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Abstract: Localization has been extensively studied owing to its huge potential in various areas,
such as Internet of Things, 5G, and unmanned aerial vehicle services. Its wide applications include
home automation, advanced production automation, and unmanned vehicle control. In this study,
we propose a novel localization method that utilizes convolutional neural network (CNN) and
ultra-wideband (UWB) signals. A localization problem is converted to a regression problem with
the proposed CNN, in which the ranging and positioning phases are integrated. By integrating
the ranging and positioning phases, the proposed CNN estimates the location of UWB transmitter
directly without any additional step. To integrate both phases of localization, a simple-yet efficient
input image generation method is proposed. In the proposed input image generation method,
three oversampled two-dimensional input images are generated from the three received UWB signals
and they are provided to the designed CNN through the three channels, which are represented by
red-, green-, and blue-color channels, respectively. The proposed CNN-based localization system then
estimates the location of the UWB transmitter directly using the three-channel image as an input of the
CNN. Simulation results verify that the proposed CNN-based localization method outperforms the
traditional threshold-based and existing CNN-based methods. Also, it is observed that the proposed
method performs well under an asymmetric environment, unlike the existing method.

Keywords: localization; deep learning; convolutional neural network (CNN); ultra-wideband
(UWB) system

1. Introduction

Device location information is gaining significant attention owing to its usage in indoor/outdoor
tracking and navigation services in both small-and large-scale areas. With the recent development of
many Internet of Things applications, the use of localization systems by numerous services has become
significantly challenging. Indoor locating systems heavily rely on wireless technologies, such as
Wireless Fidelity (Wi-Fi), Bluetooth, radio frequency identification device (RFID), and ultra-wideband
(UWB) [1]. The Wi-Fi technology is broadly available with great accuracy because it can be implemented
at low costs. However, Wi-Fi systems can be significantly affected by noise. To resolve this issue,
complex algorithms are required for localizing the Wi-Fi systems. Bluetooth is known for connecting
fixed or moving devices within a certain personal space. It provides large throughput with a wide
signal reception range while consuming low energy; however, real-time localization in Bluetooth is
challenging owing to the significant received signal delay and noise. The RFID systems are similar
to the Bluetooth systems in terms of wide signal reception range, low power consumption, and low
localization accuracy. UWB technology has been primarily used in various indoor environments.
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Its popularity in indoor localization can be attributed to its robustness against interference from other
devices. Furthermore, UWB signals can penetrate various materials including walls, and they are
robust against multipath effects. Thus, UWB systems can provide high accuracy. However, they have
disadvantages, such as shorter range, higher cost, and more complex hardware requirements.

1.1. Related Work for UWB System Localization

Various studies have implemented UWB technology to a wide range of localization systems,
e.g., (i) classical correlation-based method using time-of-arrival (ToA) and angle-of-arrival (AoA) [2–4],
(ii) machine-learning-based algorithms [5], (iii) deep-learning-based methods using classification [6–8],
and (iv) deep-learning-based method using regression [9–16].

In [2], the authors designed a joint ToA and AoA estimators for UWB indoor localization systems.
Their experiment results demonstrated ranging and angular errors of approximately 10 cm and 1◦,
respectively, for a certain pulse. Because non-line-of-sight (NLoS) is a significant factor in UWB
localization degradation, the authors in [3] developed an algorithm to mitigate the NLoS range
error by introducing the Taylor series least-square method. The authors conducted two experiments
in their study. In the first experiment, the radial location errors of the static testing points were
measured. The errors of the moving target were measured in the second experiment. With the
stationary testing points, almost all radial location errors were observed to be below 0.5 m, while the
errors of the mobile target were often below 1 m. In [4], the authors demonstrated an impulse-based
UWB localization system that utilized the time difference of arrival estimation and an error correction
algorithm. The experiment was set in a 6.3× 5.9× 3 m3 room, and from the experiment, positioning
accuracy was achieved within 0.02 m.

Machine learning algorithms are powerful tools as a system approximator. They can obtain
desirable outputs for proper input without thorough system analysis. Owing to this characteristic,
machine learning algorithms have been integrated into numerous indoor localization systems.
For example, some machine learning-based localization systems can convert a localization problem
into a classification problem [5]. Here, the authors developed a localization system that utilized a
multiclass support vector machine and UWB signals to identify the rooms where the UWB transmitter
(Tx) was located. In their experiment, the proposed localization system achieved an accuracy of 95%.
However, the most widely used machine learning algorithms are deep learning algorithms.

In some researches, a localization problem was solved by using a deep learning algorithm
from a viewpoint of classification [6–8]. In [6], three different deep neural networks (DNNs) and one
convolutional neural network (CNN) for localization using the received signal strength (RSS) and
channel state information (CSI) were proposed. Their experimental results showed that the CNN-based
localization system with CSI could achieve an accuracy of 99%. In [7], the authors introduced a
fingerprinting method that combined an extreme learning machine scheme and autoencoder to classify
the location of devices from the corresponding RSS. From the numerical results in a 40.4× 28.8 m2

laboratory with 19 reference rooms, it was shown that the success rate of the classification is above
92%. In [8], a CNN-based localization system using the RSS indicator was proposed. The output of
this system included one of the 74 reference points across the area where the position estimation was
performed. In their experiment, the proposed localization system achieved an accuracy of 94.45% with
an average localization error of as low as 1.44 m. These machine learning-based localization systems
that solve a localization problem as a classification problem, however, have an inherent error because
the localization based on classification estimates discrete values instead of continuous location values.
Furthermore, as the area where the localization system operates increases, it must be divided into
more subareas that serve as labels to reduce the discretization error. Such a large number of labels
complicates the classification-based localization systems.

