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Abstract: A novel motor fault diagnosis using only motor current signature is developed using a
frequency occurrence plot-based convolutional neural network (FOP-CNN). In this study, a healthy
motor and four identical motors with synthetically applied fault conditions—bearing axis deviation,
stator coil inter-turn short circuiting, a broken rotor strip, and outer bearing ring damage—are tested.
A set of 150 three-second sampling stator current signals from each motor fault condition are taken
under five artificial coupling loads (0, 25%, 50%, 75% and 100%). The sampling signals are collected
and processed into frequency occurrence plots (FOPs) which later serve as CNN inputs. This is
done first by transforming the time series signals into its frequency spectra then convert these into
two-dimensional FOPs. Fivefold stratified sampling cross-validation is performed. When motor load
variations are considered as input labels, FOP-CNN predicts motor fault conditions with a 92.37%
classification accuracy. It precisely classifies and recalls bearing axis deviation fault and healthy
conditions with 99.92% and 96.13% f-scores, respectively. When motor loading variations are not used
as input data labels, FOP-CNN still satisfactorily predicts motor condition with an 80.25% overall
accuracy. FOP-CNN serves as a new feature extraction technique for time series input signals such as
vibration sensors, thermocouples, and acoustics.

Keywords: fault diagnosis; frequency occurrence plot; convolutional neural network; motor loading;
current signal; FOP-CNN; bearing fault; short circuit fault

1. Introduction

Prognostics and health management (PHM) has modernized the industry in terms of equipment
reliability, attracting both academia and industry practice [1]. In the PHM strategy, diagnostics and
prognostics are two important mechanisms applied in machine condition-based maintenance. A diagnostic
mechanism detects, isolates, and identifies the present machine condition. Driven primarily by machines
such as motors and generators, modern industries have been improved by advance diagnostics such as
better preventive maintenance, improved safety and increased reliability [2]. Deep learning, an emerging
branch of artificial intelligence (AI), has been playing an important role in this PHM modernization.

For prognostics and the health management of machines, bearing fault diagnosis is one of the
well-known applications of deep learning (DL). The recent survey in [3] and the review in [4] provide
comprehensive assessments of different state-of-the-art DL-based machine health monitoring systems
applied to bearing fault diagnostics. These systems vary by their different settings; thus, there is always
the need to provide alternatives to help AI practitioners choose the best-suited algorithm.

Feature selection is one of the primary concerns for effective deep learning (DL) applications.
Vibrations or acoustic signals tend to be widely used features in bearing fault diagnosis [4–6]. Various
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deep learning algorithms have been developed for feature extraction. A widely known convolutional
neural network has recently evolved into different variants such as the convolutional neural network
and convolutional discriminative feature learning [7,8], the discriminative deep belief network [9,10],
the convolutional bi-directional long short-term memory (LSTM) network [11], and the ensemble
deep convolutional neural network [12]. Deep neural networks with unsupervised learning based on
auto-encoders [13] and recurrent neural networks [14] have also been developed for machine health
monitoring. Other than vibration or acoustic signal signature features, motor current analysis [15–17]
and thermographic images [18–21] are also considered and employed, showing practically good
performances. Their feature combinations, such as vibration and current signals [22], are also studied.
For practical application, practitioners may not prefer vibration features due to the long-term problem
of installing physical sensors. Thermographic devices are also relatively expensive. Thus, the stator
current signal seems to be an attractive feature due to its easy installation, more reliable data collection,
and the fact that it is comparatively cheaper.

Analyzing timer series data such as vibration and stator current signals uses various feature
preprocessing methods. Digital signal processing (DSP) techniques such as wavelet transformation [23–25],
frequency spectral analysis [26–28], empirical mode decomposition (EMD) [29–31], Hilbert–Huang
transform [32–34], and combined Hilbert and wavelet transform [35,36] have been used for different
motor faults, especially for non-DSP practitioners. Frequency transformation, though, tends to be the
simplest tool to analyze time series data diagnosis schemes. However, these techniques are selected
and configured manually, meaning that they may prove difficult to use.

Recurrence plots are widely used for the analysis and visualization of complex and dynamic
systems [37]. Recently, a study [38] reviewed, from the last two decades, the application of recurrence
plots in various areas. It was found that this simple recurrence plot technique can represent the
dynamic characteristics behind music pieces [39]. A similar plotting scheme is used in this study,
using frequency spectra instead of time series signals.

A new method for detecting motor faults is proposed based on frequency occurrence plots
and deep learning. The remaining sections of this study are as follows: Materials and Methods,
Deep learning Implementation, Results and Discussion, and Conclusion.

2. Motor Dataset

A three-phase 220-V, 2-HP, 4-pole, 1720-rpm squirrel-cage induction motor is used as the test
motor for data collection. Table 1 shows the actual motor specifications. A set of 150 three-second
healthy motor current signals is collected from this healthy motor, with a sampling frequency of
10,000 Hz. The motor is sampled under five coupled loading variations (0, 25%, 50%, 75% and 100%
loads). Another four similar motors are prepared under the same data collection to generate data
for four motor fault conditions. With similar motor specifications, these motors are synthetically
manipulated to simulate artificial faults, namely bearing axis deviation, stator winding inter-turn short
circuiting, a broken rotor strip, and outer ring bearing damage.

Table 1. Test motor specification.

