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Abstract: This paper presents an improved ultra-wideband (UWB) line of sight (LOS)/non-line of
sight (NLOS) identification scheme based on a hybrid method of deep learning and transfer learning.
Previous studies have limitations, in that the classification accuracy significantly decreases in an
unknown place. To solve this problem, we propose a transfer learning-based NLOS identification
method for classifying the NLOS conditions of the UWB signal in an unmeasured environment.
Both the multilayer perceptron and convolutional neural network (CNN) are introduced as classifiers
for NLOS conditions. We evaluate the proposed scheme by conducting experiments in both measured
and unmeasured environments. Channel data were measured using a Decawave EVK1000 in two
similar indoor office environments. In the unmeasured environment, the existing CNN method
showed an accuracy of approximately 44%, but when the proposed scheme was applied to the CNN,
it showed an accuracy of up to 98%. The training time of the proposed scheme was measured to be
approximately 48 times faster than that of the existing CNN. When comparing the proposed scheme
with learning a new CNN in an unmeasured environment, the proposed scheme demonstrated an
approximately 10% higher accuracy and approximately five times faster training time.

Keywords: ultra-wideband (UWB); deep learning; transfer learning; non-line-of-sight (NLOS); wireless
channel; spatial awareness

1. Introduction

Recently, ultra-wideband (UWB) technology has been adopted as the new wireless technology
for smart keys [1]. Major smartphone manufacturers such as Samsung and Apple included UWB
technology in their latest flagship smartphone models (iPhone 11 Pro and Galaxy Note 20 Ultra) [2].
According to this trend, a new standard for UWB wireless communication, called IEEE 802.15.4z, was
approved to improve ranging, robustness, and security [3]. UWB technology has significant advantages
in localization owing to its centimeter-level ranging capability, multipath robustness, and low energy
consumption [4,5]. UWB is considered as the most promising technology for accurate positioning, which
is required for various applications such as the Internet of Things (IoT), wearable devices, extended
reality (XR), sports training, maritime communication, future wireless networking, and unmanned
aerial robots [6–13]. For example, in XR applications, if an object’s location is incorrectly displayed,
the user experience (UX) is significantly degraded. To meet these demands, research to improve the
accuracy of UWB ranging is essential.
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The non-line of sight (NLOS) condition is usually referred to as the most influential factor in the
deterioration of UWB ranging performance [14]. The NLOS condition refers to a situation where an
obstacle is placed between the transmitter and the receiver. In this case, the signal is propagated by
penetrating the obstacles or being reflected on indirect paths. The NLOS ranging error is included in
both cases when penetrating obstacles or traveling longer distances. In a real environment, there may
be many NLOS conditions for walls, desks, pedestrians, computers, and so on. To solve the NLOS
error, it is crucial to first identify the LOS/NLOS signals.

Studies are being conducted to identify LOS/NLOS signals. The most recent studies have attempted
to analyze UWB channel measurements such as the channel impulse response (CIR) for LOS/NLOS
identification. As the radio signal penetrates through obstacles or reflects, the amplitude decreases and
a delay occurs, which is reflected in the CIR. Channel-based NLOS identification methods detect these
features by analyzing the CIR. A number of studies have applied machine learning to identify NLOS
conditions using channel data. However, previous machine learning-based schemes have a critical
limitation, in that they show significant performance degradation in places where training is not taking
place. This is because the UWB channel is not only influenced by obstacles, but also by the surrounding
environment. Since environmental noise is included in the training data, the classification model also
learns environmental noise. The classification accuracy is degraded when processing data are measured
in places with different patterns of environmental noise. Therefore, using machine learning-based
LOS/NLOS identification schemes in unknown places is a challenge. To use existing methods in an
unknown environment, a new model for the environment is required. Training a new model for a
new place requires considerable time in the data collection and learning process. To deal with these
problems, we propose a UWB NLOS identification scheme based on a neural network and transfer
learning. To the best of our knowledge, this is the first study on empirically analyzing the problem
of UWB NLOS identification accuracy degradation in an unmeasured environment and proposing a
transfer learning-based solution. The main contributions of this paper are as follows:

• We introduce two UWB channel classification schemes based on multilayer perceptron (MLP) and
convolutional neural network (CNN).

• We propose a transfer learning algorithm for accurate NLOS classification in an unmeasured place.
• We conduct extensive experiments using commercial UWB devices to examine the performance

of a deep neural network (DNN) model in an unmeasured environment.
• By comparing the performance, we propose a model for optimizing the neural network structure

according to the surrounding environment. In this model, we implement a transfer learning-based
NLOS condition classification method for an unmeasured environment.

The remainder of this paper is organized as follows. Section 2 introduces related works for UWB
NLOS identification. In Section 3, the UWB NLOS identification scheme is proposed. In Section 4,
the experimental setup is introduced. In Section 5, we analyze experiments and evaluate the result.
In Section 6, we conclude our work, and future works are discussed.

