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Abstract: In this work, we analyze in depth multiple characteristic data of a representative population
of radenv-ADCs (analog-to-digital converters able to operate under radiation). Selected ADCs behave
without latch-up below 50 MeV·cm2/mg and are able to bear doses of ionizing radiation above
50 krad(Si). An exhaustive search of ADCs with radiation characterization data has been carried out
throughout the literature. The obtained collection is analyzed and compared against the state of the
art of scientific ADCs, which reached years ago the electrical performance that radenv-ADCs provide
nowadays. In fact, for a given Nyquist sampling rate, radenv-ADCs require significantly more power
to achieve lower effective resolution. The extracted performance patterns and conclusions from
our study aim to serve as reference for new developments towards more efficient implementations.
As tools for this purpose, we have conceived FOMTID and FOMSET , two new figures of merit to
compare radenv-ADCs that consider electrical and radiation performance.

Keywords: ADC performance patterns; ADC state of the art; ADC survey; analog-to-digital
converters; applications under radiation environments; figure of merit under radiation; radenv-ADC
design guidelines; radiation effects; radiation hardening; radiation test methods

1. Introduction

Several high reliability applications such as HEP (high energy physics), avionics, defense and space
demand ADCs operating in harsh radiation and extreme temperature environments [1,2]. The design,
manufacture and test of these ADCs require additional considerations and steps that, added to
their low volume market, increase their price compared to COTS (commercial off-the-shelf ADCs).
Different fields of knowledge—solid-state and nuclear physics, manufacturing technologies, radiation
hardening and mixed-signal design techniques, test methodologies, industry standards, etc.—have to
be combined to achieve a successful design.

The lack of ADCs meeting at the same time demanding electrical performance and radiation
hardness specifications allows the use of COTS for high reliability applications. Furthermore, COTS
could also be convenient in low radiation environments or in applications allowing replacement
of damaged parts. Therefore, many COTS have been characterized to predict their behavior under
radiation [3–5]. In fact, using COTS could economize development time and cost; however, radiation
characterization cannot be skipped and additional countermeasures at system level—shielding,
redundancy, watch-dogs, etc.—could be required to avoid unacceptable system malfunctioning.
In addition, different manufacturing lots could perform differently during TID (total ionizing dose)
screening, making hard to predict the final cost of the qualification campaign of COTS. In any
case, inserting advanced commercial electronics operating in radiation environments has become
an industrial trend that aims to benefit from cutting-edge IC (integrated circuit) solutions together
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with ad-hoc radiation hardening techniques at system level. Our revision work takes COTS into
consideration and analyses this subset also separately.

Technology scaling has allowed faster applications integrating more functionalities in a single chip;
collaterally, sensitivity to radiation has also varied [6,7]. In fact, atmospheric radiation can affect
deep-submicron CMOS (complementary metal-oxide semiconductor) ICs not only in-flight but also
on land [8,9]. Fortunately, some modern ‘More Moore’ [10] process options—SOI-FinFET (silicon on
insulator fin-shaped field effect transistor), UTBB-FDSOI (ultra-thin body and buried oxide combined
with fully-depleted silicon on insulator), etc.—and materials—high-κ dielectrics, germanium or
silicon-germanium p-channels, etc.—show enhanced resilience to radiation [11–13]. Recurrent ADCs
in space applications are usually implemented with mature technologies due to their in-flight heritage
and the wide voltage ranges handled by the integrated analog front-end. Nevertheless, recent space
market trends like fleets of compact-size satellites based on SoC (system on-chip) ICs require new
radenv-ADC IP-cores (intellectual property) with reduced area and power consumption that can only
be achieved with modern technologies. New radenv-ADC developments can benefit from the analyses
presented in our work, since it collects the key references to overcome.

Several FOMs (figures of merit) are defined in the literature to evaluate the efficiency of an
ADC; many of them are collected in [14]. Unfortunately, parameters used to evaluate radiation
performance of radenv-ADCs are not considered in these FOMs. Moreover, radiation-hardened
ADCs require additional power to accomplish their radiation requirements, making unfair their
comparison with unhardened devices. In Section 2.3, we propose new figures of merit to evaluate
the efficiency of radenv-ADCs that consider not only their electrical performance but also their
radiation characterization.