On the other hand, the machine learning-based localization algorithms can be transformed to
a regression problem [9–16]. In [9], the authors proposed three different DNN-based localization
systems using RSS. The output of these networks included the x-and y-coordinates of the estimated
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location. Their simulation results showed that the best DNN-based localization method could achieve
a root mean squared error (RMSE) of approximately 1 m. In [10], the authors designed a deep
long-short-term-memory (LSTM) scheme that uses the RSS indicator to estimate the target location.
In a 55× 50 m2 office, 1.75 m of an average localization error was achieved. In [11], the authors
employed a recurrent neural network (RNN) for indoor localization by exploiting the RSS indicator
and the trajectory information. Their on-site experiment showed that an average localization error is
below 0.75 m. In [12], an LSTM network was proposed to predict the device’s location based on the
amplitude and phase of CSI, with 1.35 m of an average error. A deep CNN-based indoor localization
method was proposed in [13] for a 5-GHz Wi-Fi system. The input of the CNN was generated from the
CSI and AoA. In a 6× 9 m2 laboratory, 1.8 m of average localization error was achieved. On the other
hand, in a 2.4× 24 m2 corridor, 2.4 m of average localization error was achieved. In [14], the authors
proposed a CNN-based distance estimation algorithm between a Tx and a receiver (Rx) using the
channel impulse response (CIR) of the UWB signals. In their experiment, the employed CNN-based
distance estimation algorithm could achieve an RMSE of less than 1 m at a moderate signal-to-noise
ratio (SNR). However, an additional positioning algorithm, such as data fusion [15], is required to
obtain the position of Tx because the ranging method only estimated the distance between Tx and Rx.
From UWB pulse’s ToA, a distance was estimated, and an LSTM network estimated the location of
Tx [16]. The simulation results showed that the error of the distance estimation hindered LSTM from
being trained properly and that the localization error was approximately 7 m.

1.2. Our Contribution

In this study, we propose a novel CNN-based localization method that utilizes the UWB
technology. The conventional CNN-based method mentioned in [14] estimates the distance between a
Tx and an Rx then takes a positioning algorithm to estimate the location of Tx. The two sequential
estimation steps, namely the distance and position estimation may cause an error propagation issue.
On the other hand, the LSTM network-based localization method in [16] estimates Tx location directly;
however, it requires an additional algorithm for estimation of ToA because it uses estimated distance
based on ToA.

On the other hand, the proposed CNN-based localization method uses received UWB signals
to estimate the Tx location directly. To this end, we design an input image generation method for
the proposed method. In [14], the CNN-based ranging method uses a two-dimensional (2D) image
with one channel as the input. Contrary to the method in [14], three oversampled 2D images are
inputted through three channels to the proposed CNN to localize by integrating the ranging and
positioning phases. The proposed CNN-based method with three oversampled 2D images solves the
localization problem directly as a regression problem and yields the x-and y-coordinates of Tx as an
output. By solving the localization problem as a regression problem, the discretization error can be
reduced. Furthermore, the complexity of the CNN model is independent of the area size. The proposed
CNN-based localization method improves localization performance in terms of a localization RMSE
compared to the conventional ToA-based and CNN-based methods. Moreover, the threshold-based
and conventional CNN-based methods show higher localization errors under the asymmetric shape of
the area where the localization is performed, e.g., a long and narrow corridor. However, the proposed
method performs well irrespective of the shape of the area. The major contributions of this paper can
be summarized as follows:

• The ranging and positioning phases are integrated, so that error propagation from ranging to
positioning can be reduced.

• For the proposed localization method that integrates the ranging and positioning phase, a novel
CNN structure is designed, which is trained through three 2D images.

• Compared to the conventional CNN-based localization method in [14] that requires three CNNs,
only one CNN is required for the proposed method.
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• The proposed method improves localization accuracy with robustness against the asymmetry of
the area where the localization is performed.

The remainder of this paper is organized as follows. In Section 2, the localization problem,
UWB system, channel models (CMs), area, and antenna setup are described. In Section 3,
the conventional localization methods based on the ToA estimation and CNN for UWB systems
are briefly reviewed; then, the proposed CNN-based localization method is explained. In Section 4,
we compare the localization performance of the conventional localization systems and the proposed
CNN-based localization system in terms of various parameters and then analyze the numerical
simulation results. Finally, Section 5 presents the conclusion and future work.

2. System and Signal Models

In this section, we describe a localization system model, signal model, CMs, and the environments.

2.1. Localization System Model

In this study, a rectangular area is considered for the proposed localization system as shown in
Figure 1. The bottom-left point of this rectangular area on the x-y plane is positioned at (0, 0). The size
of the area is D1×D2 where D1 and D2 are width and height of the area, respectively. Here, a symmetry
factor γ is defined as the ratio of D1 and D2 i.e., γ = D1/D2, which represents the symmetry of the
area. The three Rx’s are positioned on boundary of the area as shown in Figure 1. The coordinates of
Tx and Rx-i are (x, y) and (xi, yi), respectively, where i ∈ {1, 2, 3} is the index of Rx. The location of
Tx is uniformly distributed inside the area, i.e., x ∼ U [0, D1], y ∼ U [0, D2], where U [a, b] denotes the
continuous uniform distribution with interval [a, b]. The distance from the Tx to Rx-i is denoted as di,
i.e., di =

√
(x− xi)2 + (y− yi)2.

