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Abstract: We experimentally demonstrated full-duplex light-emitting diode (LED)-to-LED visible
light communication (VLC) using LEDs as the transmitter and receiver. Firstly, we investigated the
performance dependency on the wavelengths of the LED transmitter and receiver by measuring
the rise time and signal-to-noise ratio (SNR). Through the investigation, we were able to choose the
optimal LED color set for LED-to-LED VLC using Shannon’s channel capacity law. The bit error rate
(BER) results of full-duplex and half-duplex LED-to-LED VLC systems with the optimal LED sets are
shown to compare the performance. Furthermore, we discuss major distortions and signal losses in
the full-duplex LED-to-LED VLC system.
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1. Introduction

Illumination trends have seen a move from incandescent bulbs and fluorescent lamps to LEDs due
to their advantages over conventional illumination methods, such as their high power efficiency, long
life time, and fast response time. Among these advantages of LEDs, their fast response characteristic
makes their use possible not only for illumination, but also for wireless communication. Visible light
communication (VLC), which is also called nm-wave communication, is a communication technology
that uses visible light spectra from 380 to 740 nm as information carriers [1].

VLC has several advantages over conventional radio frequency (RF) wireless communication.
Firstly, VLC has a huge unlicensed bandwidth of about 400 THz. Because most RF spectra below
10 GHz have been already used for many purposes, wireless communication engineers are trying to
use higher frequencies over 10 GHz. Thus, it is expected that VLC may be used in the near future
because the VLC spectrum is an extension of the trend of using higher frequencies. Secondly, VLC
can be easily realized using the existing LEDs already deployed in buildings for lighting purposes
by simply adding a micro controller. As each LED can work as an access point (AP), VLC could be
one of the key technologies for Internet of Things (IoT) or massive machine-type communication
(mMTC), since multiple Aps and a large bandwidth are required for IoT to connect numerous devices
with one another. Thirdly, VLC uses visible light as the carrier frequency, which does not cause
electro-magnetic interference (EMI) with other electronic devices in contrast to the conventional RF
communication. Fourthly, high-speed communication links over 10 Gb/s can be easily set through the
VLC link [2]. Thanks to its advantages, research studies on VLC have been widely conducted, including
for the IEEE 802.15.7 VLC standard [3]. Comparative research of optical wireless communication
(OWC) technologies is conducted in [4]. VLC based on space-division multiple access (SDMA) [5],
software-defined radio (SDR) [6], a light-to-frequency converter [7], and an indoor positioning system
(IPS) using VLC is studied in [8]. A full-duplex vehicular VLC system and cooperative VLC system
with full-duplex relaying is studied in [9,10].
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However, in reality, VLC has not been widely commercialized yet. We think that one of the main
reasons is its insufficient commercialization strategies. In [11], IPS based on VLC was suggested as
the first step of a VLC commercialization method, since IPS can achieve functionality without adding
additional hardware in mobile devices. However, IPS based on VLC still requires additional optical
receivers, such as photodiodes or image sensors. As another commercialization strategy of VLC,
we suggest LED-to-LED VLC technology. LED-to-LED VLC is a VLC technique that uses LEDs as
both the transmitter and receiver [12–15]. Because many devices such as smart phones or traffic lights
already have built-in LED lamps, LED-to-LED VLC does not require additional optical devices for data
transmission and reception in VLC links. Thus, it is expected that technologies such as IPS and mMTC
could be easily realized through an LED-to-LED VLC scheme due to their low-complexity, low cost,
and ease of implementation. We believe that LED-to-LED VLC will contribute to the wide spread
of VLC.

To our knowledge, there have been only a few research studies on LED-to-LED VLC so far.
In [12], a LED-to-LED VLC system using colored LEDs is proposed and a related networking
protocol was shown. In [13], various usage cases of VLC are introduced, such as smartphone-to-LED,
LED-to-smartphone, and LED-to-LED. In [14], a LED-to-LED VLC with software-based synchronization
using microcontroller is introduced. In [15], the link performance of a half-duplex LED-to-LED VLC is
shown by our research team. The frequency response of the receiver LED depending on the types
of receiver circuits is also shown. However, the performance dependency on the wavelengths of a
transmitter and a receiver LED has not been studied in detail in the previous studies.

