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Abstract: The recent advancement in the application of the internet of things in the smart grid has
led to an industrial revolution in the power industry. The Industry 4.0 revolution has already set in,
allowing computers to interact for an efficient and intelligent approach in solving smart grid issues.
multilevel inverters (MLIs) are an integral part of the smart grid system for integrating the distributed
generation sources and storage energy systems into the smart grid. It attracted attention in industrial
applications as they can handle high power and high voltage with an inherent feature of superior
output voltage waveform quality. Moreover, its variant, the switched-capacitor MLI (SCMLI), has the
added benefit of lesser DC supply requirement. In this paper, a switched-capacitor multilevel inverter
topology has been proposed, which can operate in symmetric and asymmetric mode. The proposed
SCMLI generate thirteen and thirty-one level output voltages for symmetric and asymmetric selection
of DC voltage sources, respectively. The proposed SCMLI has a smaller number of switching devices
for a given output voltage level as compared to other recently proposed topologies. A thorough
comparison is presented with the recently proposed topologies on several parameters, including cost
function. To validate the proposed topology, symmetric and asymmetric cases were simulated using
Mthlab® 2018a and the results were verified using an experimental hardware setup.

Keywords: energy storage systems; multilevel inverter; switched-capacitor; total harmonic distortion;
nearest level control

1. Introduction

The increasing cost of limited fossil fuel resources has led to a massive investment of economic
and human resources to develop its substitute in the form of a cheaper and cleaner energy resource.
Recently, researchers and industries have seriously looked upon solar and wind energy resources
to meet future energy demand. The negligible environmental effects and economic benefits are
the advantages associated with using these sources. Due to the advancements in power electronics
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technology, highly efficient converters have been developed for energy conversion applications. The AC
drives and grid applications require power inverters. While a conventional two-level inverter has been
used in industrial use, it has some serious shortcomings in power quality [1]. As a result, there is a
competition in the market to develop more efficient high-voltage and high-current handling inverters
with superior power quality to meet the guidelines of IEEE 1547 standards of the smart grid system.
The smart grid can be described as a powerful grid connecting the consumers with applications and
integrating the distributed power generation system into an optimized centralized power system [2].
Physical attacks, cyber-attacks, or natural disasters are significant threats to smart grid deployment,
which can even lead to blackouts, privacy breaches, infrastructural failures, operating personnel
safety issues, or energy theft [3]. Multilevel inverters (MLIs) garnered a lot of concern owing to their
output waveforms of high-quality along with low dV

dt stress. Low total harmonic distortion (THD) of
the output waveform is obtained by increasing the number of output voltage levels of the inverters,
which results in the reduction of the size of output filters. MLIs have several DC voltage supplies,
capacitors, power diodes, and switches along with driver circuits to obtain proper output voltage using
a suitable switching pattern [1,4–8].

Flying-capacitor, diode-clamped, and cascaded MLIs are topologies that are conventional as well
as well-recognized. But there are certain shortcomings of these conventional inverters. The limitations
of flying capacitor and diode-clamped MLIs are that they have a high number of capacitors and diodes
for a higher-level generation, while cascaded H-bridge inverters have many isolated DC supplies and
a large number of power switches for high-power applications. Additionally, external circuits are a
basic necessity for maintaining the capacitor voltage [9–12].

Consequently, newer MLI topologies that offer to overcome the shortcomings of these traditional
MLIs were reported in the literature. MLIs using symmetrical DC supply to obtain multilevel staircase
sinusoidal voltage waveforms were presented in [13–17]. The converters mentioned above posed a
combined setup of power semiconductor devices and the supply of voltage. A step-up sinusoidal
output voltage may be obtained by the use of an applicable switching pattern. It was evident from the
outcomes that MLI’s performance improved as we increased the voltage level tally, but it led to more
circuit components and complexity in control [18–20]. MLIs with asymmetrical DC voltage supply,
where the number of levels was increased manifold with fewer circuit elements, were reported in [21–23].
However, the use of isolated DC supply was still a drawback here, leading to a cost increment.