In this work, we extract patterns on conversion resolution, characteristic frequencies, radiation
performance, power efficiency, architectures and manufacturing processes of radenv-ADCs. After an
exhaustive search in the literature, we have gathered a collection of ADCs without degradation of
electrical performance below 50 krad(Si) of TID and with a latch-up LETth (linear energy transfer
threshold) above 50 MeV· cm2/mg. We have collected for each ADC several performance data from
data-sheets, scientific publications and radiation reports (specially data considered in [15], to allow
the comparison with scientific ADCs). The main contributions of this study with regard to previous
analyses [16–20] are the inclusion of transients and upsets, the comparison of electrical performance
patterns with scientific ADCs, the analysis of the COTS subset and the definition of new FOMs
considering radiation performance. The methodology of our work described in this paragraph is
graphically schematized in Figure 1.

This article has been organized such that: Section 2 summarizes how ADCs are evaluated
electrically under radiation and proposes new figures of merit; Section 3 presents the selected ADCs
for analysis; Section 4 analyses the selection of radenv-ADCs and compares it with the state of the art
of scientific ADCs; Section 5 explains how to take advantage of the previous analysis while designing
radenv-ADCs; overall conclusions are drawn in Section 6.
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Figure 1. Applied methodology in the survey of radenv-ADCs.

2. Performance Evaluation

We have classified the parameters used for performance evaluation of radenv-ADCs into
three categories. Firstly, we recall the standard parameters used to measure electrical performance.
Secondly, we collect conventional parameters used to evaluate radiation performance. Unfortunately,
the power efficiency is not considered within the parameters of this second category, which is the reason
why we propose new figures of merit in the third category to evaluate the efficiency of radenv-ADCs.

2.1. Parameters Shared with COTS

ADC data-sheets usually include standard parameters—input signal bandwidth, digital output
rate, resolution and power dissipation—accompanied with FOMs in quasi-static—DNL (differential
non-linearity), INL (integral non-linearity), gain and offset errors—and dynamic—DR (dynamic
range), ENOB (effective number of bits), SFDR (spurious-free dynamic range), SINAD (signal-to-noise
and distortion), SNDR (signal-to-noise and distortion ratio), SNR (signal-to-noise ratio) and THD
(total harmonic distortion)—operations. Other parameters of interest provided are the operational
temperature range, the input full-scale and the required clock frequency and jitter. Physical
implementation details (such as manufacturing process or silicon area) are usually hard to find
due to their commercial sensitive nature.

Parameters presented in the data-sheet of a radenv-ADC could depend on the target application.
For example, linearity is evaluated with ENOB in telecommunications while INL and DNL are
preferred in video acquisition. In Section 3.2 we explain how we have overcome this inconvenience to
established a common playground to compare radenv-ADCs.

2.2. Parameters to Evaluate Radiation Performance

Radiation effects are a vast topic [21,22] even particularized for ADCs; this section provides a
condensed summary that should be sufficient to understand radiation data presented afterwards.

Radiation effects on electronic devices can be classified in two main categories: CE and SEE
(cumulative and single event effects, respectively). CE, in turn, are classified as TID effects if they are
caused by ionizing radiation, or as DD (displacement damage) if radiation is non-ionizing. On the
other hand, SEE are discerned into destructive or non-destructive, and can also be referred as hard or
soft errors, respectively.
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The radiation characterization of an ADC is performed by measuring the threshold of the physical
magnitude provoking each effect. However, it is not necessary to reach the threshold if it is below
the environmental specifications of the target application; in that case, the maximum tested value is
reported. Bearable non-destructive effects are characterized such that the degradation (in case of CE)
and the statistical error rate SER (in case of non-destructive SEE) during operation can be extrapolated;
for those effects, the threshold and the behavior above it are reported.

The performance under radiation of an ADC is bound to the technology and libraries of devices
used to implement it; this information is critical to plan effectively the radiation test campaign of an
ADC, where accelerated tests (with harsher radiation conditions than during operation) are required
to predict its behavior throughout its lifetime in a reasonable time. Below in this section, we bind some
radiation effects with recurrent devices used in ADCs’ implementations.