Therefore, in this study, we investigate the performance dependency on the wavelengths of a
transmitter and a receiver LED, by measuring the rise time and signal-to-noise ratio (SNR) with respect
to the color of transmitter and receiver LEDs. Through the investigation, the optimal color set for a
transmitter LED and a receiver LED is chosen. With the optimal LED color set, a full-duplex VLC
is experimentally demonstrated with a direct-current-biased optical orthogonal frequency division
multiplexing (DCO-OFDM) modulation scheme. Furthermore, we discuss distortions and signal losses
in the full-duplex LED-to-LED VLC system.

2. Positive Negative Junction

A positive negative (PN) junction, a basic physical structure for a photodiode (PD) and a LED, is
a combination of p-type and n-type semiconductors. LEDs are PN junction semiconductor devices
that were originally designed to emit photons with energy smaller than or equal to the bandgap
energy. In contrast, PDs are also PN junction semiconductor devices, which were originally made
to generate electric currents by accepting photons with energy greater than or equal to the bandgap
energy. In general, forward bias is applied to LEDs and reverse bias is applied to PDs according to
their usage purposes. However, an LED can function as a photodetector when reverse bias is applied.
The reason why LEDs can operate as optical emitters and optical receivers is because the physical
structures of LEDs and PDs are the same. It was experimentally demonstrated that LEDs can be also
utilized as optical receivers [15].

3. Receiver Characteristics of LED

In our experiment, we used HB10P red, yellow, green, blue, and white LEDs (Yinhui photoelectric).
The size and viewing angle of the LEDs were 10 ∅ (mm) and 30◦, respectively. To obtain more detailed
characteristics of the LEDs, we measured their spectra and optical powers. The measurement results
are shown in Figure 1 and the parameters are summarized in Table 1. The peak wavelengths for red,
yellow, green, blue, and white LEDs were measured as 628, 587, 520, 465, and 454 nm, respectively.
Note that the white LED was a phosphor-converted white LED (pc-WLED).
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Figure 1. (a) The spectrum and (b) optical power of red, yellow, green, blue, and white light-emitting 
diodes (LEDs). 

Table 1. Parameters of LEDs. 
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Peak 
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Red 628 nm 
Optical 

power888888
88(3V 

applied) 

Red 1.168 mW 
Yellow 587 nm Yellow 0.518 mW 
Green 520 nm Green 3.25 mW 
Blue 465 nm Blue 4.28 mW 

pc-white 454 nm pc-white 2.15 mW 
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Figure 1. (a) The spectrum and (b) optical power of red, yellow, green, blue, and white light-emitting
diodes (LEDs).

Table 1. Parameters of LEDs.

Parameter Value Dimension Parameter Value Dimension

Viewing angle 30 deg. Diameter 10 mm

Peak
Wavelength

Red 628 nm

Optical power
(3V applied)

Red 1.168 mW
Yellow 587 nm Yellow 0.518 mW
Green 520 nm Green 3.25 mW
Blue 465 nm Blue 4.28 mW

pc-white 454 nm pc-white 2.15 mW

Shannon’s channel capacity law is one of the powerful tools used to estimate the link performance
when the channel bandwidth, average signal power, and average noise power are given. The channel
capacity equation is given by:

C = f3dB· log2

1 +
E
{
Ps

}
E
{
Pn

}  (1)

where C is the capacity of the channel, f3dB is the 3 dB bandwidth of the channel, Ps is the signal power,
and Pn is the noise power.

For a simple low-pass resistor capacitor (RC) network, the step response of the system is given by:

V(t) = V0
(
1− e−

t
τ

)
(2)

where τ is an RC time constant. The time that the signal takes to achieve x% of the voltage level can be
obtained by solving Equation (2):

tx% = −τ ln
(
1−

x
100

)
(3)

Thus, the rise time tr can be expressed as:

tr = t0.9 − t0.1 = τ ln 9 (4)

Since the 3 dB bandwidth of the low-pass RC system is given by

f3dB =
1

2πτ
(5)

using Equations (4) and (5), the 3 dB bandwidth of a system can be approximated by the rise time of
the received signal as:

f3dB =
ln 9
2πtr

�
0.35

tr
(6)
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Therefore, with Equations (1) and (6), we can derive another channel capacity equation:

C �
0.35

tr
· log2

1 +
E
{
Ps

}
E
{
Pn

}  (7)

Using Equation (7), the approximated channel capacity of each LED color set (a transmitter and
receiver LED set) can be calculated by the rise time, average signal power, and average noise power of
the received signal.