Label Parameter/Value

Type AEEF-90-4 Induction motor
Output 2 HP

Pole 4
Insulation E

Volt 220/380 V
Amp 7 A
r.p.m 1450/1720

Duty type S1
Cycle (Hz) 50/60
Connection delta low voltage/ wye high voltage

Manufacturer TW-141221 Tai Wei Electric Factory., Ltd.
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2.1. Synthetic Motor Fault Conditions

There are four typical motor fault conditions—bearing axis misalignment, inter-turn short
circuiting, a broken rotor strip and an outer ring bearing fault—synthetically applied in four respective
test motors.

2.1.1. Bearing Axis Misalignment

The bearing axis deviation fault happens when a motor is eccentrically coupled to its load.
Improper installation, changes or damage to motor bases cause the motor shaft to misalign with the
coupling load. Similar to [40], an artificially created eccentricity misalignment experiment with an
elevation of 0.5 mm, as illustrated in Figure 1a, is also used to simulate this fault.
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2.1.2. Stator Inter-Turn Short Circuiting

The aging insulation of the stator coil due to the long operation period of motors is often believed
to be the primary reason for motor overheating. In severe cases, it causes short-circuits between turns
of the same phase or even in different phases. To simulate this motor stator turn-to-turn short circuit
fault, two adjacent turns of the stator winding of a test motor are intentionally short-circuited by
breaking their insulation and allowing them to make contact, as shown in Figure 1b.

2.1.3. Broken Rotor Strip Fault

Excessive current due to long-term overloading is often seen as the reason of a broken rotor
strip fault. This fault is synthetically simulated by drilling directly into one side of the rotor bar
similar to [41]. Taking into consideration its serious impact to the motor, the first drill underwent an
experimental detection. After checking that the motor is still running well, a second drill is performed
as shown in Figure 1c.

2.1.4. Outer Ring Bearing Fault

Lastly, outer ring damage is a common bearing fault. This bearing fault increases machine
vibration whenever a bearing ball passes over a damaged area [42]. In this simulation, a hole is drilled
in the outer ring of a test motor. Electrical conducting heat is applied to the hole, making sure that its
residue is removed and no physical deformations are present after drilling, as shown in Figure 1d.

2.2. Data Collection

The experimental simulation of previous test motors produces a total of 3750 time series data
from 150 three-second current signals of five motor conditions under five loading variations. A set
of three full-cycle sample waves of current signals plotted in Figure 2 shows five motor conditions
under three different motor loadings. It can be observed that the healthy motor upper-bounded all
other fault-conditioned motors in terms of current magnitude in all three motor loadings. This may be
because healthy motors have less energy dissipation than faulty motors.
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Figure 2. Three-cycle time series samples of stator current signal from five motor conditions with three
loading variations—0%, 50% and 100% coupled loading.

3. Data Preprocessing

With the generated raw motor data, two data processing techniques are used before learning.
First, a signal data transformation, from the time domain to the frequency spectrum, is performed
using a frequency transformation. Second, novel frequency occurrence plot (FOP) image generation is
employed to convert the frequency spectra into FOPs. These plots will then serve as inputs for the
convolutional neural network (CNN) model.

3.1. Fast Frequency Transform

Fourier analysis is a widely known tool when converting a time series signal into frequency spectrum
representation, and vice versa. It has a form called discrete-time Fourier transform (DTFT) that analyzes
discrete-time samples whose intervals have units of time. Given a sampling signal X( j), j = 0, 1, . . . , N− 1
with N sampling points, a sequence in (1), as a function of frequency n, gives the complex Fourier
amplitudes. The expression in (2) is a principle Nth root of unity in a complex Fourier series. For this
motor digital signal application, this DTFT is employed using discrete Fourier transform (DFT).

A(n) =
1
N

N−1∑
n=0

X( j)W− jn
N (1)

WN = e2πi/N (2)

Fast Fourier transform (FFT) is simply an algorithm that performs DFT [43]. With the previously
generated time series motor current signals, FFT is used to transform these into frequency spectra.
An example of a frequency spectrum of a healthy motor signal is shown in Figure 3. FFT is performed
using SciPy library [44] to convert the time series data into the frequency spectrum. Three data
preprocessing techniques are performed to avoid potential noise and to ease the learning process of the
proposed fault classification system.

First, data clipping helps truncate the converted data within the 0–500 Hz range. It was assumed
here that all motor faults would not operate beyond 500 Hz. Increasing the frequency range decreases
the FOP image resolution, which may give a poor CNN classification performance. Second, a 90%
percentile clipping is performed to change the magnitude of less significant frequencies into zero,
thus avoiding possible noise. Finally, the magnitude of the operating frequency (60 Hz) and its side
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band frequencies (around 59–61 Hz) are far greater than the other modal frequencies; thus, a log
function normalization is performed. Figure 4 plots a sample of a pre-processed healthy motor
condition dataset of frequency spectra.
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The presence of other frequencies with noticeable amplitudes is often believed to have been
caused by motor faults. Identifying these frequencies for each motor fault type is most likely difficult
due to the complex frequency spectra, as perceived in Figure 5. Accordingly, differences among five
motor conditions can be observed, but these seem difficult to distinguish simply by using human
visual recognition.

3.2. Frequency Occurrence Plots

Let metric space M be defined and let A(i) ∈ M denote the ith point of the previously defined
frequency spectrum A. A frequency occurrence plot is defined in (3) where the spectrum A(i) = A( j).