Switched-capacitor MLIs (SCMLIs) came into the picture for a reduction in the estimate of
separated DC voltage supply [24]. A lot of work was reported in the area of SCMLI. Researchers are
coming with different switched-capacitor MLI topologies with self-balancing forms and self-voltage
boosting capabilities, as was reported in [4,25–28]. SCMLI application areas include high-frequency
AC (HFAC) system of distribution of power [29,30], HFAC microgrids [31], X-rays, UPS, LASERs,
etc. In [32], SCMLI, with a cascaded structure having a boost converter (SC-based) connected with a
two-level inverter, was proposed. The boost converter generated the multilevel step voltage, and the
inverter was used to generate polarity. As in [32], authors of [33] proposed a novel SCMLI having
an Switched Capacitor-frontend and H-bridge backend where the SC-frontend was used to increase
output levels by converting series and parallel connections. In [34], a step-up multilevel converter
topology was proposed for both asymmetric as well as symmetric types of DC supplies of voltage.
Its main feature was the inherent voltage balancing capability of its capacitors. A new design of
converter of switched-capacitor type was proposed in [35], where the authors used only one DC voltage
supply. As a result, the total standing voltage (TSV) and maximum switch-stress voltage were reduced.
Both symmetric and asymmetric topologies were presented in [36] with a reduced number of switch
counts. A converter (DC to AC) with an ability to increase voltage along with voltage self-balancing
was shown in [37]. Peak inverse voltage (PIV) and TSV were lower as it had one DC supply and no
H-bridge. Most of the above topologies suffered from capacitor self-voltage balancing problems or
high-voltage stress on switches.
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This study proposes a topology for single-phase switched-capacitor multilevel inverter (SCMLI)
with some novel characteristics, which operates in both symmetrical and asymmetrical configuration
types to generate a 13- and 31-level output, respectively. The study aims to reduce switch count,
low total standing voltage, and low individual voltage stress of the circuit components for higher output
levels and capacitor self-voltage balancing capability. The only issue is its slightly higher THD due to
capacitor charging and discharging. The paper is structured in the following manner. The proposed
topology for symmetric and asymmetric configuration with its working is given in Section 2. Section 3
explains the modulation technique used here, i.e., nearest level control. A comparative analysis of
SCMLI proposed here with other topologies presented recently is mentioned in Section 4. Power loss
analysis with efficiency calculation using PLECS software is given in Section 5. Experimental and
simulation results for the proposed topology is given in Section 6. Finally, the concluding remarks are
mentioned in Section 7.

2. Proposed Topology

The description of the proposed SCMLI topology is shown in Figure 1. The circuit had eight
switches (T1–T8) of unidirectional nature, three DC voltage sources, two switches (S1 and S2) that are
bidirectional, and four capacitors. The switch pairs T3–T4 and T5–T6 were complementary, thus avoiding
short-circuiting problems in the DC voltage supply. Similar topology works for asymmetrical and
symmetrical configuration based on the intensity of V1, V2, and V3, DC voltage supplies.
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2.1. Symmetrical Configuration

For this configuration, all the sources (V1, V2, and V3) of DC voltage have the same magnitude,
i.e., V1 = V2 = V3 = Vdc. Therefore, the proposed topology with symmetric configuration can
generate 13 levels at the output (six positives, six negative, and zero). All the switching states of this
configuration are shown in Table 1. The switching diagrams for all the thirteen switching states are
shown in Figure 2. In the switching description, the undotted line indicates the active circuit having
current flow. The voltage across C1 and C2 will be half of the voltage V1, and voltage across C3 and
C4 will be half of the voltage V3. Total standing voltage (TSV) is a parameter that was essential for
inverter configuration selection. It is the sum of the absolute maximum blocking voltages through each
switch. Also, there will be the same voltage stress for complementary switches. Therefore, according
to the basic circuit given in Figure 1, voltage stresses across the switches:

Switches, T1 and T2,
VS1 = VS2 = V1 = Vdc (1)

Complementary switches, T3 and T4,

VS3 = VS4 = V1 + V2 = 2 Vdc (2)
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Table 1. Switching states for the symmetrical configuration.

