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Abstract: Perceptually motivated audio signal processing and feature extraction have played a key role
in the determination of high-level semantic processes and the development of emerging systems and
applications, such as mobile phone telecommunication and hearing aids. In the era of deep learning,
speech enhancement methods based on neural networks have seen great success, mainly operating on
the log-power spectra. Although these approaches surpass the need for exhaustive feature extraction
and selection, it is still unclear whether they target the important sound characteristics related to speech
perception. In this study, we propose a novel set of auditory-motivated features for single-channel
speech enhancement by fusing temporal envelope and temporal fine structure information in the
context of vocoder-like processing. A causal gated recurrent unit (GRU) neural network is employed
to recover the low-frequency amplitude modulations of speech. Experimental results indicate that
the exploited system achieves considerable gains for normal-hearing and hearing-impaired listeners,
in terms of objective intelligibility and quality metrics. The proposed auditory-motivated feature
set achieved better objective intelligibility results compared to the conventional log-magnitude
spectrogram features, while mixed results were observed for simulated listeners with hearing
loss. Finally, we demonstrate that the proposed analysis/synthesis framework provides satisfactory
reconstruction accuracy of speech signals.

Keywords: speech enhancement; speech intelligibility; temporal envelope; temporal fine structure;
neural networks

1. Introduction

Single-channel speech enhancement has attracted considerable research attention for years due to
the emerging demand in various real-world applications, such as mobile phone telecommunication [1,2],
automatic speech recognition [3], speech coding [4], and hearing aids [5]. The goal of speech enhancement
is to improve the intelligibility and quality of degraded speech signals by suppressing the noise components
that impede communication and proper analysis. These include interfering sounds, noise, reverberation,
distortion, and other deficiencies [6]. One major challenge for speech enhancement systems is the ability
to operate online. Real-time applications of speech enhancement, such as mobile telecommunication
and hearing aids, usually cannot afford to access future observations, in favor of low-latency inference.
Thus, the requisite for causal processing is apparent in real-world practice.

Numerous speech enhancement algorithms have been established in recent decades. Techniques
such as spectral subtraction [7,8] and various forms of Wiener filtering [1,9] have been widely used in
speech enhancement frameworks. With the surge of deep learning, supervised learning methods based
on neural networks have shown promising performance in a variety of audio applications [10–15],
including single-channel speech enhancement [5,16,17]. Current state-of-the-art methods exploit large
amounts of training data captured under various noise and reverberation conditions [18] and can
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achieve high generalization performance, even in challenging acoustic environments [19]. Prevailing
approaches are based on alternative types of neural networks, such as convolutional and recurrent
neural networks, to formulate speech enhancement as a sequence-to-sequence mapping that leverages
spectral and temporal correlations while reducing translational variance in signals [6].

Recently, Lang and Yang (2020) [20] demonstrated the effectiveness of fusing complementary features
to magnitude-aware targets by separately learning phase representations. In addition, Bae et al. (2019) [21]
explored a framework for disentangling speech and noise for noise-invariant speech enhancement,
offering more robust noise-invariant properties. In Rao and Carney (2014) [22], a vowel enhancement
strategy is proposed to restore the representation of formants at the level of the midbrain by performing
formant tracking and enhancement. Causal methods that operate directly on the time domain have
also been proposed for speech enhancement and text-to-speech tasks [23], although are of much
greater complexity than conventional spectral masking approaches. Even though the time-frequency
domain appears more convenient for exploiting the spectro-temporal structure of sound, time-domain
methods recently demonstrated impressive results that minimize audible artifacts either by processing
raw audio waveforms or temporal audio features, such as the temporal envelope of noise-corrupted
signals [24].

While the analysis of speech sounds in mainstream audio applications emphasizes on the frequency
spectrum, rate-place encoding on its own fails to account for the majority of perceptual aspects of
complex sounds [25]. Nevertheless, a great interest in purely temporal properties of speech has
emerged recently, due to their capability in determining the corresponding perceptual attributes.
The temporal structure of speech is classified into three categories of speech cues based on dominant
temporal fluctuation rates, according to [26]. They are envelope, periodicity, and fine structure cues.
In this scheme, envelope cues contain modulation frequencies from 2 to 50 Hz, representing acoustical
aspects of phonetic segments combined with stress and voicing information. Periodicity cues exist
from 50 to 500 Hz and transmit information about voicing and intonation. Periodicities of higher
frequencies, from 0.6 to 10 kHz, comprise the fine structure of the speech signal and convey information
related to aspects of consonant place and vowel quality.

In recent years, a wealth of studies conducted with normal-hearing and hearing-impaired listeners
showed that accurate speech identification can be obtained by preserving the low-frequency amplitude
modulations, primarily the temporal envelope, even if speech is severely degraded in the spectral
domain [26–28]. On the other hand, individuals with normal hearing show a great ability for
understanding speech, even in adverse listening environments, where the acuity of envelope cues
is not preserved. This requires the utilization of fine structure cues, in order to effectively facilitate
modulation detection [29] and release from masking [30] processes.