FOP(i, j) =
(
A(i) −A( j)T

)
/ε (3)

Here, ε is the mapping resolution, which scales the difference of two identical signals in the ith
row and jth column. The matrix FOP(i, j) are transformed into a color map. This initially normalizes
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and scales the data, then maps it into an RGB color map using the Matplotlib library [45]. Thus, ε has
no effect in the color mapping, but is useful for visualization purposes. After a series of trials, we use
ε = 0.001 which produces distinctive occurrence plots.
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Figure 6 displays a sample illustration of how a frequency occurrence plot (FOP) is produced
from a sample in the range of the 500 Hz frequency spectrum. Each plot has a 217 × 217 resolution.
Brightly colored lines, vertically and horizontally, represent higher magnitude in the frequency spectrum.
Accordingly, the motor operating frequency at 60 Hz has the brightest color. The other bright line
represents other frequencies with significant magnitudes, which may have been caused by different
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4. Deep Learning Implementation

A convolutional neural network (CNN), a powerful deep learning tool for image recognition,
is used to learn and classify faults from the generated FOPs in this study. Initially, FOPs are converted
into three images, each representing its red, green, and blue (RGB) color features with the same image
size. These serve as initial inputs for a CNN model.

4.1. Convolutional Neural Network

The architecture of the employed sequential-based CNN is shown in Figure 7. The CNN
model initially inputs three extracted color images from the original FOP. It has various stages such
as convolution, max pooling, dense, flatten, and dropout that lead to its final fault classification.
Convolution layers use a filter matrix to obtain convolved feature maps by performing convolution
operations over an array of input image pixels. On the other hand, the max pooling layer applies
a moving two-dimensional window to the incoming matrix and outputs its maximum value to
down-sample it, reduce its dimension and generalize its internal feature. We use a 2 × 2 window for
two max pool layers, thus reducing their output by half. The dense layer is simply a linear operation
where each input is connected to every output with weights. The first dense layer has a huge number
of output units, so dropout was performed. Flattening, which is simply a method of linearizing a
two-dimensional array, was also used. Dropout is a popular and well-known regularization technique
that reduces the risk of overfitting. It is applied and tuned in different values per layer. Finally,
another dense layer is added, which serves as its output layer. Here, five output units represent five
motor conditions.Electronics 2020, 9, x FOR PEER REVIEW 8 of 18 
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This model is trained under batch gradient descent and the Adam optimizer. For epoch
optimization, the Adam optimizer is a widely used optimization method for deep learning applications
and is favorably chosen over other stochastic optimization methods [46].

4.2. Supervised Learning

The supervised learning of CNN is summarized in Figure 8. There are five steps performed in
this implementation—model selection, model training and testing, model performance comparison,
test scenarios, and performance validation.

4.2.1. Model Selection

First, the CNN model architecture and its hyper-parameters are chosen during the model selection,
based on the brute-force method. This manual selection is still a limitation of this study because finding
its optimal value tends to be computationally expensive and complex.

4.2.2. Model Training and Testing

Simultaneously, the FOPs generated from the previous section are split into training and testing
datasets. Using the selected model parameters, model training is first performed by learning the patterns
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and features from the training FOPs and evaluating their training performance. Then, another set
of FOPs, also called testing FOPs, test the trained CNN model, and evaluate its testing performance.
In the third stage, a comparison between training and testing performances is performed to observe the
presence of overfitting.
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4.2.3. Model Performance Evaluation

The supervised training and testing of CNN are evaluated using training and testing datasets,
respectively. There are two typical modes of evaluation. First, the loss function of the CNN model is
determined, usually in the form of a loss of function graph. This measures the consistency between the
predicted value and actual label of the input FOPs during the training phase based on the theoretical
functions used by CNN. The robustness of the model increases as the loss value decreases. To determine
whether the model has overfitting issues, we also consecutively determine the loss function of the testing
dataset and compare it with the loss function of the training dataset in every epoch. Categorical cross
entropy (CCE) is commonly used and is shown to have a robust performance, even with synthetically
generated noisy labels [47].

Accuracy =
Number o f correctly classi f ied FOPs

Total number o f FOPs
% (4)

F score = 2×
precision× recall
precision + recall

(5)

Second, the classification performance accuracy in (4) is used to determine the model prediction
accuracy. To further evaluate its performance in terms of positive and false negative classification,
the F-score in (5) is also used. In addition, a confusion matrix provides a visualization of each
classification performance.

4.2.4. Test Scenarios

A motor usually operates in different loading conditions throughout its whole operation. In actual
practice, monitoring motor load values may have practical applications for a company. This study thus
simulates two test scenarios. First, a simulation is performed when motor loading condition is available.
Five separate train–test CNN models are simulated, corresponding to the five motor loading conditions.
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Each model is simulated using 600 and 150 frequency occurrence plots (FOPs) for training and testing
simulations, respectively. All five CNN models are combined into a single, generalized model.

Another case is performed when the motor loading condition is assumed to be unavailable.
Only one CNN model, using the entire dataset at once, is learned, without data labeling, based on
motor loading conditions. A total of 3750 frequency occurrence plots (FOPs) are used. It only learns
3000 and 750 FOPs for training and testing simulations, respectively. Both cases have similar partitions
and equal numbers of FOPs.