In Figure 1, the localization aims to determine the unknown position of Tx, i.e., (x, y), based on
a set of measurements at three Rx’s, namely, Rx-1, Rx-2, and Rx-3. Usually, the basic localization
techniques consist of two main steps:

(i) Ranging phase: Selected measurements are performed to estimate the distance
between transceivers.

(ii) Positioning phase: The measurements are then processed to determine the position of the target.

Tx ( , )x y

Rx1
1 1( , )x y

Rx2 2 2( , )x y

R
x
3

3 3( , )x y

(0,0)

1d

2d

3d

1D

2D

Figure 1. System model with three receivers (Rx’s) and one transmitter (Tx), in which the location of
the Tx is to be estimated through the three Rx’s.

In the ranging phase, each Rx estimates the distance to a Tx using the measurements extracted
from the received signals, such as RSS, ToA, and AoA. In the localization for UWB systems, time-based
measurements, such as ToA or time differences of arrival, are frequently used for ranging owing to
the outstanding ability of UWB signals to resolve the multipath effects and penetrate obstacles [17].
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In most practical cases, however, the time resolution of Rx is insufficient to resolve all multipath
components. Furthermore, the first arriving signal is often not the strongest component in dense
multipath scenarios, such as indoor environments where the UWB systems mainly operate. The effect
of dense multipath components is significantly severe in UWB systems owing to the highly dispersive
nature of UWB channels [18]. Besides the multipath effect, the complicated statistical characteristics of
UWB channels make the mathematical analysis for UWB localization systems considerably difficult.
Here, the statistical model of small-scale fading is determined depending on the environments where
the UWB system operates. Therefore, alternative amplitude distributions must be used [19], implying
that advanced and adaptive signal processing techniques would be required according to the CMs.

In the positioning phase, the solution of the least-square problem [20] can be applied. However,
owing to the presence of errors in the estimated distance, the least-square problem of localization
becomes a nonlinear optimization that requires additional calculations and estimations, resulting in
prohibitive complexity. Machine learning algorithms, in this context, does not require a positioning
phase; they utilize the complicated statistical characteristics of UWB signals and CMs. A machine
learning algorithm used in a localization system is trained to estimate the location of Tx, instead of the
distance between Tx and Rx, and thus, the positioning phase could be omitted.

As mentioned above, the statistical channel properties of UWB systems are complicated. However,
these complicated characteristics can be interpreted as the distinctiveness of each location. In [21],
a UWB Tx was located at the center of the environment, and the power delay profiles (PDPs) of the UWB
signal at several Rx’s distributed over the area were measured. The changes in the small-scale fading
effects corresponded to those in the PDP owing to small variations in the Rx position. In other words,
the CIR at the fixed Rx varies according to the small position changes in the Tx. These variations could
provide distinguishable patterns corresponding to certain Tx positions with the machine learning-based
localization system for the UWB technology. This implies that machine learning-based localization for
UWB systems estimates the position of Tx more accurately by utilizing the distinct CIR patterns.

2.2. Signal and Channel Models

UWB signals are used in indoor localization system owing to their robustness against the
interferences as well as the multipath and NLoS effects. In this paper, the IEEE 802.15.4a CMs in [22]
are considered for our localization system. Suppose that Tx sends UWB signals to Rx’s. The received
signal ri(t) of RX-i is then represented as follows [22]:

ri(t) = hi(t) ∗ s(t) + ni(t), i ∈ {1, 2, 3}, (1)

where hi(t) is the impulse response of channel between Tx and Rx-i, s(t) is the transmitted causal
signal at time t, ni(t) is an additive white Gaussian noise at Rx-i, and ∗ denotes the convolution
operation. Here, the channels are modeled as follows [22]:

hi(t) =
Li−1

∑
l=0

Kl−1

∑
k=0

ak,l exp(jφk,l)δ(t− Tl − τk,l), i ∈ {1, 2, 3}, (2)

where Li is the total number of clusters, Kl is the total number of multipath components of the lth
cluster, ak,l shows the tap weight of the kth multipath component of the lth cluster, φk,l is the uniformly
distributed phase of the kth multipath in the lth cluster, and δ(·) denotes a delta function, Tl denotes
the delay for the lth cluster, τk,l is the intra-cluster delay for the kth multipath component of the lth
cluster. The CIR, hi(t), is modeled differently based on the environments where the measurements are
performed. A more detailed description of each CM and the related channel parameters is specified
in [22], in which the residential, office, suburban, industrial, and open outdoor channels are modeled
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for the cases of line-of-sight (LoS) and NLoS. The CMs considered in this study are classified in Table 1.
The signal, denoted by yi(t), after matched filtering at Rx-i is then represented as [23]:

yi(t) = s(Tp − t) ∗ ri(t), (3)

where the Tp denotes the delay for causality of the signals.

Table 1. Class of CMs [22].