S1 S2 T1 T2 T3 T4 T5 T6 T7 T8 Vo

OFF OFF ON OFF ON OFF ON OFF ON OFF 0
ON OFF OFF OFF ON OFF ON OFF ON OFF 0.5Vdc
OFF OFF OFF ON ON OFF ON OFF ON OFF Vdc
ON OFF OFF OFF ON OFF OFF ON OFF ON 1.5Vdc
OFF OFF OFF ON ON OFF OFF ON OFF ON 2Vdc
OFF ON OFF ON ON OFF OFF ON OFF OFF 2.5Vdc
OFF OFF OFF ON ON OFF OFF ON ON OFF 3Vdc
OFF OFF OFF ON OFF ON OFF ON OFF ON 0
ON OFF OFF OFF OFF ON OFF ON OFF ON −0.5Vdc
OFF OFF ON OFF OFF ON OFF ON OFF ON −Vdc
ON OFF OFF OFF OFF ON ON OFF ON OFF −1.5Vdc
OFF OFF ON OFF OFF ON ON OFF ON OFF −2Vdc
OFF ON ON OFF OFF ON ON OFF OFF OFF −2.5Vdc
OFF OFF ON OFF OFF ON ON OFF OFF ON −3Vdc

Complementary switches, T5 and T6,

VS5 = VS6 = V2 + V3 = 2Vdc (3)

Switches,
VS7 = VS8 = V3 = Vdc (4)

For bidirectional switches, each unidirectional switch of S1 and S2 had to block the voltage of both
switches of bidirectional switch S1,

VS1′ = V1 = Vdc (5)

Both switches of bidirectional switch S2,

V′S2 = V3 = Vdc (6)

Therefore,

TSV = VS1 + VS2 + VS3 + VS4 + VS5 + VS6 + VS7 + VS8 + 2V′S1 + 2V′S2 (7)

(2 is for the 2 bidirectional switches S1 and S2).
Using Equations (1) to (6) in Equation (7), we have

TSV = 2(VS1 + VS3 + VS5 + VS7 + VS1′+ VS2′)

= 2( Vdc + 2 Vdc + 2 Vdc + Vdc + Vdc + Vdc)

= 16 Vdc

(8)

For per unit TSV, the TSV is divided by the peak of the output voltage. Therefore,

TSVp.u =
16 Vdc
6 Vdc

= 2.67 (9)
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Figure 2. All the thirteen switching states of the symmetrical configuration. 
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2.2. Asymmetrical Configuration

The same topology can generate more output levels using asymmetrical configuration. However,
determining the appropriate ratio of the voltage sources to have maximum output levels was essential
for lowering down the THD. After analyzing the combinations for the three DC voltage sources, the one
with V1 = 12 Vdc, V2 = Vdc, and V3 = 2 Vdc gave the highest number of output levels. Thirty-one
output levels can be obtained using this combination of supply of DC voltage for the same topology.
Table 2 shows distinct states of switching for the configuration. The switching diagrams for some of
the 31 switching states are shown in Figure 3. Voltage stresses across the switches:

VS1 = VS2 = V1 = 12 Vdc (10)

VS1 = VS2 = V1 = 12 Vdc (11)

VS5 = VS6 = V2 + V3 = 3 Vdc (12)

VS7 = VS8 = V3 = 2 Vdc (13)

Table 2. Switching states for the asymmetrical configuration.