4.2.5. Performance Validation

Testing datasets are used to evaluate the same model chosen from the previous step. To avoid
model bias, each testing dataset is completely different from its training dataset. After testing,
the testing performance is compared with the previous training performance. This is repeated via
fivefold cross-validation with stratified sampling data partition, as shown in Figure 9.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18 

 

Algorithm 1. Frequency occurrence plot-based (FOP)-CNN pseudocode implemented in Python 
programming language. 
Step No. Function 

1 # initialization 
 import libraries 
 load motor current time series signal 
2 # data preprocessing 
 perform Fast Fourier Transform 
 data statistical treatment 
 frequency spectrum truncation 
3 # frequency occurrence plot (FOP) 
 color-mapping of the frequency spectrum to generate FOPs 
4 # data partitioning 
 splitting of FOPs dataset into n = 5 sets of training & testing datasets with 4:1 ratio  
5 # model selection and training 
 for i = 1: n 
 training of CNN using train FOP datasets 
 determine train loss function 
6 # model training and validation 
 testing of CNN using test datasets 
 determine test loss function 
7 # model overall performance evaluation 
 measure average classification accuracy 
 measure average f-score, precision, and recall 

Figure 10 shows a matrix of FOPs where all five motor fault conditions under five different 
loading conditions are compared. A motor operating frequency of 60 Hz with its sidebands is 
noticeable in all graphs, since all test motors have identical specifications. The healthy motor seems 
to have the clearest plots, while the rotor coil turn-to-turn and outer ring bearing damage faults tends 
to share similar messy plots. In addition, it can be observed that there are variations in the occurrence 
plots for each motor fault condition under different motor loadings. For example, the healthy motor 
tends to have a clearer plot when it is under no load or a full load. Similar observations can be made 
for bearing axis misalignment (Fault 1). Motors with other fault conditions tend to be messy at any 
loading condition. A smoother plot is expected for the healthy motor condition. 

 
Figure 9. Five sets of cross-validation stratified sampling data partitions. Figure 9. Five sets of cross-validation stratified sampling data partitions.

The frequency occurrence plot based convolutional neural network (FOP-CNN) algorithm is
developed as shown in Algorithm 1. The FOP-CNN core is built primarily in Keras, an open-source
neural network Python library [48]. The scikit-learn platform in [49] is used to implement the performance
evaluation. In this second stage, the motor current signal data undergo signal transformation.

Algorithm 1. Frequency occurrence plot-based (FOP)-CNN pseudocode implemented in Python
programming language.

Step No. Function

1 # initialization
import libraries

load motor current time series signal
2 # data preprocessing

perform Fast Fourier Transform
data statistical treatment

frequency spectrum truncation
3 # frequency occurrence plot (FOP)

color-mapping of the frequency spectrum to generate FOPs
4 # data partitioning

splitting of FOPs dataset into n = 5 sets of training & testing datasets with 4:1 ratio
5 # model selection and training

for i = 1: n
training of CNN using train FOP datasets

determine train loss function
6 # model training and validation

testing of CNN using test datasets
determine test loss function

7 # model overall performance evaluation
measure average classification accuracy

measure average f-score, precision, and recall
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Figure 10 shows a matrix of FOPs where all five motor fault conditions under five different loading
conditions are compared. A motor operating frequency of 60 Hz with its sidebands is noticeable in all
graphs, since all test motors have identical specifications. The healthy motor seems to have the clearest
plots, while the rotor coil turn-to-turn and outer ring bearing damage faults tends to share similar
messy plots. In addition, it can be observed that there are variations in the occurrence plots for each
motor fault condition under different motor loadings. For example, the healthy motor tends to have a
clearer plot when it is under no load or a full load. Similar observations can be made for bearing axis
misalignment (Fault 1). Motors with other fault conditions tend to be messy at any loading condition.
A smoother plot is expected for the healthy motor condition.Electronics 2020, 9, x FOR PEER REVIEW 11 of 18 
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4.2.6. Computer Simulation Specifications

This supervised train–test simulation is performed in an Intel(R) Core (TM) i5-4590 CPU processor
at 3.30 GHz with 16 GB of RAM installed memory. Since this study is concerned with supervised
learning, computational speed is not the primary objective and can be sped up with newer specifications.

5. Results and Discussion

The CCE loss functions of five models according to five motor couple loadings are shown in
Figure 11a–e. All five models tend to converge to a CCE loss value less than 0.25 at each epoch.
The presence of early convergence occurred in some runs in the early epochs. Applying dropouts help
the model to get away from early convergence, which is often believed to be caused by local optimum
convergence. On the other hand, when the motor loading condition is not used as an input label,
the model in Figure 12 tends to converge at a slightly higher loss value of 0.50 after five cross-validation
runs. All of the models are still converging, but training them further seems to produce no significant
changes in their performances and will only lead to a greater risk of overfitting.