Channel Model Environment

CM1 Residential, LoS
CM2 Residential, NLoS
CM3 Office, LoS
CM4 Office, NLoS
CM5 suburban LoS
CM6 suburban NLoS
CM7 Industrial, LoS
CM8 Industrial, NLoS
CM9 Open Outdoor (Snow-covered, farm)

3. Conventional and Proposed Localization Methods

In this section, we briefly introduce the conventional ToA-based localization and CNN-based
localization methods. For convenience, the conventional and proposed CNN-based localization
methods are referred to as CNN-based distance estimation (CNN-DE) and CNN-based location
estimation (CNN-LE), respectively.

3.1. Conventional ToA-Based Localization Method

In [24], threshold-based ToA estimation was proposed. From yi(t) in (3), an Rx-i estimates the
ToA when the received signal energy is greater than the predetermined threshold. To improve the
accuracy of ToA estimation, the threshold is typically designed such that it is inversely proportional to
the average received SNR. More details can be found in [24]. Subsequently, the Rx-i can obtain the
estimated distance d̂i from Tx by multiplying the estimated ToA and speed of light, i.e., d̂i = ∆̂i × c,
where ∆̂i is the estimated ToA at Rx-i and c is the speed of light. This ranging information obtained
from the three Rx’s is used to estimate the position of Tx. In this study, we use a least-square solution
in the positioning phase of the ToA-based localization for comparison purposes.

3.2. Conventional CNN-DE Method

The CNN-DE method consists of the ranging phase based on [14] and the positioning phase based
on the method in [15]. In the ranging phase of CNN-DE, a CNN at each Rx estimates the distance to
a Tx using the one-channel image. Thus, three CNNs are required in CNN-DE. Since the three Rx’s
for the conventional CNN-DE method perform the identical procedure, without loss of generality,
we describe the CNN-DE method focusing on one Rx-i.

To utilize a CNN, the received signals are transformed to a 2D image. The received signal
yi,q(t) is recorded and sampled with the sampling frequency fs at Rx-i. The Rx-i then generates a
complex-valued vector yi,q ∈ CN×1, where the nth element is a sampled value of the received signal
yi,q[n], n = {0, . . . , N − 1}, and N is the number of samples per signal for a measurement of CIR.
Here, q represents a training sample index where q = {1, . . . , Q} and Q is the number of training data
for a CNN.
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Because the CNN can only take real-valued inputs, yi,q should be transformed into a real-valued
vector vi,q ∈ RN×1, whose nth element is the normalized absolute value of yi,q, i.e.,

vi,q[n] =

∣∣yi,q[n]
∣∣

max
m∈{1,...,N}

∣∣yi,q[m]
∣∣ , i ∈ {1, 2, 3}, q ∈ {1, . . . , Q}. (4)

The normalized absolute valued signals, i.e., {vi,q}, with N = 3600 are shown at the left subfigure in
Figure 2. The input M× (N/M) image matrix, Vi,q, for training the CNN at Rx-i is then generated by
reshaping this real-valued vector, vi,q, as follows:

Vi,q = mat[vq]M ∈ RM×(N/M), i ∈ {1, 2, 3}, q ∈ {1, . . . , Q}, (5)

where mat[·]M refers to a matricization operation with a column-major order and its dimension M.
This one-channel image is used as an input for the CNN-DE in the ranging phase.

The one-channel image is visualized as a monochrome image, as shown at the right subfigure in
Figure 2, where M = 60. Here, the pixels with a large value are brighter while those with a low value
have a darker value. Therefore, the large-amplitude multi-path components (MPC) and candidates of
the first arriving MPC correspond to the bright and moderately shaded pixels of the first few pixels
before the brightest pixel in each row, respectively. Considering that the two important parameters
related to the distance based on the estimated ToA are the first arriving MPC and the number of local
peaks before the global peak [25], it is evident that the patterns are closely related to the distance
between the Tx and Rx appear on the one-channel image. The one-channel image and the true distance
between the Tx and each Rx are then used in the training phase of CNN-DE.

0 1000 2000 3000 3600
0

0.2

0.4

0.6

0.8

1

1-Channel image for CNN-DE

Figure 2. Example of the input for CNN-DE training of Rx-i. Here, the input sequence vector
vi,q (the left subfigure) is generated from the received signals at Rx-i, and it has a length of 3600,
i.e., N = 3600. One-channel input image matrix Vi,q (the right subfigure) is 60× 60, i.e., M = 60.

As stated, one CNN is required for each Rx for the CNN-DE. The structure of one CNN of three
for CNN-DE is shown in Figure 3. The CNN consists of four convolutional layers for feature extraction
and a fully connected layer for ranging followed by one regression layer. The output of CNN is the
distance between a Tx and one of three Rx’s.

In the positioning phase, the location of Tx is estimated based on the least-square solution
of the localization problem using the estimated three distances obtained in the ranging phase.
The closed-form of the estimated location of Tx for the case of three Rx’s is represented as follows [15]:

x̂ = (HTH)−1HTb, (6)
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where

x̂ =

[
x̂
ŷ

]
, H =

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
, b =

1
2

[
x2

2 − x2
1 + y2

2 − y2
1 − d̂2

2 + d̂2
1

x2
3 − x2

1 + y2
3 − y2

1 − d̂2
3 + d̂2

1

]
, (7)

(x̂, ŷ) are the coordinates of the estimated location of Tx, and d̂i is the estimated distances between the
Tx and Rx-i. With this localization method, CNN-DE estimates the location of the Tx with the three
separately estimated distances indirectly.
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Figure 3. Structure of CNNs for the CNN-DE method. Each Rx requires CNN, and thus, three CNNs
are required for the CNN-DE method.