S1 S2 T1 T2 T3 T4 T5 T6 T7 T8 Vo

OFF OFF OFF ON OFF ON OFF ON OFF ON 0
OFF OFF ON OFF ON OFF OFF ON OFF ON Vdc
OFF OFF OFF ON OFF ON OFF ON ON OFF 2Vdc
OFF OFF ON OFF ON OFF OFF ON ON OFF 3Vdc
ON OFF OFF OFF ON OFF ON OFF OFF ON 4Vdc
ON ON OFF OFF ON OFF ON OFF OFF OFF 5Vdc
ON OFF OFF OFF ON OFF ON OFF ON OFF 6Vdc
ON OFF OFF OFF ON OFF OFF ON OFF ON 7Vdc
ON ON OFF OFF ON OFF OFF ON OFF OFF 8Vdc
ON OFF OFF OFF ON OFF OFF ON ON OFF 9Vdc
OFF OFF OFF ON ON OFF ON OFF OFF ON 10Vdc
OFF ON OFF ON ON OFF ON OFF OFF OFF 11Vdc
OFF OFF OFF ON ON OFF ON OFF ON OFF 12Vdc
OFF OFF OFF ON ON OFF OFF ON OFF ON 13Vdc
OFF ON OFF ON ON OFF OFF ON OFF OFF 14Vdc
OFF OFF OFF ON ON OFF OFF ON ON OFF 15Vdc
OFF OFF ON OFF ON OFF ON OFF ON OFF 0
OFF OFF OFF ON OFF ON ON OFF ON OFF −Vdc
OFF OFF ON OFF ON OFF ON OFF OFF ON −2Vdc
OFF OFF OFF ON OFF ON ON OFF OFF ON −3Vdc
ON OFF OFF OFF OFF ON OFF ON ON OFF −4Vdc
ON ON OFF OFF OFF ON OFF ON OFF OFF −5Vdc
ON OFF OFF OFF OFF ON OFF ON OFF ON −6Vdc
ON OFF OFF OFF OFF ON ON OFF ON OFF −7Vdc
ON ON OFF OFF OFF ON ON OFF OFF OFF −8Vdc
ON OFF OFF OFF OFF ON ON OFF OFF ON −9Vdc
OFF OFF ON OFF OFF ON OFF ON ON OFF −10Vdc
OFF ON ON OFF OFF ON OFF ON OFF OFF −11Vdc
OFF OFF ON OFF OFF ON OFF ON OFF ON −12Vdc
OFF OFF ON OFF OFF ON ON OFF ON OFF −13Vdc
OFF ON ON OFF OFF ON ON OFF OFF OFF −14Vdc
OFF OFF ON OFF OFF ON ON OFF OFF ON −15Vdc

For bidirectional switches, each unidirectional switch of S1 has to block the voltage of

VS1′ = V1 =12Vdc (14)
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and, each unidirectional switch of S2 has to block the voltage of

V′S2 = V3 = 2Vdc (15)
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Trefore,
TSV = 2(VS1 + VS3 + VS5 + VS7 + VS1′+ VS2′) (16)

Using Equations (10) to (15) in Equation (16), we have

TSV = 2(12 Vdc + 13 Vdc + 3 Vdc + 2 Vdc + 12Vdc + 2Vdc)= 88 Vdc (17)

For per unit TSV,

TSVp.u =
88 Vdc
15 Vdc

= 5.87 (18)

3. Nearest Level Control

Modulation techniques are of great importance for multilevel inverters as they influence harmonics,
control dynamics, switching loss, filter size, etc. [38]. Traditional modulation methods have the
standard features of high switching loss, switching harmonics, increased switching frequency, and high
complexity as submodules increases, etc. Nearest level control (NLC) has the advantage of having more
voltage levels as it approximates the reference voltage with the nearest voltage level, which results
in fundamental switching frequency having low switching losses [39]. This method was useful for
higher output voltage applications as the switching losses and low-order harmonics were minimized.
This method can operate at 50 Hz and is extendable to N-Levels. This method was more straightforward,
and the round-off method was used for the calculation of normalized value. The amplified signal was
obtained by multiplying the reference signal by A, as given in Figure 4b. After comparing the signals
obtained with constants, the pulses thus obtained were combined according to logic for switching to
get the required pulses of switching. NLC was applied for controlling the voltage at the output of
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the proposed multilevel inverter for both symmetric and asymmetric configurations. The working
principle of the NLC is mentioned as part of Figure 4a,b. There was a variation in the reference voltage
(Vref) to change the modulation index (MI), which is given as:

Modulation Index =
Vre f

Vout
=

2Vre f

(N− 1)Vdc
(19)
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4. Comparative Analysis

In this section, the SCMLI proposed is compared with the formerly presented SCMLIs. A thorough
comparison was carried out considering TSVp.u; the number of components required; cost function
(CF), which is taken from [7]; etc. Estimation of the overall cost of each topology was done using the
ratio of cost function over the output voltage levels.