Figure 13a shows the average loss function difference between the combined five models when
the motor loading condition is used as an input label, and the model when the motor loading condition
is not used. It is evident that FOP-CNN tends to predict better than when the load condition is not
used. Figure 13b also presents their classification performances. This average classification accuracy
graph of both cases shows similar converging performances. Both cases have identical FOP-CNN
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parameters as shown in Table 2. Furthermore, this further verifies the observed graphical differences
across motor loading conditions (see Figure 10). Simulating separate models, as performed in the first
case model, may have avoided the difficulty caused by these differences. However, both cases still
reach practical accuracies of 92% and 80%, respectively.
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Figure 11. Five train–test categorical cross entropy (CCE) loss function graphs (a–e) of five motor
loading conditions, respectively, with five train–test runs of cross-validation.
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Figure 12. CCE loss graph with five train-test runs of cross-validation for the second case when motor
load condition is ignored as input label.
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Figure 13. (a) An average loss function graph of two FOP-CNN case models when motor loading
condition is used (Case A), and when it is not (Case B); (b) an average classification graph of two
FOP-CNN case models when motor loading condition is used (Case A), and when it is not (Case B).

Table 2. FOP-CNN Hyper-parameters.

Batch Size Epochs Dropout 1 Dropout 2 Dropout 3 Dropout 4

Test data size 30 25 30 30 40

The classification reports of both cases are also taken. Each motor fault condition has 150 balance
data. The first case model can classify bearing misalignment (Fault 1) with perfect recall (100%) and
almost perfect precision (99.88%), as shown in Table 3. This seems intuitive since the energy loss
caused by this fault has a direct effect on the motor’s current signature. It also precisely classifies
healthy motors with 100% precision, and has little difficulty in recalling other faults with 92.22% recall.
Two motor fault conditions—stator inter-turn fault (Fault 2) and broken rotor strip (Fault 3)—both have
particularly good performances, with F-scores greater than 87.70% and 94.74%, respectively. However,
outer bearing ring damage (Fault 4) performs the worst, with an F-score of 83.38%. When predicting
Fault 4, there is a strong confusion in terms of predicting it as Fault 2, as shown in the confusion matrix
of Figure 14a. Compared to other motor fault conditions, this fault may prove difficult to predict using
FOP-CNN based only on the motor’s current signature. It seems that this fault is greatly confused
with the motor stator inter-turn fault condition, with a 15% accuracy on average. The prediction of a
healthy motor condition is also confused with Fault 4, with a 5.20% average accuracy. This means that
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the synthetic physical damage inflicted to the outer ring bearing may have insignificant energy loss
and may be due to friction. This small amount of energy loss may have no direct effect on and lead no
changes in the motor’s current signature.

Table 3. Classification report when loading conditions are used.

Machine Fault Precision (%) Recall (%) F1-Score (%) Test Support

Fault 1 99.88 100.00 99.92 150
Fault 2 82.95 93.29 87.70 150
Fault 3 97.36 92.44 94.74 150
Fault 4 83.91 83.42 83.38 150

Healthy 100.00 92.22 96.13 150

Average 92.37 92.37 92.37 750
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input label; and (b) confusion matrix performance when motor load condition is not used.

In the second case, the FOP-CNN model still performs like the previous case model, but with
relatively lower classification accuracy. Predictions of bearing misalignment faults and the healthy
state have better F-scores than the other fault conditions, as shown in Table 4. The classification of
the bearing axis misaligned fault (Fault 1) also has the highest precision, with 93.40%. Fault 4 has the
least recall, with only 62.60%, which seems to affect the overall performance. The model can classify
all motor fault conditions with at least 83.20% accuracy, except when classifying outer bearing ring
damage (Fault 4), where it only has a 62.95% accuracy, as shown in its confusion matrix in Figure 14b.
When predicting Fault 4, this is often confused with the stator inter-turn fault (Fault 2) and broken
rotor strip (Fault 3) conditions. This performance is relatively similar to the previous case model where
prediction Fault 4 is worst-performing class.

Table 4. Classification report when loading conditions are not used.

Machine Fault Precision (%) Recall (%) F1-Score (%) Test Support

Fault 1 93.40 86.60 90.00 150
Fault 2 71.20 83.00 76.60 150
Fault 3 78.00 84.60 81.00 150
Fault 4 75.80 62.60 68.40 150

Healthy 87.00 85.80 86.40 150

Average 81.00 80.25 80.25 750
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The performances of other motor fault detection algorithms are shown in Table 5. Comparatively,
the proposed FOP-CNN performs competitively with the other known algorithms. It is important to
take note that these algorithms have different case settings; thus, the comparison based on classification
accuracy seems ungrounded and is difficult to justify. Moreover, note that the dataset used for
FOP-CNN is identical to empirical wavelet transform convolutional neural network (EWT-CNN) [50],
but with more samples collected.

Table 5. Comparison with other algorithms based on [50].

Methods Testing Accuracy (%)

ANN [51] 81.8
DBN [51] 96.4
SVM [31] 89.8

Sparse filter [52] 92.2
ADCNN [53] 96.2

EWT-CNN [50] 97.4
FOP-CNN (proposed) 92.4

The difference between training and testing accuracies is the most common indicator to analyze the
presence of overfitting—an especially important property to determine whether the train–test learning
algorithm is robust and reliable. The higher the difference, the greater the learning generalization,
thus making the method more unreliable. In Table 6, the proposed FOP-CNN is shown to be more
robust than the best-performing algorithm, with a 13-fold lower learning difference. This means that
the model tends to be more generalized, meaning that it can predict motor faults more reliably and
accurately. It is commonly known in the literature that the higher the dataset, the more reliable and
accurate the learning model tends to be, which is the case for the proposed algorithm.

Table 6. Comparison with the best performing algorithm.