3.3. Proposed CNN-LE Method

In the proposed CNN-LE method, the position of a Tx is estimated directly without any positioning
phase, unlike the CNN-DE. Therefore, only one CNN can be employed at any of Rx’s or a data collection
center. To integrate the positioning phase to one CNN of the CNN-LE, however, additional input
image processing is required.

As shown in the left subfigure of Figure 4, the normalized absolute values of the three received
signals at Rx-1, Rx-2, and Rx-3, namely, v1,q, v2,q, and v3,q, can be represented by solid-red,
dashed-green, and dotted-blue lines, respectively. Here, the length of each sequence is 14,400,
i.e., four times the length of an input image of CNN-DE. Based on trilateration, which is the
most fundamental positioning technique, three normalized absolute values are transformed to a
three-channel RGB image as visualized at the right subfigure in Figure 4. The resolution of each
channel of the three-channel image for CNN-LE is then four times that of an input image of CNN-DE.
Here, the high-brightness vertical streaks hold a position in each channel closely related to the estimated
distances, d̂i, between a Tx and Rx-i. Therefore, it can be expected that the patterns related to the
positioning phase are included in the cross-correlation between the channels so that the CNN for the
CNN-LE method can estimate the location of Tx directly. To this end, the three 2D image matrices,
namely V1,q, V2,q, and V3,q, are combined to a three-channel 2D image input Vq ∈ RM×(N/M)×3. In the
proposed CNN-LE method, this three-channel RGB image Vq and the true location of the Tx are used
in the training phase of CNN-LE to directly estimate the location of Tx. The estimated coordinates(

x̂q, ŷq
)

of Tx are then the output of the CNN for CNN-LE.
The CNN structure used in CNN-LE is designed as shown in Figure 5. The designed CNN

includes ten convolutional layers with 3 convolutional filters and stride one for all filters. The number
of channels for the filters are 16, 16, 32, 32, 64, 64, 128, 128, 256, and 256, respectively. The size of the
filter, the number of strides, and the number of channels are denoted sequentially in the parenthesis,
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e.g., (3× 3, 1, 16) for the first convolution layer. As an activation function, the rectified linear unit
(ReLU) layers are followed by the first, third, fifth, seventh, and ninth convolution layers. For the
second, fourth, sixth, eighth, and tenth convolution layers, the batch normalization layers are included
between the convolution and ReLU layers. The max-pooling layers are after the second, fourth, sixth,
and eighth ReLU layers for down-sampling the convolutional layer output. The first and second
pooling layers have a 2× 2 pool each with stride two, whereas the third and fourth pooling layers have
a 3× 3 pool each with stride three, which are denoted sequentially in the parenthesis, e.g., (2 × 2, 2)
for the first max-pooling layer. After the last ReLU layer, i.e., the tenth ReLU layer, two fully connected
layers with the 256 and 2 units (outputs), respectively, are included to generate two inputs of regression
layers to estimates of x and y. A regression layer is located at the last of the network to compute the
loss by comparing the ground truth of location, i.e., (xq, yq), of the training data and the output of the
fully connected layer 2, where the loss is defined as a half-mean-squared-error as follows [26]:

loss =
1
4

Q

∑
q=1

(
(xq − x̃q)

2 + (yq − ỹq)
2
)

, (8)

where x̃q and ỹq are the network prediction from the qth training sample. The proposed CNN learns the
weights of the network to minimize the loss in (8) after training with Q training samples. The algorithm
of the proposed CNN-LE is summarized in Table 2 which is the localization procedure after the training
CNN, and thus the training index q is omitted.

0 2000 4000 6000 8000 10000 12000 14400

0

0.2

0.4

0.6

0.8

1

(a)

at Rx-1

at Rx-2

at Rx-3

1,q
V

2,q
V

3,q
V

(b)

Figure 4. Example of the input for CNN-LE training. Here, the input sequence vectors v1,q, v2,q,
and v3,q shown in (a) are generated from the received signals of Rx-1, Rx-2, and Rx-3, respectively.
Each sequence has a length of 14,400, i.e., N = 14,400. (b) Three-channel input images, namely,
V1,q ∈ R120×120, V2,q ∈ R120×120, and V3,q ∈ R120×120, are the input of the proposed CNN-LE,
where M = 120.

Table 2. Procedure of the proposed CNN-LE localization (excluding the training procedure and the
training index q is omitted).

Step Procedure

1 Collect the received signals y1(t), y2(t), and y3(t) in (3) from Rx’s 1, 2, and 3, respectively.
2 Generate the normalized and oversampled absolute sequence of the received signals, i.e., v1[n], v2[n],

and v3[n], from (4).
3 Generate three 2D images, i.e., V1, V2, and V3, from (5).
4 Generate the input of CNN-LE, i.e., V = [V1, V2, V3] ∈ RM×(N/M)×3.
5 Provide V to CNN-LE shown in Figure 5.
6 Obtain the estimation (x̂, ŷ) of the location (x, y) from the CNN-LE output.