To account for this ability in hearing loss, several studies have attempted to recover the temporal
structure of speech from noisy environments [31–33], while others concentrated on the effects of
auditory masking and vocoding on speech perception [4,34]. In Shetty (2016) [35], prominent envelope
enhancement strategies for older adults are reviewed, including temporal envelope expansion [33]
and deep band modulation [36] methods. They report improvements in speech-in-noise perception.
Nevertheless, each method had its limitations. This fact combined with indications of a potential
dichotomy in auditory perception regarding the processing of low-frequency and high-frequency
amplitude modulations, calls the attention to delineate the potential of incorporating both temporal
envelope and fine structure information into state-of-the-art speech processing systems. Hence,
the main goal of this study is to determine the potential of auditory coding features on supervised
learning algorithms for speech enhancement, i.e., if signal processing strategies that support findings
of our auditory system should be preferred in data-driven approaches of speech processing.
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2. Materials and Methods

2.1. Problem Formulation

Consider an instantaneous linear mixing model for noisy speech y as

y(t) = s(t) + n(t) (1)

where t is the time index, s denotes the clean speech acoustic waveform and n denotes the time-domain
interference noise signal. The goal of single-channel speech enhancement is to estimate the clean
speech signal s, usually by modelling some feature representation Y = d(y) of the observed mixture
signal. In a general manner, the feature extraction process for a finite time segment of length L can be
interpreted as an encoding function d : RL

→ A , where A denotes an arbitrary set. Our objective is to
train a model gθ : A→ A , defined by the parameter set θ, that estimates the feature representation
S = d(s). In cases when the same feature representation is used for both input and target signals,
relevant studies [37] suggest that better modelling can be achieved by estimating a mask vector M ∈ A,
instead of directly estimating S, and applying it to the input feature vector as

Ŝ = M ◦Y, (2)

where ◦ denotes the Hadamard product, i.e., the elementwise multiplication, and Ŝ is the estimated
vector corresponding to S. Regarding the mask vector, the ideal ratio mask (IRM) provides a common
target for speech enhancement methods that are based on spectral decomposition of the input
signal [16,19]. The local gain for each feature value is quantified by a soft label in the range from 0 to 1.
The instantaneous IRM for each frame j and channel k is defined in [3]

IRM( j, k) =
(

Sxx( j, k)
Sxx( j, k) + Nxx( j, k)

)β
, (3)

where Sxx and Nxx denote the power spectral densities of s and n, respectively. When β = 0.5, the IRM
is equivalent to the Wiener filter gain, which is the optimal filtering method for stationary noises [16].
An approximation of the IRM can therefore be defined for arbitrary feature representations, as

Mc( j, k) = min

( S2( j, k)
Y2( j, k) + ε

)β
,γ

, (4)

where ε > 0 is a small quantity to avoid division by zero and β = 0.5. Generally, Mc quantifies the
ideal local gain to be applied to Y in order to approximate the target representation S. The min(·)
function is used to constrain Mc within a pre-defined range from 0 to γ, depending on the distribution
of S and Y. With γ = 1, typical spectral energy representations can be adequately estimated, although
higher values can account for phase cancellation.

Then, the estimated signal ŝ can be derived from Ŝ using a decoding function d′. If the encoding
function d is invertible, an intuitive way to recover the original signal from the feature representation is
to use the inverse transform d−1. Otherwise, d′ can be determined to be a decoding function or method
that achieves perfect or near-perfect signal reconstruction (i.e., by employing iterative methods). In a
more perceptually-oriented approach, d′ denotes a function that produces an estimate of s, having the
least effect on the perceptible properties of the signal, namely minimizing the distance between the
perceptual representations of s and ŝ.

Standard schemes of speech enhancement by means of deep neural networks adopt the
log-magnitude spectrum as input and target features [37]. The short-time Fourier transform (STFT) is
applied to each overlapping windowed frame of the acoustic waveform, and the absolute values of the
STFT coefficients are logarithmically compressed. To avoid the amplification of values that are close to
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zero, typically under the range of interest, a small quantity β can be added to the magnitudes before
the logarithm operation. Hence, the model input vector is defined as

Y = log10
(∣∣∣STFT(y)

∣∣∣+ β
)
, (5)

where β can be selected appropriately to restrict the available dynamic range, typically between 40 dB
to 120 dB, depending on the application. The neural network model is trained in a supervised manner
to estimate the target weighting function from noisy log-spectra. The synthesis stage combines the
output vector Ŝ = g(Y) ◦ Y with the phase of the noisy mixture and recovers the time-domain signal ŝ
via the inverse STFT transform and the overlap-add method.

The exploitation of alternative feature transforms is largely motivated by the utilization of
biologically plausible processes to speech enhancement frameworks, which are inherently non-linear
and irreversible [38]. The intuition here is that by replicating the functional properties of the human
auditory system that contribute to sound source segregation and robust speech-in-noise perception,
better modelling of natural sounds can potentially be enabled. The gammatone spectrogram and
the envelope modulation spectrogram are two feature paradigms that are under consideration in
relevant works on speech recognition [39]. However, the utilization of physiologically inspired feature
representations to speech enhancement can only be achieved granted that the acoustic waveform
reconstruction process preserves the desired quality and intelligibility of uttered speech.