2.2.1. Cumulative Effects

Tests performed for measuring CE are characterized by the total dose reached before unacceptable
performance degradation. In mature technologies, ionizing radiation (usually measured in
krad(Si) by exposure to a 60Co source) mainly affects MOS (metal oxide semiconductor) devices,
while non-ionizing radiation (measured with the fluence in particles/cm2) specially involves bipolar
ones. Additionally, bipolar devices (even parasitic structures [23]) can be affected by ionizing radiation
at low dose rate (≤10 mrad(Si)/s) [24–26], making also the dose rate an important parameter for TID
tests. For some ‘More Moore’ processes with thinner gate oxide but using thick BOX (buried oxide),
ionizing radiation can provoke a back-gate effect [27].

2.2.2. Single Event Effects

The characterization of an ADC for a particular non-destructive SEE—SEFI, SET or SEU (single
event functional interrupt, transient or upset, respectively)—can be summarized with the limits of
the resultant Weibull fit—the LETth (measured in MeV·cm2/mg) and the saturation cross section σsat

(given in cm2/device) —. On the other hand, destructive SEE—SEB, SEDR, SEL or SESB (single
event burnout, dielectric rupture, latch-up or snap-back, respectively)—are characterized only with
the LETth.

Sensibility to non-destructive SEE has varied with technology scaling, making the characterization
of SEFI, SET and SEU already necessary in SEE tests fifteen years ago. In addition, upsets could be
difficult to be discerned from registered transients; tests reports shall clearly define these events to
avoid confusions. Furthermore, in ADCs with high conversion rates, a SET could spread out through
several samples; if this occurs, only one event is counted but the length of the burst of samples is
also reported.

In some cases, SEL and SESB can be mitigated to non-destructive SEE if over-current watchdogs
are implemented in the power supply at system level. In other words, SEL and SESB could be turned
from hard to soft errors with an opportune power cycling.

2.3. Proposed Figures of Merit

A popular FOM to evaluate the efficiency of an ADC was proposed in [16]; it combines its power
dissipation P together with its Nyquist sampling rate fs and its effective number of quantization levels
2ENOB in the formula:

FOMW =
P

fs · 2ENOB (1)

where:

ENOB =
SNDRmax − 10 · log10(3/2)

20 · log10(2)
(2)

From Equation (1) it is deduced that the more efficient an ADC, the smaller its FOMW . However,
increasing wisely by design the power consumption of an ADC enhances its radiation tolerance.
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This assertion is based on the fact that higher biasing makes leakage currents due to TID and charge
generated during transients less representative with regards to the affected internal analog signals;
in addition, higher currents imply faster transient response and hence shorter recovery time from
a SET. In fact, from a performance under radiation point of view:

• The higher irradiated dose an ADC can stand without performance degradation, the robuster
against radiation the ADC is.

• The more energized a particle shall be to cause an event in an ADC, the robuster against radiation
the ADC is.

• The smaller the area an ADC has where a particle impact can affect its performance, the less
sensitive to radiation the ADC is.

These trade-offs flow into the FOMs that we propose in Equations (3) and (4), which aim to
evaluate the efficiency of an ADC operating under radiation:

FOMTID =
TIDmax

FOMW
(3)

FOMSET =
LETth

FOMW · σsat
(4)

where FOMW is given by Equation (1), TIDmax is the maximum ionizing dose without performance
degradation and the other two parameters, LETth and σsat, are the characteristic limits of the Weibull
fit for a particular SET definition.

Regarding units, FOMW is given in joules per quantization level, TIDmax in rads or Grays, LETth in
MeV·cm2/mg, σsat in cm2/device and both FOMTID and FOMSET in quantization levels per milligram
(levels/mg). Note that some minor unit conversions are required to obtain the proper values of
FOMTID and FOMSET . It is deduced from Equation (3) that the more efficient an ADC is against TID,
the bigger its FOMTID; comparably, a similar conclusion can be extracted from Equation (4): the more
efficient an ADC is against SET, the bigger its FOMSET .

Fine tuning of the proposed figures may be accomplished by the exponentiation of the parameters
on the right side of Equations (3) and (4), depending on the importance that the analyst wants
to give to each parameter. Following the general formula for ADCs’ figures of merit presented
in [14], the exponents of the bases FOMW , TIDmax, LETth and σsat are respectively −1, 1, 1 and −1
in Equations (3) and (4). For example, FOMTID can be customized having TIDmax to the power
of 2, if more emphasis to radiation performance is targeted evaluating the efficiency of the ADCs
under analysis.