Methods Testing Accuracy
(%)

Training Accuracy
(%)

Learning Difference
(%) Dataset

EWT-CNN [50] 97.4 91 6.4 900

FOP-CNN (proposed) 92.4 92 0.4 3750

6. Conclusions

A novel motor fault diagnosis is successfully performed using only motor stator current signals
and a frequency occurrence plot-based convolutional neural network (FOP-CNN). Five motor fault
conditions—bearing axis deviation, stator coil turn-to-turn short circuit fault, broken rotor strip,
outer bearing ring damage, and healthy motors—are considered and simulated under five motor
loading conditions: 0%, 25%, 50%, 75% and 100% coupled loads. The diagnosis is also evaluated under
two case scenarios—when the motor loading condition is considered as a label and when it is not.
It was found that FOP-CNN tends to have a more robust performance when the motor load condition
is available and is considered as an input label of the model. However, FOP-CNN still performed
satisfactorily when the loading condition was not considered as an input label. Both cases provide
users with an option of whether to install motor-coupled load monitoring or not.

FOP-CNN easily predicts the bearing axis deviation fault and healthy motor conditions. It can also
satisfactorily predict stator coil turn-to-turn short circuit faults, broken rotor strips, and outer bearing
ring damage faults. On the other hand, when the motor loading condition is not available, FOP-CNN
can still predict all motor fault conditions satisfactorily, except the outer bearing ring damage fault.
Future research on motor fault diagnosis based on other signals generated by vibration sensors and
thermocouples can use FOP-CNN. This deep learning model also paves the way for new feature
extraction techniques for time series applications.



Electronics 2020, 9, 1711 15 of 17

Author Contributions: E.J.P. contributed to the conceptualization, data curation, formal analysis, investigation,
methodology, project administration, validation, visualization, writing original draft, review, and editing. Y.-T.C.
contributed to the conceptualization, data curation, formal analysis, investigation, methodology, software,
and validation. H.-C.C. contributed to the funding acquisition, investigation, methodology, project administration,
resources, and validation. C.-C.K. is the corresponding author and contributed to the conceptualization,
data curation, formal analysis, funding acquisition, methodology, project administration, resources, review and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for
rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42,
314–334. [CrossRef]

2. An, D.; Kim, N.H.; Choi, J. Practical options for selecting data-driven or physics-based prognostics algorithms
with reviews. Reliab. Eng. Syst. Saf. 2015, 133, 223–236. [CrossRef]

3. Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health
monitoring: A survey. arXiv 2015, arXiv:1612.07640.

4. Zhang, S.; Zhang, S.; Wang, B.; Habetler, T.G. Machine learning and deep learning algorithms for bearing
fault diagnostics—A comprehensive review. arXiv 2019, arXiv:1901.08247.

5. Glowacz, A.; Glowacz, W.; Glowacz, Z.; Kozik, J. Early fault diagnosis of bearing and stator faults of the
single-phase induction motor using acoustic signals. Measurement 2018, 113, 1–9. [CrossRef]

6. Glowacz, A. Acoustic based fault diagnosis of three-phase induction motor. Appl. Acoust. 2018, 137, 82–89.
[CrossRef]

7. Sun, W.; Zhao, R.; Yan, R.; Member, S.; Shao, S.; Chen, X. Convolutional discriminative feature learning for
induction motor fault diagnosis. IEEE Trans. Ind. Inform. 2017, 13, 1350–1359. [CrossRef]

8. Jing, L.; Zhao, M.; Li, P.; Xu, X. A convolutional neural network-based feature learning and fault diagnosis
method for the condition monitoring of gearbox. Measurement 2017, 111, 1–10. [CrossRef]

9. Ma, M.; Sun, C.; Chen, X. Discriminative deep belief networks with ant colony optimization for health status
assessment of machine. IEEE Trans. Instrum. Meas. 2017, 66, 3115–3125. [CrossRef]

10. Shao, H.; Jiang, H.; Zhang, H.; Liang, T. Electric locomotive bearing fault diagnosis using a novel convolutional
deep belief network. IEEE Trans. Ind. Electron. 2018, 65, 2727–2736. [CrossRef]

11. Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional bi-directional
LSTM networks. Sensors 2017, 17, 273. [CrossRef]

12. Li, S.; Liu, G.; Tang, X.; Lu, J.; Hu, J. An ensemble deep convolutional neural network model with improved
D-S evidence fusion for bearing fault diagnosis. Sensors 2017, 17, 1729. [CrossRef] [PubMed]

13. Ren, L.; Sun, Y.; Cui, J.; Zhang, L. Bearing remaining useful life prediction based on deep autoencoder and
deep neural networks. J. Manuf. Syst. 2018, 48, 71–77. [CrossRef]

14. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based
gated recurrent unit networks. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [CrossRef]

15. Ebrahimi, B.M.; Faiz, J. Feature extraction for short-circuit fault detection in permanent-magnet synchronous
motors using stator-current monitoring. IEEE Trans. Power Electron. 2010, 25, 2673–2682. [CrossRef]

16. Houssin, E.; Bouchikhi, E.; Choqueuse, V.; Benbouzid, M. Induction machine faults detection using stator
current parametric spectral estimation. Mech. Syst. Signal Process. 2015, 52–53, 447–464.