In the following section, the latter approach is exploited to construct a novel framework for the
analysis and synthesis of speech sounds based on auditory-motivated signal processing.

2.2. Temporal Auditory Processing: Features and Targets

In this section, we provide details and rationale about the perceptually-motivated audio signal
analysis and the proposed front-end design architecture for online speech enhancement systems.
Finally, we introduce a novel feature set based on temporal envelope (ENV) and temporal fine structure
cues (TFS), inspired by the temporal processing mechanisms of the human auditory periphery and
midbrain. Dynamically, the proposed feature extraction process effectively encodes both slow and
fast temporal modulations that fall within the capabilities of the auditory system and produces a
spectrogram-like representation of a speech signal.

2.2.1. ERB-Scaled Gabor Filter Bank: Analysis Framework

Established models of the peripheral filtering function of the cochlea utilize the Gammatone filter
bank, which attains a balance between computational complexity and physiological accuracy [40].
The bandwidth of each auditory Gammatone filter is determined as an equivalent rectangular
bandwidth (ERB), based on the linear approximation of the ERB by Glasberg and Moore (1990) [41]

ERB( f ) = 24.7 +
f

9.265
, (6)

where f and ERB( f ) are in Hz. Although Gammatone-based representations exhibit the indicated
behavior, regarding the temporal and spectral aspects of auditory processing, they fail to produce
reconstructed signals with non-audible distortions in a direct way. Variations on Gammatone filter
banks have been proposed towards a more effective analysis-synthesis framework [42]. Moreover,
a perfectly invertible constant-Q transform based on nonstationary Gabor frames has been recently
constructed [43]. Despite allowing for adaptable resolution of the time-frequency plane, Constant-Q
transforms mismatch the auditory spectral resolution at low frequencies [44].

In this study, we propose a direct implementation of an analysis and synthesis framework for
speech enhancement, which is compatible with the auditory resolution and demonstrates satisfactory
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intelligibility and quality of reconstructed speech signals. In particular, frequency selectivity was
accounted for by a set of Gabor filters υk that are uniformly distributed along the ERB scale (ERBS) [38]

ERBS( f ) = 9.2645·ln
(
1 +

f
228.8455

)
. (7)

The kernels of the analysis filter bank are defined in the frequency domain as

υ̂k(m) = Γk
−

1
2 ·e−π(

m− fk
Γk

)
2

, (8)

where k = 0, . . . , K indexes the filterbank kernels with center frequencies fk in Hz. The effective

bandwidth of υk is determined by Γk = ERB( fk), while the factor Γ
−

1
2

k imposes each filter to have the
same energy. This rate-place encoding is based on the recently proposed Audlet filterbank [42] and
ERBlet transform [45]. In this study, we use a density of 4.55 filters per ERB, resulting in a total of
K = 128 filters from 80 to 6000 Hz. Frequency bands below 80 Hz and over 6000 Hz are not considered
in the analysis and were attenuated in the processed signals. Moreover, pre-emphasis and de-emphasis
filters (c = 0.97) were applied to audio signals at the input and output stages, respectively.

2.2.2. Temporal Envelope Features

Let ycoch(t, k) denote the sub-band signal at the output of the kth ERB filter. The full-scale envelope
vector yAN(t, k) is obtained by half-wave rectification followed by low-pass filtering. This is a realistic
model of the signal transduction of the inner hair cells and is widely supported by auditory modelling
studies [46,47]. Moreover, this approach surpasses the limitations of the Hilbert envelope [48] extraction
process, by providing a framework that is efficient and valid for short observation times. The energy of
the excitation signals is preserved using a weighting vector wG = (w1 w2 · · · wK−1 wK) and the final
output vector YENV ∈ RN×K, N = L / τ, is resolved by integrating the envelope power over a short
time window µ(t; τ) = e−t/τ

·u(t), with time constant τ = 8 ms [49]. This step can be interpreted as a
down-sampling operation and is attributed to the loss of phase locking observed in the midbrain [47].
The mathematical formulation of this model can be summarized in Equations (9)–(12).

ycoch(t, k) = y(t) ∗ υk(t), (9)

yAN(t, k) = max(0, ycoch(t, k)) ∗t wE(t), (10)

yENV = yAN·wT
G, (11)

YENV(n, k) =
(∫ τ

0
y2

ENV(n·τ+ t, k)·µ(t; τ)dt
)1/2

, n ∈ {0, . . . , N}. (12)

In the equations above, the b·c is the floor operator, n is the frame index, and wE is the impulse
response of a zero-phase forward-backward low-pass filter with a cutoff frequency of 50 Hz. In favor of
good signal reconstruction, we ignored all the non-linearities and adaptive mechanisms in the basilar
membrane, that are attributable to the motion of the outer hair cells and the feedback communicated
via the efferent system (for a detailed analysis see [50]).