Furthermore, as will be shown in Section 4.3, the proposed figures of merit can be used to estimate
which design solutions are more efficient considering their performance under radiation.

3. Inventory

3.1. Selection Criteria

We have surveyed and assessed the ADCs among the catalog of the leading suppliers to
the space market—Analog Devices, Atmel, Cobham Gaisler, ST Microelectronics, Teledyne e2V,
Texas Instruments, etc.—and among the more relevant publications about radiation effects on
components—2010–2019 NSREC/REDW’s (and previous publications considered relevant) and all
AMICSA’s and RADECS’ proceedings —. Candidates with degradation of electrical performance
below 50 krad(Si) of TID or with a LETth for latch-up below 50 MeV· cm2/mg were discarded. It is
important to remark that neither all qualified ADCs are compliant with these two requirements nor,
just because an ADC is not qualified, it is non-compliant. In fact, several EMs (engineering models)
and COTS were included in the assessment.
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3.2. Collected Data

Selected ADCs target different applications with different key parameters: high linearity
and resolution are mandatory in video acquisition, while larger bandwidths are prioritized in
telecommunications. However, while comparing two radenv-ADCs for a particular application,
secondary parameters could become critical when the key ones are similar. It is hence important to
establish a common playground to compare selected ADCs, as we explain below.

We have collected performance data and additional information from data-sheets [28–33]
(both commercial and SMD formats), radiation reports [1,3,4,34–39] and scientific publications [20,40–62].
We have considered a total of 22 fields for each ADC: power consumption P, differential and integral
non-linearities DNL/INL, effective number of bits ENOB, Nyquist sampling rate fs, input Nyquist
bandwidth fin, FOMW , FOMTID for low and high dose rates, FOMSET for transients and upsets,
operational temperature range (T range), TID for low and high dose rates LDR/HDR, LETth for latch-up
events, Weibull curve limits for transients and upsets, SEE test method, technology and architecture.

Electrical performance data (P, INL, DNL and ENOB) were collected at nominal operation
(nominal bias and sampling rate at 25 ◦C). Power consumption data from data-sheets were limited
to single core information (excluding IO cells, other ADC cores inside the same chip, additional
functionalities, etc.) to enable comparison with scientific publications that usually refer to single core
data. ENOB was considered for the best case frequency inside the first Nyquist band. For few cases
(AD7712S, RHD5940, RHD5950, RHD5958, ADS1258 and VASP), neither the SNDRmax nor the ENOB
could be found. Therefore, the ENOB (needed for FOMW calculation) had to be inferred from their
declared number of bits NB and DNL or INL (expressed in LSBs) with the formula:

ENOBin f er = NB− log2(1 + max(|DNL|, |INL|)) (5)

Since the actual ENOB comes from a dynamic measure, it would always be close but below the
inferred ENOB (that comes from a quasi-static measure).

Since it is hard to discern SETs from SEUs during SEE tests of an ADC, radiation data were
collected and classified as originally reported. In case that multiple data are available, the worst case
is considered.

3.3. Selected ADCs for Analysis

To increase the number of samples under analysis, few exceptions were made for both
requirements described in Section 3.1:

• TID requirement was relaxed for a few ADCs with characterization data for transients and upsets
(AD7712, MAX145, ADS1258, LTC1419, AD7984, ADS5483 and ADS5444-SP).

• Three TID compliant ADCs for which no SEE data could be found in the literature were exempt
from the latch-up requirement (AD570S, AD9254S and TS8388B).

Finally, fifty four ADCs were selected for the analysis; their collected data are presented in Table 1.
For a better understanding of the table, the following explanations shall be considered:

• The table’s header is divided into four lines: ‘Group’ (uppermost line), ‘Sub-group’ (second
uppermost line), ‘Field’ (second lowermost line) and ‘Units’ (lowermost line).