Figure 2 shows the experimental setup for measuring the rise time and SNR for all of the possible
combinations of color LED transmitters and color LED receivers. On the transmitter side, a square wave
(SQW) is used to modulate the transmitter LED. A serial resistance of 15 Ω is used in the transmitter
circuit for circuit protection purposes. The frequency rate is 100 Hz and the transmission distance is
15 cm. The optical signal is accepted through a receiver LED with a reverse bias of 5 V and a load
resistance of 1 MΩ. The electrical signal on the load resistance was measured by an oscilloscope
(OSC). The rise time of the electrical signal is measured from 10% to 90% of the leading edge of the
received signal.
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Figure 2. Experimental setup for measuring the rise time and signal-to-noise (SNR) of each LED color
set (transmitter and receiver LEDs). Note that R, Y, G, B, and W stand for red, yellow, green, blue, and
white, respectively.

Table 2 shows the experimental results of the rise time and SNR according to the pairs of transmitter
and receiver LEDs. In addition, the channel capacities calculated by Equation (7) with the results
for the rise time and SNR are shown in Table 3. Note that the three best performing cases in each
experimental result are underlined in Tables 2 and 3. Additionally, the transmitter LED to pc-white
LED case was not considered to avoid confusion, since pc-white LEDs are not appropriate receivers.
In [15], a half-duplex LED-to-LED VLC performance study was conducted using a blue-to-green set,
since the blue-to-green set showed the best received signal amplitude value, which is the same as our
SNR results in Table 2.

However, the blue-to-green set is not the best case because its rise time is slow. The estimated
channel capacity of blue-to-green set is 38.5 kbps, as shown in Table 3. According to Table 3, rather
than the blue-to-green, instead the green-to-yellow set shows the best capacity of 59.1 kbps, which is
53% better than the blue-to-green set. Thus, the green-to-yellow set was chosen as the best color set for
LED-to-LED VLC systems in our experiment.
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Table 2. Rise time and SNR of the LED-to-LED VLC according to the pairs transmitter and receiver
LED color sets. Pc, phosphor-converted.

Transmitter
Receiver

Red
(628 nm)

Yellow
(587 nm)

Green
(520 nm)

Blue
(465 nm)

Red (628 nm) 52 µs/2 dB - - -

Yellow (587 nm) 80 µs/1 dB 52 µs/6 dB - -

Green (520 nm) 72 µs/21 dB 44 µs/22 dB 96 µs/5 dB -

Blue (465 nm) 63 µs/10 dB 64 µs/11 dB 112 µs/37 dB 112 µs/12 dB

Pc-white (454 nm) 72 µs/11 dB 64 µs/13 dB 112 µs/25 dB 120 µs/10 dB

The three best performing cases in each experimental result are underlined.

Table 3. Estimated channel capacity of the LED-to-LED VLC according to the pairs of transmitter and
receiver LED color sets.

Transmitter
Receiver

Red
(628 nm)

Yellow
(587 nm)

Green
(520 nm)

Blue
(465 nm)

Red (628 nm) 9.2 kbps - - -

Yellow (587 nm) 5.5 kbps 16.2 kbps - -

Green (520 nm) 34 kbps 59.1 kbps 7.9 kbps -

Blue (465 nm) 19.4 kbps 20.2 kbps 38.5 kbps 12.9 kbps

Pc-white (454 nm) 18.4 kbps 24.9 kbps 25.6 kbps 10.4 kbps

The three best performing cases are underlined.