Electronics 2020, 9, 1712 10 of 18

In
p

u
t 

la
y

e
r 

(1
2

0
, 

1
2

0
, 

3
)

R
e

LU
 l

a
y

e
r 

1

B
a

tc
h

 n
o

rm
a

li
za

ti
o

n
 l

a
y

e
r 

1

R
e

LU
 l

a
y

e
r 

2

M
a

x-
p

o
o

li
n

g
 l

a
y

e
r 

(2
x2

, 
2

)

C
o

n
v

o
lu

ti
o

n
 l

a
y

e
r 

2
 (

3
x3

, 
1

, 
1

6
)

F
u

ll
y

 c
o

n
n

e
ct

e
d

 l
a

y
e

r 
2

 (
2

 u
n

it
s)

R
e

g
re

ss
io

n
 l

a
y

e
r

F
u

ll
y

 c
o

n
n

e
ct

e
d

 l
a

y
e

r 
1

 (
2

5
6

 u
n

it
s)

R
e

LU
 l

a
y

e
r 

3

B
a

tc
h

 n
o

rm
a

li
za

ti
o

n
 l

a
y

e
r 

2

R
e

LU
 l

a
y

e
r 

4

M
a

x-
p

o
o

li
n

g
 l

a
y

e
r 

2
 (

2
x2

, 
2

)

C
o

n
v
o

lu
ti

o
n

 l
a

y
e

r 
3

 (
3

x3
, 

1
, 

3
2

)

C
o

n
v

o
lu

ti
o

n
 l

a
y

e
r 

4
 (

3
x3

, 
1

, 
3

2
)

R
e

LU
 l

a
y

e
r 

7

B
a

tc
h

 n
o

rm
a

li
za

ti
o

n
 l

a
y

e
r 

4

R
e

LU
 l

a
y

e
r 

8

M
a

x-
p

o
o

li
n

g
 l

a
y

e
r 

4
 (

3
x3

, 
3

)

C
o

n
v

o
lu

ti
o

n
 l

a
y

e
r 

7
 (

3
x3

, 
1

, 
1

2
8

)

C
o

n
v

o
lu

ti
o

n
 l

a
y

e
r 

8
 (

3
x3

, 
1

, 
1

2
8

)

R
e

LU
 l

a
y

e
r 

9

B
a

tc
h

 n
o

rm
a

li
za

ti
o

n
 l

a
y

e
r 

5

R
e

LU
 l

a
y

e
r 

1
0

C
o

n
v
o

lu
ti

o
n

 l
a

y
e

r 
9

 (
3

x3
, 

1
, 

2
5

6
)

C
o

n
v

o
lu

ti
o

n
 l

a
y

e
r 

1
0

 (
3

x3
, 

1
, 

2
5

6
)

B
a

tc
h

 n
o

rm
a

li
za

ti
o

n
 l

a
y

e
r 

3

R
e

LU
 l

a
y

e
r 

6

M
a

x-
p

o
o

li
n

g
 l

a
y

e
r 

3
 (

3
x3

, 
3

)

C
o

n
v
o

lu
ti

o
n

 l
a

y
e

r 
6

 (
3

x3
, 

1
, 

6
4

)

One 3-channel image

Location

for training

( , )
q q
x y

R
e

LU
 l

a
y

e
r 

5

C
o

n
v
o

lu
ti

o
n

 l
a

y
e

r 
5

 (
3

x3
, 

1
, 

6
4

)

C
o

n
v

o
lu

ti
o

n
 l

a
y

e
r 

(3
x3

, 
1

, 
1

6
)

ˆ ˆ( , )x y

2,

(N/M) 3

3, ,1{ , , }

    R

qqqq

M´ ´

=

Î

VVV V

Figure 5. CNN model for the CNN-LE method. Only one CNN is required for the proposed CNN-LE
method. The CNN can be implemented at any of three Rx’s.

4. Simulation Results

In this section, the localization performance of the propsed CNN-LE is evaluated by using MATLAB
R2020a. In simulation, 40,000 input signals were generated to simulate ToA-based, CNN-DE, and CNN-LE
methods. Three-quarter input signals were used for training and one-quarter signals were set for
cross-validation in both conventional and proposed CNN-based localization methods. The sampling
frequency fs was fixed at 24 GHz. The parameters of CMs listed in Table 1 follow them in [22]. The area
setup for the simulation is illustrated in Figure 1 with three Rx’s placed at (0, 0),

(
D1
2 , D2

)
, and (D1, 0)

respectively. For the input size, N and M were set to 3600 and 60, respectively, implying that the input
image sizes for CNN-DE and CNN-LE were 60× 60 and 120× 120 pixels, respectively.

The differences in the CNN for CNN-DE and CNN-LE are listed in Table 3, and the training
options for each CNN-based localization are presented in Table 4, where SGDM denotes the stochastic
gradient descent with momentum algorithm. Throughout the extensive simulations, the number of
training samples and training options are selected to ensure the optimal result. The localization RMSE
is used as a performance metric that is calculated as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

[
(xt − x̂t)

2 + (yt − ŷt)
2
]
, (9)

where T is the number of test samples, (x̂t, ŷt) and (xt, yt) are the estimated and true coordinates of Tx
location of the tth test sample in meters, respectively.

Although localization for UWB systems is more suitable for indoor environments owing to the
robustness against the multipath effect and NLoS by the blockage, we perform simulations for both
indoor and outdoor CMs to check whether the proposed CNN-based localization could estimate the
accurate location of Tx regardless of CMs.