2. Related Work

To improve the accuracy of indoor positioning, several methods for LOS/NLOS identification
have been discussed from various perspectives. In this paper, we focused on the channel-based
technique and divide the studies into two categories: algorithm-based classification and machine
learning-based classification. The first category of studies devises an algorithm for identifying NLOS.
The second category uses machine learning techniques to extract features or identify NLOS. Since the
proposed scheme is based on machine learning, we focus more on the latter.

2.1. Algorithm-Based NLOS Identification

Algorithm-based schemes extract meaningful features from channel measurement and devise an
algorithm for identifying NLOS. Yu et al. [15] proposed an NLOS identification algorithm based on the
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total energy, maximum amplitude, normalized strongest path energy, signal-to-noise ratio, rise time,
kurtosis, and mean excess delay. The optimal feature combination was found through the Pearson
correlation coefficient, and multiple obstacles were detected through a fuzzy comprehensive evaluation.
Kim et al. [16] separated the first path signal and the multipath signal from channel data and compared
them for NLOS identification. The NLOS detection algorithm based on the particle filter was discussed
in [17]. In [18], an algorithm for identifying the NLOS by comparing the received signal strength and
first path power strength was proposed. These algorithm-based schemes are simple enough to operate
in low-cost UWB devices. However, most algorithms use environment-dependent constants as the
threshold value to classify NLOS conditions. Finally, the identification performance is not promising.

2.2. Machine Learning-Based NLOS Identification

There are two approaches to identify NLOS conditions using machine learning. The first one uses
human-extracted features as the input for machine learning. Eighteen features were extracted from the
CIR data, and a genetic algorithm found the best feature combination for NLOS identification [19]. The
selected features were used as input data for a support vector machine (SVM). Kristensen et al. [20] also
used SVM as a classifier model. Linear discriminant analysis was used to train the model. The received
signal strength (RSS) and ranging value were used as inputs for the SVM to identify the NLOS signals [21].
The researchers targeted low-cost devices that cannot measure high-resolution channel data. These
SVM-based classification methods show high classification performance with relatively small amounts
of training data. However, as the amount of training data increases, the identification performance of
SVM-based methods decreases significantly. A K-means clustering-based LOS/NLOS identification
scheme was proposed in [22]. The mean excess delay, kurtosis, and root mean squared delay spread
were used as inputs for training. Fan et al. [23] applied unsupervised learning based on Gaussian
mixture models to the LOS/NLOS identification problem. Since both methods use unsupervised
learning, they have the advantage that models can be trained using label-less data. However, the
classification accuracy is relatively low. The second method extracts the features from neural networks
so that all of the channel data are used as the input for machine learning. Wang et al. [24] proposed
the LOS/NLOS identification method based on a CNN image classification model. After storing the
CIR data in the form of an image using a short-time Fourier transform, they were used as the input
data for the CNN to train the model. The researchers successfully transformed the NLOS identification
problem into the form of image classification. Three types of CNN architecture (ResNet, encoder, and
fully connected network) were applied to detect NLOS channel conditions [25]. Raw CIR data were
used as the input for each CNN. By comparing the performance of the three CNN architectures, it
was proven that there was little of a relationship between the CNN architecture and NLOS detection
performance. ShirinAbadi et al. [26] proposed a CNN-based LOS/NLOS identification scheme using
CIR data. To address the sparsity phenomenon, two cost functions for the UWB NLOS problem were
defined. In the experiment, the effectiveness of the number of convolution layers was investigated.
These CNN-based schemes showed higher classification accuracies than other machine learning-based
approaches. However, the classification performance deteriorated in places where the training data
were not sufficiently collected. Jiang et al. [27] proposed a long short-term memory (LSTM)-based UWB
channel classification scheme. To effectively learn the long-range dependencies of the time-series data
of the UWB CIR data, the fully connected layer of the CNN was replaced by an LSTM layer. However,
there is no distinct difference in the performance of CNN-based approaches.

Most neural network-based methods show high performance in measured environments, but they
do not consider unmeasured environments. Channel measurement includes not only characteristics
owing to obstacles, but also characteristics owing to environmental noise generated by the surrounding
environment. If the NLOS identification model tries to classify the data from an unmeasured
environment even with the same obstacles, the performance may be severely degraded. The existing
neural network-based methods do not consider the problems caused by this unmeasured environment.
In existing schemes, a new model should be trained in an unmeasured environment. However,
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training a new model for a new place requires a significant amount of data to be collected and is time
consuming. To solve this problem, we propose a UWB NLOS identification scheme based on transfer
learning for an unmeasured environment. Transfer learning can update existing models to fit the new
environment with few data items and a short training time.

3. UWB NLOS Identification

In this section, we first analyze the problems occurring in an unmeasured environment through
UWB channel models and experiments. Then, two kinds of neural network architectures are described
for the NLOS classifier. The proposed transfer learning scheme is described to quickly update the
neural network model to the unmeasured environment.