4. Full-Duplex LED-to-LED VLC

In previous studies, several modulation schemes have been studied for optical wireless
communication. On–off keying (OOK) is the simplest and most conventional modulation method
in optical communication, which has the advantages of low complexity and adequate bandwidth
achievement. Pulse position modulation (PPM) is suggested in the IEEE 802.15.7 VLC standard for
dimming support. PPM is another modulation scheme that can achieve higher power efficiency
than OOK. However, PPM requires more complicated systems and bandwidth consumption [16].
Orthogonal frequency division multiplexing (OFDM) is a multi-carrier modulation scheme that shows
high frequency efficiency. OFDM also makes systems robust to the low-frequency ambient light from
other lighting sources by sending data via high-frequency subcarriers. In order to overcome the
disadvantage of the low-data-rate and vulnerability to other lighting sources in LED-to-LED VLC,
quadrature amplitude modulation (QAM) and DCO-OFDM are applied in our full-duplex LED-to-LED
VLC experiment.

Figure 3 shows the experimental setup for the full-duplex LED-to-LED VLC link. A pseudo
random binary sequence (PRBS) VLC signal is encoded with a 32-QAM and DCO-OFDM scheme.
Hermitian symmetry input is used before the inverse fast Fourier transform (IFFT) process to generate
a real and unipolar OFDM signal for an intensity modulation and direct detecting (IM/DD) system [17].
Then, the OFDM signal is directly modulated with an arbitrary function generator (AFG) and sent
to a green transmitter LED. The VLC signal emitted by the green transmitter LED is detected by the
yellow receiver LED. The received signal is recovered with a fast Fourier transform (FFT), inverse
Hermitian symmetry, and 32-QAM de-mapping process. The transmitter and receiver circuits are
shown in Figure 2. The DCO-OFDM modulated signal has an amplitude of 0.3 V and an offset of 2.9 V.
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The single-sided bandwidth of a subcarrier B in our full-duplex LED-to-LED VLC system can be
calculated as:

B =
1

2Ts
(8)

where Ts is the symbol time duration. The data rate of this system D is:

D = B
(
N f f t − 2

)
log2 M (9)

where N f f t is the size of FFT and M is the size of constellation. In our experiment, an FFT size of 100
and a constellation size of 32 are used. The experimental conditions are summarized in Table 4.
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Figure 3. (a) Block diagram, (b) picture, and (c) detailed block diagram of the experimental
setup for the full-duplex LED-to-LED VLC. Note that P/S and S/P stands for parallel-to-serial and
serial-to-parallel, respectively.

Table 4. Experimental conditions in the full-duplex LED-to-LED VLC experiment.

Parameter Value Dimension

Modulation DCO-OFDM -
Tx offset 2.9 V

Tx amplitude 0.3 V
FFT size 100 -

QAM level 32 -

Figure 4a shows the interference path and signal path in the experimental setup, while Figure 4b
shows the bit error rate (BER) results of the half-duplex and the full-duplex LED-to-LED VLC.
The received 32-QAM constellations are also shown in Figure 4b. At data rates of 4.9, 12.25, and 24.5
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kbps, the BER results are under 10−5 for both the half- and full-duplex systems. When the data rate
is 49 kbps, the BERs of the half- and full-duplex systems are 6.25× 10−5 and 2.5× 10−4, respectively.
When the data rate is 122.5 kbps, the BERs of the half- and full-duplex systems are 0.1604 and 0.1621,
respectively. Note that the reason why we only considered a few bit rates (i.e., 4.9, 12.25, 24.5, 49,
and 122.5 kbps) in the experiment is that those bit rates showed the optimum sample rates in the
experimental equipment.
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These experimental results show that both half- and full-duplex LED-to-LED VLC systems with a
data rate of 49 kbps can be implemented, assuming the maximum allowable BER threshold is 10−3.
Additionally, our system shows a channel capacity value similar to that of Shannon’s channel capacity.
The results also show that the performance of the half-duplex case is slightly better than the full-duplex
case. We think that the reason for the performance difference is that the light emitted from the Tx2
LED is reflected at the surface of the Tx1 and Rx1 LED, then the Rx2 receives the reflected signal, as
shown in Figure 4a. Based on this, we analyzed the interference effect mathematically.