CF =
(
Nsw + Ndr + Ncap + Ndi + γ TSVpu

)
×NVdc (20)

where, Nsw represents the switch count, Ndr represents gate drivers’ count, Ncap represents the number
of capacitors, Ndi represents the diode count, NVdc represents the number of dc voltage sources,
γ represents weight coefficient, TSVpu represents total standing voltage.

Different components required, such as gate drivers, switches, capacitors, diodes, and isolated
sources of DC voltage and total standing voltage per unit, were suitably considered for the estimation
of the cost function. For selecting proper switches for any topology, the TSV of the structure will be
necessary. A weight coefficient (γ) was multiplied with TSVpu to precisely apply its impact on the
proposed CF. γ greater than or less than one selects which among TSV and the number of switches was
the most relevant quantity. The comparative analysis is done in the following two sections.

4.1. Comparision with a Single Source and Symmetric Topologies

Here, the general features of the proposed 13-level symmetric topology are compared with some
recent topologies of SCMLIs and are summarized in Table 3. One of the notable merits of the proposed
structure was its lowest TSVpu among the papers presented in [7,33–37,40–42]. It also had the lowest
number of switch count among its 13-level counterparts. Value of C.F

Nlevel
was also low for both conditions

of γ = 0.5 and γ = 1.5 for 13 levels. Value of C.F
Nlevel

was very high in [33,36] as compared to the proposed

topology. Structures in [7,40] had a lower value of C.F
Nlevel

than the proposed one as they have a single
DC source, and their TSV was higher.
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Table 3. Comparison of the proposed symmetric topology with different single source and symmetric
topologies of similar voltage levels.

SCMLI Presented in Nlevel Nsw NVdc Ndr Ncap Ndi TSVpu

C.F
Nlevel

γ = 0.5 γ = 1.5

[7] sym 9 10 1 8 2 1 6.00 2.70 3.33
[7] asym 17 18 2 14 4 2 6.00 4.82 5.52

[33] 13 18 3 18 3 3 5.00 10.27 11.42
[34] 13 14 2 14 4 4 5.30 5.95 6.76
[35] 13 16 2 16 4 2 5.60 6.27 7.13
[36] 13 14 6 14 0 0 4.70 13.11 16.20
[37] 13 29 1 29 5 0 4.83 5.03 5.40
[40] 9 8 1 8 4 4 4.00 2.90 3.33
[41] 17 14 4 14 4 8 4.25 9.91 10.91
[42] 17 10 2 10 2 4 5.50 3.38 4.03

Proposed multilevel inverters (MLI) 13 12 3 10 4 0 2.17 6.08 6.75

4.2. Comparison with a Symmetric Topologies

Asymmetric topologies have come into the picture for obtaining output levels in higher numbers.
The proposed asymmetric topology was compared with recent SCMLIs of similar voltage levels
comprehensively, which is shown in Table 4. For higher levels (here 31), this topology did not have
a marked difference in the different properties given in the table. The value of C.F

Nlevel
in the proposed

MLI wass less than the structures presented in [23,43]. The number of drivers and switch count used
here was lowest. Most importantly, the same topology was used for symmetric as well as asymmetric
design in the topology proposed.

Table 4. Comparison of the proposed asymmetric topology with asymmetric topologies of similar
voltage levels.