3.1. Problem Statement

The CIR of a UWB can be represented using the Saleh–Valenzuela model [28]:

h(t) =
L

∑
l=0

K

∑
k=0

ak,l exp(φk,l)δ(t− Tl − τk,l), (1)

where ak,l is the weight of the k-th component in the l-th cluster, Tl is the delay of the l-th cluster,
τk,l is the delay of the k-th multipath component relative to the l-th cluster arrival time, and φk,l is the
phase of the k-th component in the l-th cluster. To consider multipath effects, the number of clusters, L,
is modeled as a Poisson distribution.

pd fL(L) =
(L)L exp(−L)

L!
(2)

assuming that the L number of clusters arrives at the receiver, the ray arrival time of the l-th cluster is
presented as follows:

p(τk,l |τ(k−1),l) = λi exp[−λi(τk,l − τ(k−1),l ], (3)

where λi is the cluster arrival rate of the i-th cluster. To model a complex environment, a mixture
model that is a weighted summation of several ray arrival time models can be used. The power delay
profile of the k-th component in the l-th cluster is presented as:

E{|ak,l |2} = Ωl
1

γl [λi + 1]
exp(−τk,l/γl), (4)

where Ωl is the integrated energy of the l-th cluster and γl is the intracluster decay time constant.
In the case of the NLOS environment, the power delay profile of the k-th component in the l-th cluster
is different:

E{|ak,l |2} = (1− χ exp(−τk,l/γrise)) exp(−τk,l/γ1)
γ1 + γrise

γ1

Ω1

γ1 + γrise(1− χ)
, (5)

where χ is the attenuation of the first component, γrise determines how fast the power delay profile
increases to its local maximum, and γ1 determines the decay at late times. In the UWB channel model,
many environment-dependent constants are involved in the CIR. The number of clusters, cluster arrival
rate, and power of the cluster vary depending on the environment. In Equation (5), it can be seen that
the environment-dependent constant is involved in a large part of the power delay profile even under
the NLOS condition. The impulse response changes more significantly in NLOS than in LOS owing to
γrise and γ1 by Equation (5). Even in a similar environment, small differences can cause significant
differences in the CIR.

To confirm this channel model-based analysis in an actual environment, an experiment was
performed to collect the CIR in similar spaces. Figure 1 shows the CIR of UWB signals with the same
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obstacles in similar spaces (the experimental setup is described in Section 4). The two spaces where
the CIRs were measured had similar environmental features that could be expressed as an indoor
office. Although both signals penetrated the same obstacle in a similar environment, a completely
different CIR was measured because of the environmental noise generated in each place. If the machine
learning-based NLOS identification method trains the data as in Figure 1a and tries to classify the
signal as in Figure 1b, then the classification performance may be seriously degraded. Thus, it is
necessary to study an NLOS identification scheme for an unmeasured environment.

(a) (b)
Figure 1. Signal waveform measured in two different places with the same obstacle: (a) laboratory;
(b) classroom.

3.2. Proposed Scheme

The proposed UWB NLOS identification scheme consists of a learning phase and an update
phase. In the learning phase, a neural network model is trained using a large amount of UWB
channel data collected in advance. UWB channel data should be labeled with UWB channel conditions
such as LOS and NLOS. We introduce two types of neural network architectures, MLP and CNN,
as classifiers for the proposed scheme. The update phase begins in the unmeasured environment
where NLOS identification is required. After collecting a small amount of data for a while, the existing
neural network model is updated through transfer learning. After a short transfer learning process,
an updated model will identify the UWB NLOS condition from the measured data. Next, the proposed
scheme is explained in detail with a description on the structure of neural networks and the transfer
learning method.

To classify NLOS conditions from the one-dimensional form of channel data, we used MLP
and CNN structures. MLP is a widely used neural network-based classifier that shows good
performance on single-dimensional time-sequential data such as speech recognition. Since UWB
wireless channel measurement is also based on single-dimensional time-sequential data, we believe
that MLP can perform well for the UWB NLOS identification problem. An MLP is composed of the
input, hidden layer, and output, as illustrated in Figure 2a. In the hidden layer, the neural nodes of
the previous layer are fully connected to the neural nodes of the next layer. The weight gradients are
updated as the input data are propagated in the hidden layer. There is no feature extraction process in
the MLP-based scheme. Our intention is to investigate the impact of feature extraction in the UWB
NLOS identification problem. A CNN consists of an input, a convolution layer, a pooling layer, a
hidden layer, and an output, as shown in Figure 2b. The input, hidden layer, and output are similar to
those of the MLP. In a convolutional layer, features are extracted from the input with multiple kernel
filters. After the feature extraction process takes place in the convolution layer, the downsampling
process is performed in the pooling layer. A pooling layer minimizes the training computation and
time. A major difference between the MLP and CNN is the feature extraction process. By analyzing
the experimental results, we can confirm the impact of the feature extraction process in optimizing the
neural network for the UWB NLOS identification problem.
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(a) (b)
Figure 2. Neural network structure. (a) MLP; (b) CNN.