Three main experiments are conducted. Each experiment examines the effect of the SNR,
area size, and asymmetry of the area on the localization accuracy. In each experiment, we compare
the localization accuracy of the estimated ToA-based localization, CNN-DE, and CNN-LE. We also
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analyze the results based on certain channel parameters [25] to specify the suitable environments
and requirements for the localization system. Subsequently, we examine whether the CNN of
CNN-LE that was trained for a specific CM can work well in other CM to determine the possibility of
trans f er learning to reduce the learning time, which is a disadvantage of the proposed method.
The CNN of CNN-LE that is trained with the CM# data will be referred to as CM#-NET with
# ∈ {1, . . . , 9}.

Table 3. CNN model parameters.

Parameters CNN-DE CNN-LE

Number of input layers 1 1
Number of convolutional layers 4 10
Number of batchnorm layers 4 5
Number of ReLU layers 4 10
Number of max-pooling layers 3 4
Number of fully connected layers 1 2
Number of regression layers 1 1

Number of total layers 18 33

Table 4. CNN training options and time complexity results.

Options CNN-DE CNN-LE

Solver SGDM SGDM
Initial learn rate 0.001 0.02
Gradient threshold infinite 1
Learn rate drop period 1 2
Learn rate drop factor 0.9 0.9
Shuffle every epoch every epoch
Max epoch 30 30
Mini batch size 200 200
Validation frequency (iterations) 50 100

Number of epochs to converge 19 29
Training time 2 min 16 min
Localization time 2.2 s 6.1 s

Using a computer with 3.6-GHz CPU and 32-GB RAM, the proposed CNN-LE required eight and
three times longer training and localization times, respectively, compared to a conventional CNN-DE
method. The time complexity increase of the proposed method comes from the fact that the training
image and CNN structure of the proposed CNN-LE is relatively greater than that of the conventional
CNN-DE method.

4.1. Performance with Respect to SNR

In the simulations with respect to the SNR, the area size is fixed to 20× 20 m2. Figure 6 shows the
localization accuracy i.e., RMSE, comparison for the ToA-based localization, CNN-DE, and proposed
CNN-LE with respect to the SNR. For all CMs and SNRs, the proposed CNN-LE outperforms other
methods. It achieves the RMSE below 1 m in CM3 (Office LoS environment) and CM7 (Industrial LoS
environment) when SNR is greater than 10 dB, which is the required performance for highly accurate
indoor localization systems. Generally, the RMSE decreases as the SNR increases for all methods and
channels. This is because the signals with higher SNR are significantly robust against the additive
white Gaussian noise and path loss, which clarifies the patterns related to the distance to ensure that the
CNN can learn these patterns efficiently. For the LoS CMs (i.e., CM1, CM3, and CM7) and NLoS CMs
(i.e., CM2, CM4, and CM8), a slight performance gap is observed, except the suburban environments
(i.e., CM5 and CM6). These general results over the LoS and NLoS CMs can be attributed to the good
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penetration property of UWB signals. The most significant difference between CM5 and CM6 is the
average energy of the first arrived MPC [25]. As mentioned in Section 3.2, one of the important channel
parameters for ranging is the first arrived MPC, specifically the average energy of the first arrived
MPC. The severe decrease in the first arrived MPC introduced by NLoS is shown in CM6, resulting in
severe degradation of localization accuracy in the suburban NLoS channels.
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Figure 6. RMSE (y-axis) performance across SNR (x-axis). CM# data is used for both training and test.

For the outdoor and indoor CMs, the increase in improvement by the SNR is more evident in
the indoor CMs than the outdoor CMs except for CM1 and CM2, which are the residential CMs.
The significant difference between the residential and other indoor CMs lies in the number of local
peaks. The average channels of the input image for CM1 and CM3 are represented in Figure 7.
As shown in Figure 7, the local peaks of CM1 corresponding to bright streaks are distributed over
the input image, resulting in complicated patterns. In contrast, clear patterns appeared in CM3,
which can be utilized by CNN for efficient operations. This result of severe multipath effect implies
that additional input image preprocessing, such as the peak-detection algorithm [27], can be required
for residential environments. Moreover, some remarkable improvements were observed. For examples,
there is approximately 3.8 m average RMSE improvement below 10 dB SNR; 1.05 m average RMSE
improvement between 10 dB and 20 dB SNRs in CNN-LE method for indoor CMs. Thus, we can use
10 dB as the target SNR for the implementation of CNN-LE.

The most remarkable result is that a CNN trained for a specific indoor CM can perform well in
other indoor CMs, and a similar tendency could be observed for outdoor CMs. For example, CM3-NET
performs well in other indoor CMs; CM6-NET and CM9-NET exhibit good performance when their
CMs are interchanged as shown in Figure 8. From these results, we can surmise that transfer learning
can be employed to reduce the learning time.
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(a) CM1 (b) CM3

Figure 7. Average input images with emphasized contrast through a monochrome image. (a) CM1.
(b) CM3.