2.2.3. Temporal Fine Structure Features

Even though speech intelligibility seems to depend on the acuity of slow temporal modulations,
listening in the presence of noise is strongly correlated with the ability to utilize fast amplitude
modulations [30], namely the perceptual cues involved in the temporal fine structure. This information is
usually hindered in typical audio signal processing setups, where energy-based spectral transformations
are mainly encountered, seeking a balance between time and frequency resolution. The intuition here
is that spectro-temporal regions with source-dependent modulations can potentially facilitate speech
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enhancement systems in the identification and segregation of sound streams with similar spectral content.
Hence, this stage aims to capture the temporal coding patterns associated with voicing and periodicity in
a noisy speech mixture and to assess their contribution to the recovery of degraded envelope patterns.

First, a binary operator h(·) is applied to the filter bank output signals ycoch. A zero-phase low-pass
filter wF is then utilized to simulate the deterioration of phase-locking for frequencies above 2 kHz.
Excitation signals are transformed by a lateral inhibitory network (LIN) [50] to enhance the frequency
selectivity of the filter bank, mimicking the functional properties of the cochlear nucleus [51]. The LIN is
simply modeled as a first-order difference with respect to the tonotopic axis, followed by a half-wave
rectifier to produce yLIN [52]. The onset spikes of yLIN are obtained by time derivation and half-wave
rectification. The resulting signal ySP conveys information about the inter-spike intervals between
successive zero-crossings in the stimulus waveform, seeking correlates of periodicity pitch [53]. The ySP
sub-band signals are finally integrated into short-time frames of τ = 8 ms, aligning to the corresponding
temporal envelope features. This transformation attempts a conversion of temporal spike information
into rate information, rendering a measure of TFS fluctuations in the original signal. Thus, feature values
are close to zero for an unmodulated sinusoidal carrier signal, while reach higher values (close to 1) for
highly modulated signals. In contrast to ENV features, this description is amplitude independent, similar
to the auditory TFS coding mechanism; TFS coding is reported to be relatively level independent in the
most range of above-threshold presentation levels [54,55]. The computation of the proposed temporal
fine structure features can be summarized in the following sequence of operations.

yh(t, k) = h(ycoch(t, k)) ∗t wF(t), (13)

yLIN(t, k) = max(0, ∂kyh(t, k)), (14)

ySP(t, k) = max(0, ∂tyLIN(t, k)), (15)

YTFS(n, k) = Γk
−

1
2 ·

∫ τ
0 ySP(n·τ+ t, k)dt, (16)

where h(·) is the Heaviside step function, and YTFS denotes the final feature representation. The scaling
factor Γk

−
1
2 is used to normalize the feature distribution along the rate-place axis. In the current

implementation, temporal fine structure encoding retains the same spectral density (4.55 channels
per ERB) as the temporal envelope extraction process. TFS signals are obtained only over the
low-frequency range, between 80 and 1000 Hz, where the effect of periodic cues on speech understanding
is prominent. On this basis, YTFS comprises a 59-dimensional feature vector for each short-time frame
and complements YENV as the model input vector.

2.2.4. Synthesis Framework

The synthesis framework consists of two stages: an envelope post-processing stage and a time-domain
signal reconstruction stage. First, the desired sub-band envelope gains are up-sampled to the original
signal sampling rate using a causal interpolating filter to produce the vector Ŝ ∈ RL×K. The dynamic range
of each band is then restricted to a maximum modulation depth of Dr = 60 dB by a gating function and
the output envelope signals are filtered for modulation frequencies below 50 Hz. Second, the sub-band
temporal fine structures of the noisy mixture yTFS are modulated by the processed envelopes Ŝ and a
linear operator is employed to map the sub-band signals to the output audio signal ŝ.

yTFS(t, k) = ycoch(t,k)
yENV(t,k)+ε

, (17)

ŝx(t, k) = max
(
Ŝ(t, k), ε

)
∗t wE(t), (18)

ŝ(t) =
K∑

k=0
(ŝx ◦ yTFS)(t, k), (19)

where ε = 10−Dr/20.
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2.3. Model Architecture & Training

In this study, we consider the causal approach for speech enhancement, where the model can
access information from past time-steps and the prediction of target features is not dependent on future
audio segments. A sliding rectangular window with length J in the time domain is applied to the
input feature representation to enable frame-based processing. The model estimates the target features
corresponding to the Jth time frame of the input representation. This approach is suitable for real-time
applications, such as hearing prosthesis and audio streaming. It is also promoted by numerous other
studies [16,56], as it incorporates valuable information from neighbor time-frames and reduces the
redundancy of the output dimensionality, compared to sequence-to-sequence modelling [24].

Based on the above premise, let gθ : RJxΛ
→ RK denote a neural network model parameterized

by the learnable parameters θ, where J determines the available temporal receptive field of the model.
The parameters Λ and K denote the number of input and output features, respectively, which are
determined by the desired feature representation (see Sections 2.1 and 2.2). A two-layer gated recurrent
unit (GRU) neural network with 512 units is considered as the main component of gθ. A recurrent cell
processes the log-compressed input feature vector across each timestep in sequential order, and the
output of the Jth step is passed to a fully-connected layer with K units. Then, the sigmoid activation
function is applied to yield the final predictions. Dropout regularization with a probability of 0.4 is
applied to the outputs of the recurrent layers. The prediction of the model is locally-constrained in the
time domain through the parameter J, to avoid learning long-term dependencies (> 400 ms), leading
to a more accurate and stable training procedure. This is technically achieved by setting the initial
hidden state vector of the GRU to zero after each sample inference.