Transfer learning is usually adopted when solving a related problem with an existing model.
We believe that the UWB NLOS identification problem at different places can be considered as an
example. When the signal measuring place changes, it can be implied that the problem has also
changed with environmental noise. However, it can also be implied that the two problems are related
to each other because they have common obstacles. We want to identify the UWB NLOS condition in
an unmeasured environment with the existing “trained model” for speed and accuracy. To apply the
transfer learning concept to our proposed classifiers, we selected a weight initialization method called
fine-tuning, as shown in Figure 3. The weight gradients of the last hidden layer are initialized to zero
and retrain the neural network with a few unmeasured environment data. While the neural network is
recovering weight gradients, the characteristics of unmeasured environment data are reflected in the
neural network. Because only the last layer of weight gradients is initialized, the training requires a
relatively small amount of data and time. When applying transfer learning to an MLP, it is necessary
to set some hidden layers as non-trainable layers to maintain the previous knowledge.

Figure 3. Transfer learning concept used in the proposed scheme.

4. Experimental Setup

The UWB CIR data were measured in the iCONS Lab and in a classroom in Paldal Hall,
Department of Computer Engineering, Ajou University, Korea (see Figure 4). Both places represent
examples of an indoor office environment by containing similar obstacles including iron doors,
concrete walls, desks, chairs, pedestrians, and computers. In this experiment, we divide the channel
condition into three categories: (1) LOS, (2) weak NLOS, and (3) NLOS. In the LOS condition, signals are
propagated in the shortest distance without interference from obstacles. The weak NLOS condition
indicates that the signal is obstructed by small obstacles such as pedestrians, monitors, and desks.
The NLOS condition implies that concrete walls or iron doors obstruct the signal. To increase data
diversity, we collected 3100 data each for LOS, weak NLOS, and NLOS in each room. While collecting
the data, we changed the location of the devices to diversify the environmental noise and distance.
In total, three-thousand data items were used for training a neural network, and one-hundred data
items were used for transfer learning. The collected data were randomly divided into training data,
validation data, and test data at a 6:2:2 ratio. In summary, we collected a total of 9300 data items
(3000 LOS data, 3000 weak NLOS data, 3000 NLOS data, 100 LOS data for transfer learning, 100 weak
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NLOS data for transfer learning, and 100 NLOS data for transfer learning) for both the lab and
classroom environments.

(a) (b)
Figure 4. Two rooms in Paldal Hall, Ajou University, used for measuring the UWB channel. (a) Laboratory
located on the ninth floor of the building; (b) classroom located on the third floor.

The Decawave EVK1000 Evaluation Kit was used in UWB CIR data measurement [29]. The EVK
1000 provides a ranging function that complies with the IEEE802.15.4-2011 UWB standard and provides
an application programming interface (API) that can collect wireless channel data such as CIR in
real time. The collected UWB CIR data consist of 1016 real parts of signals and 1016 imaginary parts.
Each pair of real and imaginary parts of signals is measured once every nanosecond. The channel
setting of the transceiver had a data rate of 110 kb/s, central frequency of 4.0 GHz, preamble length
of 1024, and pulse reception frequency of 64 MHz. The proposed neural network models were
implemented on an Ubuntu 18.04 workstation with i9-7940x CPU (3.10 GHz), 128 GB RAM, 2 GTX
1080Ti scalable link interface (SLI) GPUs, and a 1 TB solid state drive (SSD).

We optimized the neural network structures through iterative experiments for this experimental
setup. If the size of the input or output is changed, then the structure of the neural network needs to
be optimized again. The MLP has an input layer consisting of 2032 nodes, 3 fully connected layers
(also called dense) consisting of 128 nodes, and a fully connected layer consisting of 3 nodes. The CNN
has the same input and output layer, but it has two convolution layers and a pooling layer added
between the input layer and the fully connected layers. For neural network model training, the Adam
optimizer, the categorical cross entropy loss function, and the accuracy classification metric were used.
The detailed network setups for the MLP are shown in Table 1, and those for the CNN are shown in
Table 2. In the transfer learning learning process, we set all layers to be untrainable except for the
last two dense layers. For MLP, only dense_2 and dense_3 layers were set to trainable, and for CNN,
only dense_1 and dense_2 were set to be trainable.

Table 1. Neural network layer configuration information of the MLP used in the experiment.

Layer (Type) Shape Parameters

input (InputLayer) 2032 0
dense (Dense) 128 260,224
dense_1 (Dense) 128 16,512
dense_2 (Dense) 128 16,512
dense_3 (Dense) 3 387



Electronics 2020, 9, 1714 8 of 13

Table 2. Neural network layer configuration information of the CNN used in the experiment.