17. Singh, S.; Kumar, N. Detection of bearing faults in mechanical systems using stator current monitoring.
IEEE Trans. Ind. Inform. 2017, 13, 1341–1349. [CrossRef]

18. Schulz, R.; Verstockt, S.; Vermeiren, J.; Loccufierp, M.; Stockman, K.; van Hoecke, S. Thermal imaging for
monitoring rolling element bearings. In Proceedings of the 12th International Conference on Quantitative
InfraRed Thermography (QIRT 2014), Bordeaux, France, 7–11 July 2014; pp. 1–13.

19. Janssens, O.; van de Walle, R.; Loccufier, M.; van Hoecke, S. Deep learning for infrared thermal image based
machine health monitoring. IEEE/ASME Trans. Mechatron. 2018, 23, 151–159. [CrossRef]

20. Singh, G.; Kumar, T.C.A.; Naikan, V.N.A. Induction motor inter turn fault detection using infrared
thermographic analysis. Infrared Phys. Technol. 2016, 77, 277–282. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2013.06.004
http://dx.doi.org/10.1016/j.ress.2014.09.014
http://dx.doi.org/10.1016/j.measurement.2017.08.036
http://dx.doi.org/10.1016/j.apacoust.2018.03.010
http://dx.doi.org/10.1109/TII.2017.2672988
http://dx.doi.org/10.1016/j.measurement.2017.07.017
http://dx.doi.org/10.1109/TIM.2017.2735661
http://dx.doi.org/10.1109/TIE.2017.2745473
http://dx.doi.org/10.3390/s17020273
http://dx.doi.org/10.3390/s17081729
http://www.ncbi.nlm.nih.gov/pubmed/28788099
http://dx.doi.org/10.1016/j.jmsy.2018.04.008
http://dx.doi.org/10.1109/TIE.2017.2733438
http://dx.doi.org/10.1109/TPEL.2010.2050496
http://dx.doi.org/10.1109/TII.2016.2641470
http://dx.doi.org/10.1109/TMECH.2017.2722479
http://dx.doi.org/10.1016/j.infrared.2016.06.010


Electronics 2020, 9, 1711 16 of 17

21. Glowacz, A.; Glowacz, Z. Diagnostics of stator faults of the single-phase induction motor using thermal
images, MoASoS and selected classifiers. Measurement 2016, 93, 86–93. [CrossRef]

22. Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine learning based fault diagnosis for single-
and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Trans.
Ind. Appl. 2019, 55, 2378–2391. [CrossRef]

23. Bouzida, A.; Touhami, O.; Ibtiouen, R.; Belouchrani, A.; Fadel, M.; Rezzoug, A. Fault diagnosis in industrial
induction machines through discrete wavelet transform. IEEE Trans. Ind. Electron. 2011, 58, 4385–4395.
[CrossRef]

24. Cusidó, J.; Romeral, L.; Ortega, J.A.; Rosero, J.A.; Espinosa, A.G. Fault detection in induction machines using
power spectral density in wavelet decomposition. IEEE Trans. Ind. Electron. 2008, 55, 633–643. [CrossRef]

25. Lou, X.; Loparo, K.A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst.
Signal Process. 2004, 18, 1077–1095. [CrossRef]

26. El, M.; Benbouzid, H. A review of induction motors signature analysis as a medium for faults detection.
IEEE Trans. Ind. Electron. 2000, 47, 984–993.

27. Strangas, E.G.; Aviyente, S.; Zaidi, S.S.H. Time-frequency analysis for efficient fault diagnosis and failure
prognosis for interior permanent-magnet AC Motors. IEEE Trans. Ind. Electron. 2008, 55, 4191–4199. [CrossRef]

28. Thomson, W.T.; Fenger, M. Current signature analysis to detect induction motor faults. IEEE Ind. Appl. Mag.
2001, 7, 26–34. [CrossRef]

29. Georgoulas, G.; Loutas, T.; Stylios, C.D.; Kostopoulos, V. Bearing fault detection based on hybrid ensemble
detector and empirical mode decomposition.pdf. Mech. Syst. Signal Process. 2013, 41, 510–525. [CrossRef]

30. Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating
machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [CrossRef]

31. Zhang, X.; Liang, Y.; Zhou, J. A novel bearing fault diagnosis model integrated permutation entropy, ensemble
empirical mode decomposition and optimized SVM. Measurement 2015, 69, 164–179. [CrossRef]

32. Espinosa, A.G.; Rosero, J.A.; Cusid, J.; Romeral, L.; Ortega, J.A. Fault detection by means of Hilbert—Huang
transform of the stator current in a PMSM with demagnetization. IEEE Trans. Energy Convers. 2010, 25,
312–318. [CrossRef]

33. Yu, X.; Ding, E.; Chen, C.; Liu, X.; Li, L. A novel characteristic frequency bands extraction method for
automatic bearing fault diagnosis based on hilbert huang transform. Sensors 2015, 15, 27869–27893. [CrossRef]
[PubMed]

34. Rai, V.K.; Mohanty, A.R.Ã. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert—Huang
transform. Mech. Syst. Signal Process. 2007, 21, 2607–2615. [CrossRef]

35. Konar, P.; Chattopadhyay, P. Multi-class fault diagnosis of induction motor using Hilbert and Wavelet
transform. Appl. Soft Comput. J. 2015, 30, 341–352. [CrossRef]