The model has a total of 2.71 million parameters and is trained using the Adam optimizer
algorithm [57] in mini-batch mode with a batch size of 2048, to minimize the mean squared error between
the target and the estimated values. The learning rate was set to 10−4, while the learning progress was
monitored by an early-stopping algorithm to avoid over-fitting to training data. The proposed speech
enhancement system is depicted in Figure 1.

Temporal Fine 
Structure Features

𝑌𝑇𝐹𝑆

𝑌𝐸𝑁𝑉Temporal Envelope 
Features

GRU 

GRU 

Linear 

!𝑠

⊗Synthesis

𝑦𝑐𝑜𝑐ℎ(𝑡, 𝑘)

𝑀

YENV (J)

𝑦 = 𝑛 + 𝑠

ERB-scaled Gabor Filter bank

ENV Log compression & 
Dynamic range clipping 

SE Model

Temporal Coding Features

$𝑆

Figure 1. Detailed illustration of the components of the proposed speech enhancement inference
algorithm. The input signal is filtered by an ERB filter bank. The outputs ycoch are transformed to
auditory-motivated temporal envelope and fine structure representations. The Speech Enhancement
(SE) model processes J frames on every iteration and predicts the envelope gains of the Jth frame.
Predictions are used to modulate the unprocessed envelopes, and the enhanced audio waveform ŝ is
synthesized using the sub-band ycoch signals.
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2.4. Dataset

Experiments were conducted on the TIMIT speech corpus of read speech [58], which is widely
used for various speech tasks. It contains a total of 6300 clean utterances, spoken by 630 speakers
(438 male). The speech material comes subdivided into separate training and test sets, balancing factors
such as subset duration, speaker gender, phoneme occurrence, and dialectal coverage. No speaker or
sentence appears in both partitions to avoid overlap with the training material.

The clean speech data were corrupted by various real-world and synthetic noises to form the
experimental dataset. Noises were mismatched between training and test sets to ensure a legitimate
experimental setup. For the training set, we selected six noise types from the UrbanSound8k
dataset [59] (air conditioner, children playing, drilling, engine, gunshot, street music) with a
total duration of five hours. Furthermore, training set noises were augmented by an additional
10 common noise types (ambience, babble, cafe, restaurant, street) collected from the Freesound website
(http://www.freesound.org). To assess the generalization performance of the proposed approach to
novel conditions, thirteen real-world noises from the DEMAND database [60] were included in the test
set, recorded over a variety of environments (domestic, office, public, transportation, street, and nature).
Four noise samples of the database had minimal effect on intelligibility and quality metrics even at very
low signal-to-noise ratios (SNR) and thus were substituted by two common categories (speech-shaped
noise and copy machine sound). All recordings were initially converted to single-channel audio clips,
and were afterwards mixed with the clean speech signals of the test set. Audio files were in WAV
format and were sampled at 16 kHz with a 16-bit depth.

Each speech sample is mixed in utterance level with a randomly selected noise segment, which
was adjusted in level to reach a pre-defined long-term SNR, based on the energy of active speech
regions. For the training and validation set, the SNR values were sampled from a uniform distribution
between −5 and 3 dB. To assist the presentation and interpretability of the results, the test set audio
mixtures were obtained in discrete SNRs {−8, −6, −4, −2, 0, 2, 4, 6} dB, following a uniform distribution.
Silent regions longer than one second were detected and excluded/discarded from clean speech samples
before the mixing procedure, using an energy-based voice activity detector.

2.5. Objective Evaluation Criteria

We evaluated the performance of the proposed approach in terms of intelligibility and perceptual
quality based on four well-known objective metrics that reflect the aspects of normal and impaired
auditory perception.

The enhancement of speech intelligibility for normal-hearing listeners is evaluated through the
extended short-term objective intelligibility (eSTOI) measure. The eSTOI (ranging from 0 to 1) is able
to objectively quantify the intelligibility of speech obscured by temporally modulated noises and
noisy signals processed with time-frequency weighting for a group of normal-hearing listeners [61].
The eSTOI algorithm incorporates spectral correlation of short-time segments (384-ms) by comparing
the energy-normalized spectrograms of processed and clean speech signals. Prior to the computation
of the intelligibility score, pauses between sentences are removed from both reference and processed
audio signals. The temporal envelopes of one-third octave frequency bands (15 frequency bands from
150 Hz to 4.3 kHz) are then approximated by summing the corresponding STFT coefficient energies.