Layer (Type) Shape Parameters

input (InputLayer) 2032 0
reshape (Reshape) (2032, 1) 0
conv1d_1 (Conv1D) (2025, 128) 1152
conv1d_2 (Conv1D) (2018, 128) 131,200
max_pooling1d_1 (MaxPooling1D) (1009, 128) 0
conv1d_3 (Conv1D) (1002, 128) 131,200
conv1d_4 (Conv1D) (995, 128) 131,200
max_pooling1d_2 (MaxPooling1D) (497, 128) 0
flatten (Flatten) 63,616 0
dense (Dense) 128 8,142,976
dense_1 (Dense) 128 16,512
dense_2 (Dense) 3 387

5. Experimental Analysis and Performance Evaluation

We trained the MLP and CNN with lab and classroom data, respectively. Afterward, transfer
learning was applied to each model. We evaluated the performance by comparing them in terms of the
classification accuracy and computational overhead. Classification performance is presented in terms
of accuracy, precision, and recall. Accuracy represents the comprehensive classification performance,
and precision and recall represent each propagation condition’s identification performance. Accuracy is
calculated by dividing the true identification by all identification attempts. Precision is calculated
by dividing the true positives by the predicted positives. Recall is calculated by dividing the true
positives by the sum of false negatives and true positives. We measured the time for training the model
to evaluate the computational overhead. In previous works, there was no neural network-based NLOS
identification scheme for an unmeasured environment. Therefore, for performance evaluation of the
proposed scheme, we compared the MLP and CNN with transfer learning to the MLP and transfer
learning to the CNN. To compare the performance of updating an existing model and training a new
model, we compared transfer learning to a light CNN. Light CNN refers to a CNN model newly
trained with the same data used in transfer learning.

5.1. UWB Channel Classification Performance

To evaluate the UWB channel classification performance, we conducted experiments in a measured
environment and an unmeasured environment. The unmeasured environment indicates that the
training data and test data are extracted from different places, and the measured environment indicates
the opposite. If we evaluate the MLP model trained with the lab data, the measured environment is the
lab, and the unmeasured environment would be the classroom. The lab and classroom are alternately
set as the measured and unmeasured environments.

5.1.1. Classification Performance in the Measured Environment

Figure 5 shows the UWB channel classification accuracy of the MLP and CNN in a measured
environment. When comparing the CNN and MLP, the CNN always shows higher classification
performance than the MLP. In particular, the CNN shows a high accuracy of over 97% in both places.
With this result, we prove that the feature extraction process is effective for UWB NLOS identification.
When comparing the classification performance according to the place, the classroom shows higher
performance than the lab. This is because the lab environment has more obstacles, as shown in
Figure 4. A complex lab environment produces environmental noise and degraded classification
performance. In addition, the accuracy of the CNN decreases by approximately 1%, while the accuracy
of the MLP decreases by approximately 4%. It is interpreted that the more severe the environmental
noise, the greater the effect of the feature extraction process. Table 3 shows the precision and recall
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of each UWB channel condition for the MLP and CNN in a measured environment. In the measured
environment, the classification performances according to channel conditions are almost similar.

Lab Classroom
Training Place

86

88

90

92

94

96

98

100
Ac

cu
ra

cy
(%

)

94.61

98.56
97.56

98.72MLP
CNN

Figure 5. UWB channel classification accuracy of the MLP and CNN in the measured environment.

Table 3. UWB channel classification performance on the MLP and CNN in the measured environment.

Train: Lab, Test: Lab Train: Classroom, Test: Classroom

MLP CNN MLP CNN

Precision Recall Precision Recall Precision Recall Precision Recall

LOS 94.54 95.33 98.32 97.66 99.33 98.50 97.24 100.0
Weak NLOS 95.94 90.67 98.31 97.00 98.66 98.33 99.16 98.33

NLOS 93.47 97.84 96.08 98.00 97.69 98.33 99.83 97.83

5.1.2. Classification Performance in the Unmeasured Environment

Figure 6 compares the classification accuracy of the MLP, CNN, transfer learning to MLP,
and transfer learning to CNN in an unmeasured environment. Classification models without transfer
learning show significantly degraded accuracy in an unmeasured environment. Compared to the
trained place experiment, the accuracy decreased by more than 50% in all cases. This is because
environmental noise in each place is learned together during the training process. When transfer
learning is applied, the classification accuracy increases up to 98%, which is almost the same as that
of the measured environment. This result verifies that transfer learning can effectively eliminate
the environmental noise contained in the existing model. When comparing the accuracy of transfer
learning to the MLP and CNN, the CNN shows higher accuracy in every place. This shows that
the feature extraction process is also crucial in transfer learning. Comparing the accuracy of transfer
learning to MLP in different places, it can be seen that the classroom has a 15% higher accuracy than
the lab. We deduce from this that transfer learning requires a feature extraction process in a complex
environment. MLP shows higher accuracy without transfer learning in an unmeasured environment.
This is because many environmental noises were included in the model during the CNN feature
extraction process.