• Each of the 22 fields described in Section 3.2 is represented in one column of the table.
• The 22 fields are classified in tree different groups: ‘Performance’, ‘Hi-Rel’,

and ‘Additional Information’.
• Fields conceptually related and/or sharing the same units in the ’Performance’ and ‘Hi-Rel’

groups are gathered in the same sub-group.
• Collected data are presented in the table’s body, below the table’s header. Empty boxes therein

(fulfilled with symbol “-”) are non-available data due to lack of information in the literature.
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• The leftmost column of the table’s body collects the names of the selected radenv-ADCs.
Particularly, COTS are marked with a double asterisk (**) after their name.

• The ’FOM’ sub-group within the ‘Performance’ group is composed by the FOMs described in
Section 2.3. Columns ‘W’, ‘TID(L)’, ‘TID(H)’, ‘SET’ and ‘SEU’ of this sub-group collect respectively
for the selected radenv-ADCs their FOMW , their FOMTID for TID measured at low and/or high
dose rates, and their FOMSET for transients and/or upsets characterization.

• In the ‘ENOB’ column, inferred data using Equation (5) are marked with a single asterisk (*).
Additionally, in the ‘FOM’ sub-group columns, data calculated using an inferred ENOB are also
marked with a single asterisk (*).

• In the ‘Hi-Rel’ group, TID, LETth and σsat measurements are gathered respectively in the ‘TID’,
‘LETth’ and ‘σsat’ sub-groups. TID measurements are discerned in two columns (‘LDR’ or ‘HDR’)
depending on the dose rate as defined in Section 2.2.1. On the other hand, LETth and σsat

measurements are segregated in different columns depending on the nature of the SEE (‘SEL’,
‘SET’, or ‘SEU’ columns for latch-up, transients or upsets respectively). As explained in the first
paragraph of Section 2.2.2, SEL measurements only consider the LETth.

• Acronyms used in the ‘SEE test’ column are listed in Table 2.
• The ‘Tech.’ column collects manufacturing process details extracted from the literature.

This information could be: the process type (bipolar, complementary-bipolar, CMOS, linear
compatible CMOS, bipolar-CMOS, etc.), the process name (B7HF200, BiCom3, BiCom3X,
BiCMOS9, C021.A, CMOS9, CMOS9X, XFCB, XH035, etc.), or the CMOS node (350 nm, 250 nm,
180 nm, 130 nm, 32 nm, etc.). Additional technological explanations are provided in Section 4.4.

• Acronyms used for the different ADC architectures in the ‘Arc.’ column are listed in the first
sentence of Section 4.5.

Table 1. Selection of radenv-ADCs.

Group Performance Hi-Rel 
Additional Information 

Sub-group  Linearity Frequencies FOM  TID LETth σsat 

Field P DNL INL ENOB fs fin W TID(L) TID(H) SET SEU T range LDR HDR SEL SET SEU SET SEU SEE test Tech. Arc. 

Units mW LSB bits MHz pJ/lev. levels/mg °C krad MeV·cm2/mg cm2/device - - - 
                       

ADS1281** 12 - 0,1 20,3 0,001 5E-4 9,3 - 2,2E8 - - -40; 125 - 200 87 - - - - DIS - ΔΣ 

ADS1282-SP 25,5 - 1074 20,3 0,001 5E-4 19,7 2,5E7 2,5E7 59,3 876 -55; 125 50 50 52,3 2,7 1,4 3,7E-4 1,3E-5 S 50HPA07 ΔΣ 

RHD5940 100 0,5 0,5 13,4* 0,025 0,0125 366* - 2,7E6* - - -55; 125 - 100 100 - - - - - - SAR 

AD7712** 45 - 252 16,0* 0,039 0,0195 17,3* - 5,8E6* 246* - -55; 125 - 10 87 8,0 - 3E-4 - DIS LC2MOS ΔΣ 

AD570S 800 0,5 0,5 8,0 0,04 0,02 78125 6,4E3 - - - -55; 125 50 - - - - - - - Bipolar SAR 