The eSTOI measure is complemented by the full reference algorithm of the PESQ score, as defined
in the ITU-T P.862 standard [62]. PESQ estimates the subjective mean opinion score for a group
of normal-hearing listeners regarding the perceived audio quality over telephone networks, when
degraded by speech or noise distortions. It ranges from −0.5 (or 1.0 in most cases) to 4.5 and is widely
used to assess speech processing algorithms [2,21,56,63], indicating the speech quality measurement of
enhanced speech.

http://www.freesound.org
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Moreover, the hearing-aid speech perception index (HASPI) [64] and the hearing-aid sound
quality index (HASQI) [65] are employed to objectively evaluate the model performance for listeners
with various degrees of hearing loss. These metrics (both ranging from 0 to 1) rely on hearing
profile-dependent auditory model representations to compute the long-term correlations between
reference and processed speech signals. HASPI incorporates changes in the low-, mid- and high-intensity
regions of the spectral envelope and the harmonic structure to construct a viable model of consonant
and vowel perception for hearing-impaired listeners. On the other hand, the HASQI metric combines
aspects of linear filtering and non-linear distortions found in a hearing device to measure the sound
quality of a processed signal as perceived by a hearing aid user. In this study, six generic hearing
loss profiles (Figure 2) are considered to simulate the evaluation of sound quality and perception for
hearing-impaired listeners [66]. For both metrics, the reference signal presentation level was set to
65 dB SPL (corresponding to signal RMS value of 1), while clean, noisy, and enhanced speech signals
were imposed to equal RMS values.
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Figure 2. Typical hearing loss audiograms incorporated in the objective evaluation of sound quality
and intelligibility using HASPI and HASQI measures. These include two high-frequency hearing loss
audiograms (HL1: blue, HL2: orange), two mild hearing loss audiograms (HL3: yellow, HL4: purple),
one moderate hearing loss (HL5: green), and one low-frequency hearing loss (HL6: cyan).

2.6. Experimental Setup

The experimental setup comprises three speech enhancement systems, namely the ENV, the
ENV-TFS and the reference STFT system. The ENV-TFS system is trained to predict the Mc mask
representation (γ = 1) of K = 128 clean speech envelope features, as described in Section 2.2.2,
by processing Λ = 187 auditory coding features of noisy speech mixture (128 ENV features and 59
TFS features). The relative contribution of TFS features to the system performance is evaluated by
assessing the model when having access to solely ENV information (Λ = K = 128). Finally, the baseline
STFT method employs the conventional IRM as a target and the log-scaled magnitude spectrogram
(Equation (5)) as the model input. Features are obtained by the STFT of size 512 (31.25 ms) with a
50% overlap and the Hann window function. Frequency bins between 80 and 6000 Hz (Λ = K = 256)
are considered to match the ENV and ENV-TFS systems. The same model architecture is employed
in all setups, to ensure a fair comparison between the three systems. The only difference lies in the
linear output layer; the number of output units is determined by the desired output dimensionality K.
The source code of the experimental procedure along with the complete set of results on the TIMIT
dataset is freely available at the dedicated online repository (https://doi.org/10.5281/zenodo.4028860).

https://doi.org/10.5281/zenodo.4028860
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3. Results

3.1. Reconstruction from Envelope Spectrogram

The first 100 speech signals of the TIMIT test set were employed for the evaluation of the proposed
analysis-synthesis framework. The intelligibility and quality of reconstructed acoustic waveforms
are evaluated through the eSTOI and PESQ objective metrics, and are compared to the reference
STFT-based analysis framework.

Results are depicted in Table 1, where three scenarios are considered. First, clean speech signals are
transformed into time-frequency representations (denoted as ENV and STFT) and are synthesized back
using the corresponding synthesis function. Results indicate that the proposed approach preserves
intelligibility and quality of the reconstructed speech signal, with minimal loss compared to the
perfectly-reconstructed speech signals obtained via the STFT. The second and third cases consider the
ideal case where the speech enhancement model unerringly estimates the target feature representation,
indicating the maximum perceptual gain that can be achieved in each case. To simulate this, the soft
mask Mc is applied to the noisy feature representation to obtain the ideally processed speech signals
in the context of masking-based speech enhancement. In detail, ENV and STFT methods have a
maximum capacity of increasing eSTOI by 34% and 36%, respectively, and speech quality by 1.52
and 1.87 PESQ units. Clipping the target mask Mc to be between 0 and 1, with the use of the upper
bound parameter γ, results in a small decrease in the maximum capacity of both methods. The above
results provide a validation of the proposed envelope feature representation for speech enhancement.
An auditory-motivated envelope representation is provided which is accommodated by sufficient
speech reconstruction quality and intelligibility, close to the reference STFT analysis.

Table 1. Objective speech intelligibility (eSTOI) and quality (PESQ) results between the standard
STFT and the proposed ENV analysis-synthesis frameworks. Mean and standard deviation values are
presented for the first 100 utterances of the TIMIT test set.