Tables 4 and 5 show the detailed UWB channel classification performance of the MLP, CNN,
transfer learning to the MLP, and transfer learning to the CNN in an unmeasured environment.
Without transfer learning, NLOS shows a significantly low recall of less than 8% in all cases. This means
that the characteristics of environmental noise are mostly similar to those of NLOS.
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Lab Classroom
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Figure 6. UWB channel classification accuracy of different training places and models.

Table 4. UWB channel classification performance of the MLP and CNN in different unmeasured environments.

Train: Lab, Test: Classroom Train: Classroom, Test: Lab

MLP CNN MLP CNN

Precision Recall Precision Recall Precision Recall Precision Recall

LOS 50.40 63.67 44.52 44.67 71.52 54.83 52.99 69.50
Weak NLOS 40.15 62.84 41.77 76.17 36.07 74.60 40.09 56.67

NLOS 33.98 5.83 7.69 1.33 45.92 7.50 20.00 5.50

Table 5. UWB channel classification performance of transfer learning to the MLP and transfer learning
to the CNN in different unmeasured environments.

train: Lab, Test: Classroom Train: Classroom, Test: Lab

MLP+TL CNN+TL MLP+TL CNN+TL

Precision Recall Precision Recall Precision Recall Precision Recall

LOS 100.0 70.00 95.24 100.0 100.0 80.00 100.0 95.00
Weak NLOS 77.78 70.00 95.24 100.0 85.71 90.00 100.0 100.0

NLOS 60.71 85.00 100.0 90.00 86.96 100.0 95.24 100.0

Figure 7 shows the UWB channel classification accuracy of the light CNN and transfer learning to
the CNN. In this experiment, we compared the performance of transfer learning and the CNN with
the same amount of training data. Transfer learning shows over 98% accuracy, while the light CNN
shows only approximately 88% accuracy. This is because the light CNN used inadequate training data,
which caused the accuracy to become lower than the trained place accuracy presented in Section 5.1.1.
Through these results, we prove that it is more efficient to use the existing CNN model with transfer
learning than to train a new CNN model in an unmeasured environment.

5.2. Computational Overhead

Table 6 shows the training time of the MLP, CNN, transfer learning on MLP, transfer learning
on CNN, and light CNN. The CNN requires 200 times more time for training than the MLP. This is
because the convolution layers and pooling layers in a CNN require massive parallel computation.
Transfer learning to the CNN only takes 7 s for training lab data. This is more than nine times faster
than the CNN trained with the same amount of data and 48 times faster than the CNN that shows
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similar classification accuracy. We expect that by using transfer learning, online learning can be
performed in an unmeasured environment.

Lab Classroom
Training Place

86

88

90

92

94

96

98

100
Ac

cu
ra

cy
(%

) 93.33

88.33

96.67

98.33Light-CNN
CNN+TL

Figure 7. UWB channel classification accuracy of the light CNN and CNN with TL in different places.

Table 6. Training time comparison of different neural networks.

MLP CNN MLP+TL CNN+TL Light-CNN

Lab 3 s 14 m 26 s 3 s 7 s 1 m 6 s
Classroom 4 s 14 m 28 s 3 s 18 s 1 m 22 s

6. Conclusions

As localization technologies using UWB are being commercialized, there have been active studies on
UWB NLOS identification for high localization performance. Recently, many deep learning-based NLOS
identification schemes have been proposed. However, there is a problem, in that performance seriously
decreases in an unmeasured environment. To solve this problem, we proposed a transfer learning-based
UWB NLOS identification scheme for an unmeasured environment. Experiments were conducted in
both measured and unmeasured environments. In the measured environment, the proposed classifier
models, MLP and CNN, showed an accuracy of up to 98.56% and 98.72%, respectively. In the unmeasured
environment, the proposed transfer learning scheme showed an identification accuracy of up to 98.33%
NLOS. This shows an accuracy improvement of approximately 55% and 48 times faster training
compared to the CNN without transfer learning. Compared to training the new CNN model for an
unmeasured environment, the proposed scheme shows a performance improvement of approximately
10% and an approximately five times faster learning speed. In short, the proposed method shows
similar accuracy to the CNN trained with 30 times the data and a 48 times faster training time.

To operate transfer learning online, future research will need to be conducted to detect environmental
changes and transfer learning without the data labeling process. In addition, we will focus on NLOS
identification and NLOS error mitigation. The various lessons learned from this study will help in our
future research.

Author Contributions: Conceptualization and methodology, J.P.; validation, Y.K. and Y.-B.K.; data curation and
formal analysis, S.N. and H.C.; writing, original draft preparation, J.P. and H.C.; writing, review and editing,
Y.K. and Y.-B.K.; supervision, Y.-B.K. All authors read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the
Ministry of Science and ICT (MSIT) (NRF-2020R1A2C1102284) and by the Information Technology Research Center
(ITRC) support program (IITP-2020-2018-0-01431) supervised by the Institute of Information & Communications
Technology Planning & Evaluation (IITP).