RHD5950 60 8,2 48 8,4* 0,05 0,025 3589* - 2,8E5* - - -55; 125 - 100 100 - - - - - - SAR 

RHD5958 60 8,2 41 8,6* 0,05 0,025 3073* - 3,3E6* - - -55; 125 - 1E3 100 - - - - - - SAR 

ADS1278-SP 515 - 50 17.98 0.053 0.0265 37,8 - 1,3 27,3 - -55; 125 - 50 75 5,5 - 8,5E-4 - S 350nm ΔΣ 

AD7872T** 50 - 1 12,5 0,083 0,0415 104 - 9,6E6 2,2 27 -55; 125 - 100 104 1,4 8,8 1E-3 5E-4 - LC2MOS SAR 

7809LP 132 3 3 14,32 0,1 0,05 64,4 - 1,6E7 - - -40; 85 - 100 Inf - - - - - - SAR 

MAX145** 2,7 0,75 0,5 11,3 0,108 0,0504 9,6 - - 1E4 - -55; 125 - - 53,9 17,0 - 2,8E-5 - DAC - SAR 

ADS1258** 42 - 50 18,3* 0,125 0,0625 1* - 9,7E7* 1E4* - -40; 105 - 10 67 8,0 - 1,2E-4 - DIS - ΔΣ 

LTC1604** 220 0,6 0,6 14,5 0,333 0,1615 28,7 - 3,5E7 - - -40; 85 - 100 55 - - - - DIS - SAR 

LTC1409** 80 0,25 0,25 11,7 0,8 0,4 29 - 3,4E7 - - -40; 85 - 100 75 - - - - - - SAR 

LTC1419** 150 0,4 0,6 13,0 0,8 0,4 23 - 1,7E7 19,5 - -55; 125 - 40 50 2,8 - 1E-3 - S - SAR 

RAD1419 150 0,7 0,8 13,0 0,8 0,4 23 - 4,4E7 - - -55; 125 - 100 60 - - - - - - SAR 

ADC128S102QML-SP 2,7 0,5 0,6 11,7 1 0,5 0,831 1,2E9 1,2E9 - 2,7E4 -55; 125 100 100 122 - 5,8 - 4,1E-5 S(x2) 350nm SAR 

ADC124S101** 4,3 0,9 0,64 11,7 1 0,5 1,3 - 7,7E8 - - -40; 85 - 100 120 - - - - - - SAR 

RHFAD128 5,94 0,9 1,1 11,7 1 0,5 1,8 - 164,2 9,4E5 - -55; 125 - 300 125 32 - 3E-6 - S 130nm SAR 

AD7984** 10,5 1 0,6 16,0 1,33 0,665 0,1 - - 9,6E4 - -40; 85 - - 106 23,4 - 3,2E-4 - - - SAR 

UT14AD03 100 0,5 2 12,9 3 1,5 4,4 - 6,9E8 - - -55; 125 - 300 111 - - - - - CMOS PIP? 

9240LP 230 0,7 2,5 12,2 10 5 4,7 - 2,1E8 - - -55; 125 - 100 Inf - - - - - CMOS PIP? 

VASP 275 0,5 2 10,4* 12 6 16,8* 6E7* - - - -55; 125 100 - 67,7 - - - - - XH035 PIP 

LM98640QML-SP 232 0,78 6 9,5 20 10 15,9 - 6,3E7 - 0 -55; 125 - 500 Inf - - - - - CMOS9 PIP 

RH9225 335 0,4 1,2 10,7 20 10 10,3 - 4,9E8 - - room - 50 63 - 3 - 9,6E-6 S - PIP 

RHF1401 67,5 0,4 3 11,3 20 10 1,3 - 2,3E9 - - -55; 125 - 300 120 - - - - QS 250nm PIP 

IMCAS-1 240 0,4 0,5 9,7 25 12,5 11,5 - 4,3E7 - 4338 -55; 125 - 100 120 - 0 - 5,9E-4 - 350nm PIP? 