Method
eSTOI PESQ

ENV STFT ENV STFT

Noisy (unprocessed) 0.54 ± 0.17 0.54 ± 0.17 1.19 ± 0.15 1.19 ± 0.15
Target Mc (γ = ∞) 0.88 ± 0.05 0.90 ± 0.05 2.73 ± 0.25 3.11 ± 0.37
Target Mc (γ = 1) 0.86 ± 0.06 0.89 ± 0.05 2.71 ± 0.25 3.06 ± 0.37

Clean (reconstructed) 0.99 ± 0.00 1.00 ± 0.00 3.90 ± 0.17 4.20 ± 0.15

3.2. Objective Evaluation for Normal-Hearing Listeners

In this section, we evaluate the performance of the utilized GRU model in a typical masking-based
speech enhancement setup, in terms of objective metrics for intelligibility and perceived quality for
normal-hearing listeners. Table 2 shows the predicted intelligibility and quality results averaged over
all SNRs and noises. It is apparent that all methods improved the eSTOI and PESQ scores relative to
unprocessed noisy speech. Mean intelligibility scores were higher for the ENV-TFS method compared
to the baseline STFT method, with improvements ranging from 2.5% to 3.5%. Marginally higher (0.02)
mean PESQ scores are also observed across different SNR values.

The effect of TFS features on the model performance is assessed further. The ENV-TFS system led
to improvements for eSTOI (3%) and PESQ (0.05) mean scores compared to the ENV system, using the
same model architecture. The performance of the ENV system matches the STFT approach in most
conditions for normal-hearing listeners. Moreover, ENV and ENV-TFS methods motivate a narrower
receptive field (48 ms) compared to the best performing STFT model with a temporal receptive field of
176 ms (10 time-steps).
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Table 2. Objective speech intelligibility (eSTOI) and quality (PESQ) results for normal-hearing listeners
between the ENV, the ENV-TFS and the STFT-based speech enhancement systems.

Method eSTOI PESQ

Original 0.529 ± 0.20 1.101 ± 0.16
STFT 0.608 ± 0.20 1.668 ± 0.48
ENV 0.610 ± 0.19 1.638 ± 0.51

ENV-TFS 0.635 ± 0.20 1.687 ± 0.49

The performance of the ENV-TFS approach across different SNRs can be depicted in Figure 3.
Intelligibility and quality scores vary significantly across SNR values. Similar performance to seen and
unseen SNR conditions is observed, indicating a strong generalization ability of the model. The utilized
processing led to increased intelligibility for the 99.1% of speech utterances. Moreover, PESQ scores
were improved for 99.9% of the samples. The ENV-TFS model provided better intelligibility results
(eSTOI) than the STFT-based model for the 65% of test set samples, while no significant advantage can
be reported for either method in terms of perceived quality for normal hearing-listeners (PESQ).
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Figure 3. eSTOI (a) and PESQ (b) scores for eight SNR values (−8 dB to 6 dB) averaged over all noises
of the test dataset. The box-whisker plots outline the objective results corresponding to the original
noisy speech mixtures of the test dataset, the enhanced audio mixtures by the ENV-TFS system, and the
enhanced audio mixtures by the STFT system.

As shown in Figure 4, these results were consistent across all noise types. The utilized GRU-based
speech processing facilitated a solid increase in objective intelligibility for the majority of noise
conditions. In most cases, the proposed approach performed considerably better than the STFT-based
model. Performance gains for the proposed approach were evident in highly modulated acoustic
environments (cafeteria, town square, living room, copy machine). At the same time, marginal
improvements over the baseline system are observed in noises of a steadier nature (Subway, bus, river)
and in SNRs where the original signals already feature adequate intelligibility (>0.75).
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Figure 4. Objective intelligibility scores of the utilized speech enhancement systems in different noise
types. The sub-figures illustrate the mean eSTOI scores (with shaded confidence interval 95%) for the
proposed system (ENV-TFS), the baseline system (STFT) and the unprocessed samples (Original) with
respect to different SNR values.

3.3. Objective Evaluation for Hearing-Impaired Listeners

The performance of speech enhancement approaches is evaluated for six typical hearing loss
configurations (presented in Figure 2). The processed and unprocessed noisy utterances of the TIMIT
test set were compared to the corresponding clean speech samples via HASPI and HASQI models.
Table 3 shows the objective intelligibility (HASPI) and quality (HASQI) values between the proposed
ENV-TFS system and the conventional STFT system. Mean values of both HASPI and HASQI measures
were improved in all test conditions. In detail, simulation results indicate that ENV-TFS approach
yields better results for HL1, HL3 and HL6 compared to the STFT approach. In contrast, results
on the hearing loss configurations HL2 and HL4 indicate similar or slightly lower performance of
the proposed speech enhancement system. Lower results were obtained for the HL5 configuration.
The proposed algorithm improved HASPI and HASQI values for the 94.6% and 98.2% of test set
samples, respectively. Predicted intelligibility results of the ENV-TFS system were higher than the
STFT for the 55% of test set samples, while HASQI values were lower for the 54% of test set samples.

Table 3. Objective speech perception (HASPI) and quality (HASQI) results (mean ± standard deviation
in percentage) for six typical hearing loss audiograms between the STFT and the ENV-TFS systems,
compared to the original noisy speech mixtures.