SCMLI Presented in Nlevel Nsw NVdc Ndr Ncap Ndi TSVpu

C.F
Nlevel

γ = 0.5 γ = 1.5

[34] 31 14 2 14 4 4 5.33 2.49 2.83
[35] 31 16 2 16 4 2 5.67 2.63 3.00
[42] 25 12 2 12 2 2 5.00 2.44 2.84
[43] 31 14 6 10 0 0 5.33 5.16 6.19
[23] 25 12 4 10 0 0 5.00 3.92 4.72
[34] 49 18 2 18 6 6 5.50 2.07 2.30
[44] 25 14 2 10 4 0 5.83 2.47 2.94

Proposed MLI 31 12 3 10 4 0 5.87 2.80 3.37

5. Power Loss Analysis

Losses in terms of power and efficiency in the overall sense of suggested topology were estimated
by using PLECS software. Conduction and switching losses for all the switches and losses across the
capacitors were calculated precisely using thermal modeling in the software. IGBT switch IGA30N60H3
manufactured by Infineon was taken for this analysis. The turn ON, turn OFF, and conduction loss
model of the IGBT taken is given in Figure 5, respectively. Here three main types of losses were taken
into account: switching losses (PS) and conduction losses (PC) of all the semiconductor devices and
ripple loss (PR) of the capacitors.
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5.1. Switching Losses (PS)

Switching losses were there at the instant when the switches turn ON or OFF. The following
equations can be expressed for the kth switch considering approximation in a linear sense between
current and voltage of switches during the period of switching [45]:

Loss of power during switching

ON = PS,on,k = f
∫ ton

0 v(t)i(t)dt

= f
ton∫
0

(
VS,k
ton

t
)(
−

Ik
ton
(t− ton)

)
dt = 1

6 f VS,kIkton
(21)

Loss of power during switching

OFF = PS,o f f ,k = f
∫ to f f

0 v(t)i(t)dt

= f
to f f∫
0

(
VS,k
to f f

t
)(
−

Ik
′

to f f

(
t− to f f

))
dt = 1

6 f VS,kIk
′to f f

(22)

where Ik and Ik
′ denote currents across the kth switch when it was turned ON, and prior to turning it

OFF, respectively. f is the frequency of switching and VS,k denotes voltage for the OFF-state of the kth
switch. For calculating the loss in switching as total, the ON (Non) and the OFF number of switching
states (No f f ) for each cycle are multiplied with (21) and (22) following (23):
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PS =
12∑

k=1


Non∑
m=1

PS,on,km +

No f f∑
m=1

PS,o f f ,km

 (23)

5.2. Conduction Losses (PC)

The internal resistance of each component, i.e., semiconductor devices and capacitors, had to
be addressed to calculate losses in conduction at the condition of steady-state. Each capacitor was
assumed to be the same. The results were taken using the PLECS software for a resistive load since the
state of resistive loading is said to be the worst-case scenario in the analysis of loss of power for the
SCMLIs [45,46].

5.3. Capacitor Ripple Losses (PR)

Ripple losses occured by the difference between the input voltage (Vin) and the voltage across the
capacitors (VC j ( j = 1,2,3,4)), when the capacitors are connected in parallel [46]. It was assumed that the
capacitor was fully charged to Vin during the charging state.

The capacitor ripple voltage is taken as:

∆VCj =
1

C j

t∫
t′

iC j(t)dt for j = 1, 2, 3, 4 (24)

Here, iC j denotes passing current of the jth capacitor. The discharging period is [t′ − t]. Thus,
the total ripple loss in the duration of the output waveform cycle is given by (25).

PR =
f
2

4∑
j=1

C j ∆VCj
2 (25)

From (24) and (25), it is evident that ripple loss is inversely proportional to the capacitance. Thus,
larger capacitance led to less ripple loss and hence improved efficiency. The efficiency of the overall
proposed inverter is given by (26).

η =
Po

Po + PS + PC + PR
(26)

The efficiency versus output power curve for both symmetrical and asymmetrical configurations
is shown in Figure 6 for a resistive load. Maximum efficiency was achieved with about 98.7% along
with a 100-watt output power for both the configurations in which capacitor ripple loss had neglected.
Capacitor ESR loss (conduction loss due to internal resistance of the capacitors (here 0.1 ohm is taken))
was taken in its place. Power loss distribution among different switches and capacitors are given in
Figure 7 for both settings. S1 and S2 were the bidirectional switches, as shown in Figure 1. Both switches
of the bidirectional switches had the same loss. All the complementary switches also had the same
losses as the number of states when they were turned ON and turned OFF for a full cycle.
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6. Results and Discussions

Simulation of the suggested topology for asymmetric and the symmetric case was done using
Matlab(r) 2018a and for verifying the results obtained, experimental results were also taken. Both of
these results are discussed in the subsequent subsection.