UT16AD40P 5120 0,4 2,5 12,3 40 20 24,8 - 8E8 1,3E4 - -55; 125 - 2E3 121 30,0 - 1,5E-5 - 1P 180nm PIP 

AD9042S 595 1 0,75 10,8 41 20,5 7,9 3,2E8 2E9 52,9 37 -55; 125 250 1600 67,7 1,1 1,1 4,2E-4 6E-4 S XFCB PIP 

RHF1201 100 0,5 1,7 10,2 50 25 1,7 - 1,7E9 0,0 - -55; 125 - 300 120 0 - 3,5E-4 - DIS 250nm PIP 

AD6640** 708 1,5 1,25 10,8 65 32,5 6,0 - 1,7E8 15,6 - -40; 85 - 100 60 1,44 - 2,5E-3 - S - PIP 

AD6645S 1749 1,5 1,5 11,5 80 40 7,5 2E8 1,3E8 - - -55; 125 150 100 83 - - - - - XFCB PIP 

ADS5424-SP 1930 0,5 3 11,3 105 52,5 7,4 - 2E8 271,8 271,8 -55; 125 - 150 60 2,5 2,5 2E-4 2E-4 4P BiCom3 SAR 

AD9246S 396 1,5 0,4 11,3 125 62,5 1,3 - 8E8 5,1E5 - -55; 125 - 100 80 10,0 80 2,5E-6 - S - PIP 

ADS5483** 2200 0,5 3 12,9 135 67,5 2,2 - - 462,9 - -40; 85 - - 83,4 2,5 - 4E-4 - 1P, 4P BiCom3 PIP 

AD9254S 468 1,4 6 11,2 150 75 1,4 - 7,4E8 - - -55; 110 - 100 - - - - - - - PIP 

ADC14155QML-SP 967 0,5 2,3 11,3 155 77,5 2,5 6E8 6E8 91,5 91,5 -55; 125 150 150 122 1,0 1 7E-4 7E-4 1P,BF,4P CMOS9 PIP 

Boeing-1 39 1 2,5 7,4 200 100 1,1 - 8,8E9 3.4E7 - 25,0 - 1E3 170 30,9 - 1,3E-7 - CS 32nm PIP 

ADS5444-SP 1700 0,4 2,8 11,1 250 125 3,2 - - - 343 -55; 125 - - 86 - 1,83 - 2,7E-4 QS BiCom3X SAR 

SPT7725** 2200 0,95 0,95 5,9 300 150 126,9 - 7,9E6 - - -25; 85 - 100 Inf - - - - - - F 

ADS5474-SP 2548 0,7 1,5 11,2 400 200 2,8 3,6E8 3,6E8 6687 6687 -55; 125 100 100 87 18,7 18,7 1,6E-4 1,6E-4 CS BiCom3 SAR 

ADS5463-SP 2504 1 1,5 10,0 500 250 4,9 - 2E8 162,6 - -55; 125 - 100 86 0,90 - 1,8E-4 - QS BiCom3X SAR 

TS8388B 3025 0,4 0,7 6,8 1000 500 26,5 - 5,7E7 - - -55; 125 - 150 - - - - - - BiCMOS FIF 

ADC08D1000WG-QV 817 0,15 0,3 7,4 1000 500 4,8 4,1E8 6,2E8 196,5 196,5 -55; 125 200 300 122 3,0 3 5E-4 5E-4 BF CMOS9X FIF 

ADC10D1000QML-SP 959 0,2 0,7 8,9 1000 500 2 - 5E8 793,6 595,2 -55; 125 - 100 120 3,0 3 3E-4 4E-4 BF CMOS9 PIP 

ADS5400-SP 983 0,4 1,5 9,1 1000 500 1,8 - 2,8E8 - - -55; 125 - 50 Inf - - - - - BiCom3X PIP 

ADC08D1520QML-SP 1074 0,15 0,3 7,2 1500 750 4,7 4,3E8 6,4E8 583,5 756,4 -55; 125 200 300 122 6,0 6 3,5E-4 2,7E-4 BF CMOS9 FIF 

EV12AD500A/550A 1961 3 6,5 9,4 1500 750 1,9 
 

7,8E8 118,3 - -55; 125 - 150 84,5 1,0 - 7E-4 - - BiCMOS9 FIF? 

EV10AS180A 1442 0,5 1 8,4 1500 750 2,8 3,9E8 - 197,1 - -55; 125 110 - 80 0,7 - 2E-4 - S, BF B7HF200 FIF? 

ADC12D1600QML-SP 1208 0,5 2,5 9,1 1600 800 1,4 - 2,2E9 145,8 - -55; 125 - 300 120 0,9 - 7,1E-4 - S, BF CMOS9X FIF 

ADC12D1620QML-SP 1208 0,5 2,5 9,1 1600 800 1,4 - 2,2E9 - - -55; 125 - 300 120 - - - - - CMOS9X FIF 

AT84AS008 3500 0,8 2,5 7,6 2200 1100 8,2 1,8E8 - 225,7 - -55; 125 150 - 56 1,49 - 1,3E-4 - - B7HF200 FIF? 