HASPI HASQI

Config. Original STFT ENV-TFS Original STFT ENV-TFS

HL1 36.5 ± 28.4 49.0 ± 27.1 53.0 ± 29.3 14.3 ± 9.0 24.0 ± 12.6 26.8 ± 13.0
HL2 19.4 ± 17.9 40.0 ± 24.3 38.8 ± 25.9 11.2 ± 6.4 25.7 ± 12.1 22.8 ± 10.2
HL3 63.5 ± 31.5 78.8 ± 21.2 83.7 ± 25.0 20.6 ± 12.0 34.5 ± 16.5 35.4 ± 17.3
HL4 35.0 ± 25.4 69.7 ± 23.1 67.3 ± 27.9 15.6 ± 8.3 33.5 ± 14.2 29.9 ± 13.4
HL5 4.6 ± 6.4 19.2 ± 14.2 14.3 ± 13.6 6.6 ± 4.9 28.7 ± 9.9 19.7 ± 7.7
HL6 15.8 ± 23.9 64.1 ± 24.0 68.3 ± 28.0 5.1 ± 6.0 19.0 ± 7.4 22.4 ± 8.7
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Figure 5. Illustrated comparison of HASPI scores between the proposed (ENV-TFS) and conventional
(STFT) speech enhancement systems across different SNR values (from −8 to 6 dB) for the HL1–6
simulated audiograms.

Moreover, the HASPI values across different SNR conditions can be depicted in Figure 5. Processed
signals yield improved intelligibility scores by 14–30% across different SNR values. The total values
were slightly higher at SNRs of 0, −2, and −4 dB for both ENV-TFS and STFT methods. In addition,
the generalization ability of the models to unseen SNR condition is also validated, as HASPI and
HASQI differences were not significant. Finally, the above results indicate that the conventional and
the proposed methods were comparable at this stage and the performance of each approach is highly
dependent on the degree and configuration of the simulated audiograms.

4. Discussion

In this study, we investigated the performance of deep learning-based speech enhancement algorithms
on vocoder-based processing of speech. The method introduces a novel feature set on the basis of
recent findings on peripheral auditory processing and embeds these attributes into an effective speech
analysis/synthesis framework. Features are designed to capture temporal modulation information from
sub-band audio signals and extract low-dimensionality attributes from short-time audio segments. The
processing method applies to causal inference systems, while providing an alternative to conventional
spectrum-wise speech analysis frameworks. It features sufficiently low latency on inference, even with no
available hardware acceleration for the implemented digital filters. The computational processing time
was slightly below T/2, where T is the duration of an audio segment, running on a standard personal
computer equipped with the Intel core i7-7700 processor (3.6 GHz base frequency).

A simple two-layer GRU-based neural network architecture was employed to model the temporal
envelope dynamics of degraded speech signals. The network accepts temporal envelope and fine
structure features for a short-time segment. Then, it computes the mask vector for the low frequency
amplitude modulations of speech. A generalization of the widely used IRM is exploited on this account,
adapting to arbitrary feature representations. This target is intuitive and general, as it can be adopted
by any algorithm that concerns masking-based audio source separation and enhancement. In addition,
the GRU architecture offers advantages over alternative architectures, such as fully-connected deep
neural networks or long short-term memory networks, due to the fewer learned parameters for the same
receptive field, a more stable training procedure, and good generalization to novel noises. Nevertheless,
speech enhancement performance was not substantially affected by the employed architecture, given
proper network configuration. The deployed GRU model architecture consists of two hidden layers,
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each with a size of 512. This model provided superior performance for all employed representations,
while pairwise differences of the proposed and baseline systems were not significantly affected by the
model hyperparameters. Thus, a high level of consistency in the results was observed across different
experimental model parameterizations.

Based on our experimental results, it can be concluded that gated recurrent unit neural network
architectures have indeed potential to increase speech intelligibility and perceived quality in a wide
range of real-world conditions, given a modest amount of training data and sufficient computational
power. To our knowledge, this method is the first approach based on established auditory-motivated
methods that provides an alternative to raw waveform or spectrum-wise processing for deep
learning-based speech enhancement. The proposed temporal auditory-motivated features effectively
encode both slow and fast amplitude modulations, providing thus valuable information to the speech
enhancement models, which are otherwise obscured in usual spectral representations. In the future,
dynamic processing of both low-frequency and high-frequency amplitude modulations of speech,
i.e., the temporal fine structure of degraded speech signals could enhance the proposed methodology
and provide an intuitive and complete speech analysis framework based on modulation cues.

5. Conclusions

In this study, we propose a novel set of auditory-motivated features for single-channel speech
enhancement by fusing temporal envelope and temporal fine structure information in the context of
vocoder-like processing. In order to investigate the potential of temporal auditory coding features on the
enhancement of speech intelligibility, we employ a GRU neural network to recover the low-frequency
amplitude modulations of speech. Experimental results showed that the proposed features achieved
improvements compared to the conventional log-scaled magnitude spectrogram, in terms of objective
metrics for intelligibility and perceptual quality of normal-hearing listeners. Mixed results were
observed regarding simulated listeners with hearing loss. Both the proposed and standard approaches
significantly increased the personalized objective metrics for intelligibility and perceived quality,
while the expediency of each method is postulated to mainly depend on the audiogram type. Finally,
the exploited framework applies to causal speech processing systems, as it provides valuable feature
representation with sufficient intelligibility and quality of reconstructed speech signals.
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