6.1. Simulation Results

For symmetrical configuration, the magnitude of the three DC voltage sources was similar, and for
simulation purposes, it was taken to be 100 volts. The resultant voltage at the output had a peak
voltage of 300 V with 50-V steps and 13 levels in totality. All four capacitances were considered to be
4700 µF. The current waveform and voltage at the output for Z = 50 Ω +100 mH as the R-L load with
varying MI are presented in Figure 8a. The number of levels for voltage at the output was directly
proportional to the MI. At MI = 0.5, the output voltage levels were reduced by half, which can be
analyzed from Figure 8a. The current waveform and voltage at the output with a load change of Z =

50 Ω +100 mH to Z=25 Ω +100 mH, which are given in Figure 8b–d, show the harmonic analysis of the
voltage obtained and the current waveforms for Z = 50 Ω +100 mH, respectively. Voltage and current
THD was achieved as 6.36% and 0.56%, respectively. Current THD was lower as the inductive load
reduced the high-frequency current components.

For the asymmetrical case, V1 = 240 V, V2 = 20 V, and V3 = 40 V. The resultant output waveform
has a peak voltage of 300 Volts with a step size of 20 Volts. Figure 9a shows the current waveform
and voltage at the output for Z = 50 Ω +100 mH as the R-L load with varying MI. Figure 9b presents
the current waveform and voltage at the output with Z = 50 Ω +100 mH to Z = 25 Ω +100 mH as
the change in load. Harmonic analysis for the obtained voltage and current waveforms for Z = 50 Ω
+100 mH, as shown in Figure 9c,d, respectively. Voltage and current THD was obtained as 2.63% and
0.16%, respectively.
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6.2. Experimental Results

Figure 10 shows that the above results obtained were verified using an experimental prototype for
both symmetrical and asymmetrical cases. Toshiba IGBT GT50J325 was taken as the switch, and the
dSPACE 1104 controller was used to obtain gating pulses for these switches. Figure 11a,b shows the
output voltage and current waveforms for RL load of 200 Ω +100 mH and a resistive load of 120 Ω,
respectively, for the symmetrical case. In this case, V1 = V2 = V3 = 80 V was chosen. The thirteen-level
output had the peak voltage of 240 V with a step voltage of 40 V. The output waveforms with load
change and MI change are given in Figure 11c,d. The load change was from 120 Ω to 60 Ω, and MI
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change was from 0.33 to 1. The 13-level output is shown in Figure 12a. For the asymmetrical case, V1 =

240 V, V2 =20 V, and V3 = 40 V were taken. Figure 12b shows the output waveform having a load
change from no load to 120 Ω to 60 Ω. Figure 12c shows the thirty-one-level output voltage with the
maximum voltage of 300 volts having steps of 20 volts. The output waveform for a resistive load of
32 Ω is given in Figure 12d.
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Figure 11. Experimental results: (a) Output voltage and current for the symmetric case with
Resistive-Inductive (R-L) load; (b) output waveform with R-load; (c) output waveform with load
change; (d) output waveform with Modulation Index (MI) change.
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7. Conclusions

An innovative SCMLI topology is suggested here. The mentioned topology could operate for
symmetrical as well as the asymmetrical case. Apart from lower switch count, TSV was also remarkably
lower for the symmetrical case and comparable with other recent topologies in the asymmetrical
case. It had the lowest switch count compared to other 13-level topologies presented, as discussed
in Section 4.1 and given in Table 3. Its economic aspect was also taken into account using the cost
function, and it stands well with other topologies shown in Tables 3 and 4. Hardware implementation
was carried out to verify the simulation results under the condition of varying load and modulation
indexes. Thus, the proposed topology is the right candidate to be used in the smart grid system 4.0,
which has a stringent requirement under IEEE 1547 standards.
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