36. Wang, D.; Miao, Q.; Fan, X.; Huang, H. Rolling element bearing fault detection using an improved combination
of Hilbert and Wavelet transforms. J. Mech. Sci. Technol. 2009, 23, 3292–3301. [CrossRef]

37. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems.
Phys. Rep. 2007, 438, 237–329. [CrossRef]

38. Marwan, N. Historical review of recurrence plots. Eur. Phys. J. Spec. Top. 2008, 164, 1–11. [CrossRef]
39. Fukino, M.; Hirata, Y.; Aihara, K. Coarse-graining time series data: Recurrence plot of recurrence plots and

its application for music. Chaos 2016, 26, 023116. [CrossRef]
40. Morinigo-sotelo, D.; Duque-perez, O.; Perez-alonso, M. Practical aspects of mixed-eccentricity detection in

PWM voltage-source-inverter-fed induction motors. IEEE Trans. Ind. Electron. 2010, 57, 252–262. [CrossRef]
41. Didier, G.; Ternisien, E.; Caspary, O.; Razik, H. Fault detection of broken rotor bars in induction motor using

a global fault index. IEEE Trans. Ind. Appl. 2006, 42, 79–88. [CrossRef]
42. Knight, A.M.; Bertani, S.P. Mechanical fault detection in a medium-sized induction motor using stator current

monitoring. IEEE Trans. Energy Convers. 2005, 20, 753–760. [CrossRef]
43. Bracewell, R.N.; Bracewell, R.N. The Fourier Transform and Its Applications; McGraw-Hill: New York, NY, USA,

1986; Volume 31999.
44. Jones, E.; Oliphant, T.; Peterson, P. ${$SciPy$}$: Open Source Scientific Tools for ${$Python$}$; 2014; SciPy.

Available online: http://www.scipy.org (accessed on 20 August 2020).
45. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
46. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.1016/j.measurement.2016.07.008
http://dx.doi.org/10.1109/TIA.2019.2895797
http://dx.doi.org/10.1109/TIE.2010.2095391
http://dx.doi.org/10.1109/TIE.2007.911960
http://dx.doi.org/10.1016/S0888-3270(03)00077-3
http://dx.doi.org/10.1109/TIE.2008.2007529
http://dx.doi.org/10.1109/2943.930988
http://dx.doi.org/10.1016/j.ymssp.2013.02.020
http://dx.doi.org/10.1016/j.ymssp.2012.09.015
http://dx.doi.org/10.1016/j.measurement.2015.03.017
http://dx.doi.org/10.1109/TEC.2009.2037922
http://dx.doi.org/10.3390/s151127869
http://www.ncbi.nlm.nih.gov/pubmed/26540059
http://dx.doi.org/10.1016/j.ymssp.2006.12.004
http://dx.doi.org/10.1016/j.asoc.2014.11.062
http://dx.doi.org/10.1007/s12206-009-0807-4
http://dx.doi.org/10.1016/j.physrep.2006.11.001
http://dx.doi.org/10.1140/epjst/e2008-00828-2
http://dx.doi.org/10.1063/1.4941371
http://dx.doi.org/10.1109/TIE.2009.2024654
http://dx.doi.org/10.1109/TIA.2005.861368
http://dx.doi.org/10.1109/TEC.2005.853731
http://www.scipy.org
http://dx.doi.org/10.1109/MCSE.2007.55


Electronics 2020, 9, 1711 17 of 17

47. Zhang, Z.; Sabuncu, M.R. Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy
Labels. In Proceedings of the Advances in Neural Information Processing Systems 31 (NIPS 2018), Montreal,
QC, Canada, 3–8 December 2018.

48. Chollet, F. Keras; 2015; Keras: Simple Flexible Powerful. Available online: https://keras.io (accessed on
20 August 2020).

49. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

50. Shao, H.; Jiang, H.; Zhang, X.; Niu, M. Rolling bearing fault diagnosis using an optimization deep belief
network. Meas. Sci. Technol. 2015, 26, 115002. [CrossRef]

51. Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An intelligent fault diagnosis method using unsupervised feature
learning towards mechanical big data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

52. Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to
bearing fault diagnosis. Meas. J. Int. Meas. Confed. 2016, 93, 490–502. [CrossRef]

53. Hsueh, Y.M.; Ittangihal, V.R.; Wu, W.B.; Chang, H.C.; Kuo, C.C. Fault diagnosis system for induction motors
by CNN using empiricalwavelet transform. Symmetry 2019, 11, 1212. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://keras.io
http://dx.doi.org/10.1088/0957-0233/26/11/115002
http://dx.doi.org/10.1109/TIE.2016.2519325
http://dx.doi.org/10.1016/j.measurement.2016.07.054
http://dx.doi.org/10.3390/sym11101212
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Motor Dataset 
	Synthetic Motor Fault Conditions 
	Bearing Axis Misalignment 
	Stator Inter-Turn Short Circuiting 
	Broken Rotor Strip Fault 
	Outer Ring Bearing Fault 

	Data Collection 

	Data Preprocessing 
	Fast Frequency Transform 
	Frequency Occurrence Plots 

	Deep Learning Implementation 
	Convolutional Neural Network 
	Supervised Learning 
	Model Selection 
	Model Training and Testing 
	Model Performance Evaluation 
	Test Scenarios 
	Performance Validation 
	Computer Simulation Specifications 


	Results and Discussion 
	Conclusions 
	References

