse energy harvester can generate an average 25.71 µW, along the forward,
y-direction of the movement and an average of 8.56 µW along the vertical axis of the leg for an
non-optimized energy harvester. Optimization and tuning of the resonance frequency increases
the average power to 64.04 µW for the forward direction of the horse movement. Environmental
conditions can heavily influence the performance the horse and accompanying the energy harvester.
To this end, we studied different possible influences on the performance of the energy harvester. The 33
datasets include measurements from six different horses, where one of them was limping. This limping
horse generates a noticeable amount of power more during canter than the others. For all horses,
a similar performance of the energy harvester can be recorded in the low power gaits.

We evaluated different technologies for the wireless link from the node to a central system
for processing, analyzing and saving the data. The minimal necessary power to hold the MCU,
radio transceiver and accelerometer is available during movement (all gaits) but not when the horse
is standing still. During the low energetic walking, a high duty cycle, with long sleep periods, has
to be maintained before MCU has to be turned on. In this investigation only the PHY layer is taken
into account, but we assume different duty cycle scenarios are possible. Only in scenario 4, where
radio, MCU and accelerometer are put in sleep mode during the duty cycle, long term monitoring is
feasible in most gaits. BLE is the most suited technology as it has a short transmission time and low
currents. In every gait, standing excluded, BLE packets can be transmitted with the shortest duty cycle.
Depending on the gait, a duty cycle of 0.04 to 0.7 seconds needs to be maintained. However, for low
energetic gaits where the duty cycle is low, the sleep current is more important than the transmission
energy consumption. For these scenarios, technologies with a lower sleep power, such as UWB and
IEEE 802.15.4, are better suited. Giving the application constraints for a small sensor device, signalizing
health problems in real time to the horse owner, the accelerometer and MCU will be put in sleep
mode according a certain duty cycle and BLE is the technology used for transmission. The number of
transmitted packets per minute will be dependent on the activity level of the horse.

Future work: As this work is still in a theoretical phase, the next steps are a strong experimental
phase with the in-depth validation of these theoretical results with a non-intrusive prototype performed
on a horse and the tuning of the resonance frequency of this harvester based on the theoretical
conclusions. Furthermore, the trade-offs between local machine learning processing, compressing and
sending less information or sending raw data and processing the data in a remote server environment
have to be analyzed. Finally, the influence of the tempo (speed) of the horse during exercises can also
be studied in future work for more accurate predicting of the harvested energy and adjustments of the
energy management in the wearable.
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