0 10 20 30
2

4

6

8

R
M

S
E

 (
m

)

CM1 test data

0 10 20 30

4

6

8

10 CM2 test data

0 10 20 30
0

2

4

6

8
CM3 test data

0 10 20 30
0

2

4

6

R
M

S
E

 (
m

)

CM4 test data

0 10 20 30
0

2

4

6

CM5 test data

0 10 20 30
6

8

10

CM6 test data

0 10 20 30
SNR (dB)

0

5

10

R
M

S
E

 (
m

)

CM7 test data

0 10 20 30
SNR (dB)

0

5

10 CM8 test data

0 10 20 30
SNR (dB)

6

7

8

9
CM9 test data

CM1-NET

CM2-NET

CM3-NET

CM4-NET

CM5-NET

CM6-NET

CM7-NET

CM8-NET

CM9-NET

Figure 8. RMSE (y-axis) across SNR (x-axis). CM#-NET is a CNN that is trained by using data generated
under CM# model. CM#-NET is tested with various CMs.

4.2. Performance with Respect to Map Size

Considering that the localization methods for the UWB system mainly operate in indoor environments,
30 dB SNR in this simulation is reasonable. Figure 9 illustrates the RMSE of the compared systems,
namely ToA-based, CNN-DE, and the proposed CNN-LE method. Generally, the RMSE increases as
the size of the area increases for all methods and CMs. The increase in the RMSE is expected because
a larger average distance between Tx and each Rx results in a larger path loss. Correspondingly,
increasing the area of localization yields a similar effect as decreasing the SNR.

Figure 10 shows the RMSE of each CM#-NET when a CM#-NET is applied to each CM test data
with respect to the area size. Similar to the results in Section 4.1, the CM#-NETs trained in indoor
and outdoor CMs work well in both environments. Especially, CM3-NET exhibits good localization
performance for other indoor CMs. Therefore, we can start training the CNN using CM3-NET with the
CM3 training data and utilize transfer learning to train the CNNs of other indoor CMs.
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Figure 9. RMSE (y-axis) across the area size (x-axis, D1 = D2). CM# data is used for both training and test.
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Figure 10. RMSE (y-axis) across the area size (x-axis, D1 = D2). CM#-NET is a CNN that is trained by
using data generated under CM#. The CM#-NET is tested with various CMs.

4.3. Performance with Respect to Asymmetry of the area

In Figure 11, RMSEs are evaluated when the ratio of D2 to D1, i.e., γ, varies while the SNR and
area size are fixed at 30 dB and 225 m2. For the given area size, the simulations are performed for
three different γ values 0.36, 0.64, and 1 for all CMs. The RMSEs across all CMs are represented in
Figure 11. The most noticeable observation from this result is as follows: As the symmetry of the
area decreases, the localization performance of the CNN-DE degrades, whereas that of the proposed
CNN-LE is almost stable. From these results, we see that CNN-DE is influenced by the shape of an
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area: therefore, the CNN-DE could not work properly in some asymmetric environments, such as
a corridor and container. On the other hand, we can surmise that the proposed CNN-LE operates
properly irrespective of the shape of the area. Instead, the dominant factor in the localization accuracy
of the proposed CNN-LE is the area size.
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Figure 11. RMSE (y-axis) across the γ (x-axis) for an area of 225 m2. CM# data is used for both training
and test.

Figure 12 shows the RMSEs of each CM#-NET when a CM#-NET is applied to each CM test data
with respect to γ for each area size. Similar to the results presented in Section 4.1, the CM#-NETs trained
in indoor and outdoor CMs work well in other indoor and outdoor models, respectively. Therefore,
a reduction in the learning time can be expected by implementing a transfer learning method.
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using data generated under CM#. The CM#-NET is tested with various CMs.
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5. Conclusions

In this study, we introduced a novel CNN-based localization method for UWB systems.
Typical ranging and positioning phases for the localization were integrated and performed by the
proposed CNN simultaneously. To train the CNN, RGB image data was constructed from three
received signals. Localization performance was evaluated in terms of RMSE over various SNR
conditions and CMs. From the rigorous numerical comparison, it was verified that the proposed
CNN-based localization method outperforms the traditional ToA-based localization method and the
recent CNN-based localization method that performs only a ranging phase with a separate positioning
phase. Compared to the existing methods, the proposed CNN-based localization method achieved
significant performance improvement, especially under the indoor CMs, where the UWB systems
mainly operate. Furthermore, the proposed CNN-based localization was robust against the shape of
the area where the target transmitter locates. The benefit of the proposed CNN-based localization
can be achieved at the cost of the computational complexity for the training with oversampled
data. There are various interesting future research topics, e.g., (i) reducing the computational
complexity of the proposed CNN-based localization method, (ii) localization of multiple transmitters,
and (iii) localization in three-dimensional space.
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Abbreviations

The following abbreviations are used in this manuscript:

AoA Angle-of-Arrival
CIR Channel Impulse Response
CM Channel Model
CM-NET Channel Model Network
CNN Convolutional Neural Network
CNN-DE Convolutional Neural Network-based Distance Estimation
CNN-LE Convolutional Neural Network-based Location Estimation
CSI Channel State Information
DNN Deep Neural Network
LoS Line-of-Sight
LSTM Long-Short-Term-Memory
MPC Multi-Path Components
NLoS Non-Line-of-Sight
PDP Power Delay Profiles
ReLU Rectified Linear Unit
RFID Radio Frequency Identification Device
RGB Red-Green-Blue
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RSS Received Signal Strength
SGDM Stochastic Gradient Descent with Momentum
SNR Signal-to-Noise Ratio
ToA Time-of-Arrival
UWB Ultra Wideband
Wi-Fi Wireless Fidelity
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