The luminous intensity of a transmitter LED at an irradiance angle of (θ, ∅) is given by:

I(θ, ∅) = I(0, 0) cosm(θ, ∅) (10)

where I(0, 0) is the center luminous intensity of the LED and m is the Lambertian radiation pattern [18].
Analytic expression for the SNR of the half-duplex system is derived as:

SNRH =
Rp

(
1−R f

) ∫ 2π
0

∫ tan−1 ( r
d )

0 I(θ, ∅)dθd∅
Pn

(11)
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where Rp is the responsivity of the receiver LED, d is the transmit distance, r is the radius of the
LED, R f is the reflectance of the fused silica (pure glass) at a wavelength of 589 nm, and Pn is the
measured average ambient noise power in the receiver LED. The analytic expression for the SNR of the
full-duplex system is derived as:

SNRF =
Rp

(
1−R f

) ∫ 2π
0

∫ tan−1 ( r
d )

0 I(θ, ∅)dθd∅
{
1 + 2R f sin

(
2 tan−1 dtr

d

)
cos

(
cos−1 dtr

d

)}
Pn + 2RpR f

(
1−R f

) ∫ 2π
0

∫ tan−1 ( r
d )

0 I(θ, ∅)dθd∅ cos2
(
cos−1 dtr

d

) (12)

where dtr is the distance between Rx 1 and Tx 1 LEDs and for Rx 2 and Tx2 LEDs. The values for each
parameter are listed in Table 5. As shown in Figure 5, the analytic results and experimental results give
similar curves. Thus, we can conclude that the interference mostly occurs due to the noise path shown
in Figure 4a. As a result, it seems that slight performance degradation in the full-duplex system is
caused by the reflection of the opposite LEDs.
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Table 5. Parameters used in the SNR analysis of half- and full-duplex LED-to-LED VLC systems.

Parameter Value Dimension

I(0) 2.09× 10−3 W/sr
m 4.8188 -
Rp 5.6× 10−4 A/W
r 0.005 m

R f 0.0186 -
Pn 2.4× 10−21 W
dtr 0.013 m

Since the transmission distance in our system was short, the optical signal power was much
stronger than the ambient background light. Thus, the effect of ambient light from other lights can be
ignored in our experimental results. Therefore, we think that the main reason for the signal degradation
is the reflection of opposite LEDs.

As shown in our results, the LED-to-LED VLC system has a few limitations, such as its low data
rate and short transmission distance. However, we think that a higher data rate and longer transmission
distance can be achieved with advanced detection techniques (e.g., artificial neural-network-based
detection and optimally weighted non-coherent detection) [19,20].

In LED-to-PD VLC such as in [21], the data rate is much higher than for LED-to-LED VLC.
The PD used in [21] (a New Focus 1601FS-AC instrument) had a rise time value of 400 ps and a peak
responsivity value of 0.5 A/W. In contrast, our LED-to-LED VLC system achieved a maximum data rate
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of about 50 kbps, because the receiver LED had a rise time value of 44 µs and a peak responsivity value
of 0.56 mA/W. It is obvious that PDs shows much better performance than LEDs as optical receivers.
However, we believe that LED-to-LED VLC can be commercialized because it has several advantages,
such as its low complexity and low cost.

5. Summary

In summary, we investigated the performance dependency on the wavelength of the transmitter
and the receiver LED for LED-to-LED VLC. In order to find the optimal color set of transmitter and
receiver LEDs according to Shannon’s channel capacity law, we measured the SNR and rise time of
the LED-to-LED VLC system with all possible color combinations for the transmitter and receiver
LEDs. Through the optimization process, we found out the optimal LED color set for LED-to-LED
VLC, which was a green-to-yellow color set.

In addition, we experimentally demonstrated half- and full-duplex LED-to-LED VLC using a
green LED and a yellow LED as the transmitter and the receiver, respectively. The maximum data rate
of 49 kbps with a BER of < 2.5× 10−4 was achieved using 32-QAM DCO-OFDM modulation and a
reverse-biased circuit in a full-duplex LED-to-LED VLC system. We also investigated the interference
effect in the full-duplex LED-to-LED VLC analytically and experimentally. We believe that LED-to-LED
VLC technology will contribute to the wide spread of the VLC technology.
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