Electronics 2020, 9, 1714 12 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Desk, E.D. Continental smartphone-based car key to be introduced in 2021 models of three more car
manufacturers. The Financial Express, 24 January 2020. Available online: https://www.financialexpress.com/
auto/car-news/continental-smartphone-based-car-key-cosma-2021-models-digital-car-key-apple/2002031
(accessed on 2 September 2020).

2. Eadicicco, L. Apple and Samsung newest phones use a little-known technology that lets your phone
understand exactly where it is—And could mean you never misplace anything again. Business Insider,
20 August 2020. Available onlie: https://www.businessinsider.com/uwb-explained-samsung-galaxy-note-
ultra-apple-iphone-features-airdrop-2020-8 (accessed on 2 September 2020).

3. Sedlacek, P.; Slanina, M.; Masek, P. An overview of the IEEE 802.15.4z standard its comparison and to
the existing UWB standards. In Proceedings of the 2019 29th International Conference Radioelektronika
(RADIOELEKTRONIKA), Pardubice, Czech Republic, 16–18 April 2019; pp. 1–6.

4. Gezici, S.; Tian, Z.; Giannakis, G.B.; Kobayashi, H.; Molisch, A.F.; Poor, H.V.; Sahinoglu, Z. Localization via
ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process. Mag.
2005, 22, 70–84. [CrossRef]

5. Connell, C. What’s the difference between measuring location by UWB Wi-Fi and bluetooth? Electron. Des.
Febr. 2015, 6, 2015. Available online: https://www.electronicdesign.com/technologies/communications/
article/21800581/whats-the-difference-between-measuring-location-by-uwb-wifi-and-bluetooth
(accessed on 7 October 2020).

6. Monica, S.; Ferrari, G. Improving UWB-based localization in IoT scenarios with statistical models of distance
error. Sensors 2018, 18, 1592. [CrossRef] [PubMed]

7. Aileni, R.M.; Suciu, G.; Sukuyama, C.A.V.; Pasca, S.; Maheswar, R. Internet of wearable low-power wide-area
network devices for health self-monitoring. In LPWAN Technologies for IoT and M2M Applications; Elsevier:
London, UK, 2020; pp. 307–325.

8. Choi, H.B.; Lim, K.W.; Ko, Y.B. Sensor Localization System for AR-assisted Disaster Relief Applications
(poster). In Proceedings of the 17th Annual International Conference on Mobile Systems, Applications,
and Services, Seoul, Korea, 12–21 June 2019; pp. 526–527.

9. Ridolfi, M.; Vandermeeren, S.; Defraye, J.; Steendam, H.; Gerlo, J.; De Clercq, D.; Hoebeke, J.; De Poorter, E.
Experimental evaluation of UWB indoor positioning for sport postures. Sensors 2018, 18, 168. [CrossRef]
[PubMed]

10. Huo, Y.; Dong, X.; Beatty, S. Cellular Communications in Ocean Waves for Maritime Internet of Things. IEEE
Internet Things J. 2020, 7, 9965–9979. [CrossRef]

11. Li, L.; Ren, H.; Cheng, Q.; Xue, K.; Chen, W.; Debbah, M.; Han, Z. Millimeter-wave networking in sky:
A machine learning and mean field game approach for joint beamforming and beam-steering. IEEE Trans.
Wirel. Commun. 2020, 19, 6393–6408. [CrossRef]

12. He, Y.; Chen, Y.; Hu, Y.; Zeng, B. WiFi Vision: Sensing, Recognition, and Detection with Commodity
MIMO-OFDM WiFi. IEEE Internet Things J. 2020, 7, 8296–8317. [CrossRef]

13. Huo, Y.; Dong, X.; Lu, T.; Xu, W.; Yuen, M. Distributed and multilayer UAV networks for next-generation
wireless communication and power transfer: A feasibility study. IEEE Internet Things J. 2019, 6, 7103–7115.
[CrossRef]

14. Khodjaev, J.; Park, Y.; Malik, A.S. Survey of NLOS identification and error mitigation problems in UWB-based
positioning algorithms for dense environments. Ann. Telecommun./Annales des Télécommunications 2010,
65, 301–311. [CrossRef]

15. Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A novel NLOS mitigation algorithm for UWB localization in
harsh indoor environments. IEEE Trans. Veh. Technol. 2018, 68, 686–699. [CrossRef]

16. Kim, D.H.; Kwon, G.R.; Pyun, J.Y.; Kim, J.W. NLOS Identification in UWB channel for Indoor Positioning.
In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC),
Las Vegas, NV, USA, 12–15 Janaury 2018; pp. 1–4.

https://www.financialexpress.com/auto/car-news/continental-smartphone-based-car-key-cosma-2021-models-digital-car-key-apple/2002031
https://www.financialexpress.com/auto/car-news/continental-smartphone-based-car-key-cosma-2021-models-digital-car-key-apple/2002031
https://www.businessinsider.com/uwb-explained-samsung-galaxy-note-ultra-apple-iphone-features-airdrop-2020-8
https://www.businessinsider.com/uwb-explained-samsung-galaxy-note-ultra-apple-iphone-features-airdrop-2020-8
http://dx.doi.org/10.1109/MSP.2005.1458289
https://www.electronicdesign.com/technologies/communications/article/21800581/whats-the-difference-between-measuring-location-by-uwb-wifi-and-bluetooth
https://www.electronicdesign.com/technologies/communications/article/21800581/whats-the-difference-between-measuring-location-by-uwb-wifi-and-bluetooth
http://dx.doi.org/10.3390/s18051592
http://www.ncbi.nlm.nih.gov/pubmed/29772770
http://dx.doi.org/10.3390/s18010168
http://www.ncbi.nlm.nih.gov/pubmed/29315267
http://dx.doi.org/10.1109/JIOT.2020.2988634
http://dx.doi.org/10.1109/TWC.2020.3003284
http://dx.doi.org/10.1109/JIOT.2020.2989426
http://dx.doi.org/10.1109/JIOT.2019.2914414
http://dx.doi.org/10.1007/s12243-009-0124-z
http://dx.doi.org/10.1109/TVT.2018.2883810


Electronics 2020, 9, 1714 13 of 13

17. Zeng, Z.; Bai, R.; Wang, L.; Liu, S. NLOS identification and mitigation based on CIR with particle filter.
In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 15–18 April 2019; pp. 1–6.

18. Gururaj, K.; Rajendra, A.K.; Song, Y.; Law, C.L.; Cai, G. Real-time identification of NLOS range measurements
for enhanced UWB localization. In Proceedings of the 2017 International Conference on Indoor Positioning
and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 Septemper 2017; pp. 1–7.

19. Zeng, Z.; Liu, S.; Wang, L. UWB NLOS identification with feature combination selection based on genetic
algorithm. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE),
Las Vegas, NV, USA, 11–13 Janaury 2019; pp. 1–5.

20. Kristensen, J.B.; Ginard, M.M.; Jensen, O.K.; Shen, M. Non-Line-of-Sight Identification for UWB Indoor
Positioning Systems using Support Vector Machines. In Proceedings of the 2019 IEEE MTT-S International
Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3.

21. Barral, V.; Escudero, C.J.; García-Naya, J.A. NLOS Classification Based on RSS and Ranging Statistics Obtained
from Low-Cost UWB Devices. In Proceedings of the 2019 27th European Signal Processing Conference
(EUSIPCO), Coruna, Spain, 2–6 September 2019; pp. 1–5.

22. Zeng, H.; Xie, R.; Xu, R.; Dai, W.; Tian, S. A Novel Approach to NLOS Identification for UWB Positioning
Based on Kernel Learning. In Proceedings of the 2019 IEEE 19th International Conference on Communication
Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 451–455.

23. Fan, J.; Awan, A.S. Non-line-of-sight identification based on unsupervised machine learning in ultra
wideband systems. IEEE Access 2019, 7, 32464–32471. [CrossRef]

24. Wang, F.; Xu, Z.; Zhi, R.; Chen, J.; Zhang, P. Los/nlos channel identification technology based on cnn.
In Proceedings of the 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi,
Vietnam, 12–13 December 2019; pp. 200–203.

25. Stahlke, M.; Kram, S.; Mutschler, C.; Mahr, T. NLOS Detection using UWB Channel Impulse Responses and
Convolutional Neural Networks. In Proceedings of the 2020 International Conference on Localization and
GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6.

26. ShirinAbadi, P.A.; Abbasi, A. Uwb channel classification using convolutional neural networks. In Proceedings
of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
(UEMCON), New York, NY, USA, 10–12 October 2019; pp. 1064–1068.

27. Jiang, C.; Shen, J.; Chen, S.; Chen, Y.; Liu, D.; Bo, Y. UWB NLOS/LOS Classification Using Deep Learning
Method. IEEE Commun. Lett. 2020, 24, 2226–2230. [CrossRef]

28. Molisch, A.F.; Balakrishnan, K.; Chong, C.C.; Emami, S.; Fort, A.; Karedal, J.; Kunisch, J.; Schantz, H.;
Schuster, U.; Siwiak, K. IEEE 802.15.4a channel model-final report. IEEE P802 2004, 15, 0662.

29. Decawave. EVK1000 User Manual. 2016. Available online: https://www.decawave.com/product/evk1000-
evaluation-kit/ (accessed on 7 October 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2903236
http://dx.doi.org/10.1109/LCOMM.2020.2999904
https://www.decawave.com/product/evk1000-evaluation-kit/
https://www.decawave.com/product/evk1000-evaluation-kit/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Algorithm-Based NLOS Identification
	Machine Learning-Based NLOS Identification

	UWB NLOS Identification
	Problem Statement
	Proposed Scheme

	Experimental Setup
	Experimental Analysis and Performance Evaluation
	UWB Channel Classification Performance
	Classification Performance in the Measured Environment
	Classification Performance in the Unmeasured Environment

	Computational Overhead

	Conclusions
	References