AD9689** 1550 0,4 5 9,5 2600 1300 0,8 - 123,5 362,3 - -40;125 - 100 80,5 0,5 - 2,7E-4 - DT - PIP 

ADC12DJ3200QML-SP 1800 0,4 3 8,7 3200 1600 1,3 - 228,5 14,4 - -55;125 - 300 120 1,4 - 1,2E-2 - CER C021.A PIP 

* Inferred ENOB 
** COTS 
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4. Data Analysis

As advanced in Figure 1, the selection described in Section 3 is analyzed and compared with
designs presented at the IEEE ISSCC (International Solid-State Circuits Conference) and the VLSI
(Symposia on Very Large Scale Integration Technology and Circuits) from 1997 to 2019. These designs
are considered the state of the art of scientific ADCs in this analysis. From now on in this section,
the former population of ADCs is referred as the selection and the latter as the state of the art.

The presented analysis aims to extract patterns of the power efficiency of radenv-ADCs.
Unfortunately, it cannot be warrantied that all collected data were measured with the same criteria;
consequently data presented in Table 1 could be slightly shifted. This is specially critical for radiation
data, as will be explained in Section 4.3. However, this fact will have little impact on the final
conclusions about patterns and performance envelopes of radenv-ADCs.

Data from Table 1 are represented in several ways in Figures 2–8 to extract different patterns of
the selection; the envelope defined by the best performing specimens is depicted with a dashed line in
each figure. Additionally, the envelope defined by the best performing specimens of the state of the art
is represented with a solid line in Figures 2–5. Detailed data about each specimen and envelope of the
state of the art can be found in [15]. Furthermore, we have discerned data by ADC architecture using
different symbols (cf. legends).

Figures 2, 3 and 5 present envelopes shaped alike for both the selection and the state of the art;
the same behavior is observed in Figure 4 up to 100 MHz. These facts endorse the assumptions
that patterns between both populations can be compared and that conclusions from this comparison
can be extracted considering that the main difference between both populations is the radiation
hardening feature.

Inferred data in Figures 2–5, 7 and 8 are marked with a black round circle around their symbolic
representation. Since inferences could be slightly improved with regard to measures, the former are
not considered to establish the envelopes in those figures. In any case, only one case with inferred data
(ADS1258) is close to the envelopes.

4.1. Frequency and Resolution

Nyquist sampling rate and input bandwidth were selected as reference frequencies to establish a
common playground for the whole selection. The choice of the latter is in detriment of some ADCs with
a passband wider than their Nyquist input bandwidth; however, the best SNDR is usually obtained
within the Nyquist input bandwidth, which justifies its choice.

Figure 2 depicts the ENOB of each selection’s member versus its Nyquist sampling rate fs.
Their ceiling is 20.5 bits up to 1 kHz, decaying 1.5 bits per decade from this point (dashed line
with interleaved crosses in Figure 2). Unfortunately, no TID data could be found in the literature
for specimens supporting that ceiling (AD7984 and ADS5483). We have hence considered a more
accurate envelope; it has the same slope from 10 kHz, but shifted 1 bit down (dashed line in Figure 2).
The ceiling of the the state of the art is 20 bits up to 10 kHz and decays from this point 1.5 bits per decade.
Comparing both envelopes, it can be said that radiation hardening does not affect the maximum
achievable ENOB up to 1 kHz; nevertheless, ENOB is punished with 2 bits above 10 kHz. For both the
selection and the state of the art, ENOB decays 1.5 bits per decade above 10 kHz. Furthermore, if data of
the state of the art after 2008 were not considered, both envelopes would be overlapped. In other words,
for a given fs, the best scientific ADCs back in 2008 already achieved the ENOB that the best available
radenv-ADCs do nowadays.

In addition to the intrinsic limitations of ADCs—quantization noise, input-referred circuit noise,
aperture uncertainty and comparators ambiguity —, radenv-ADCs are also limited in speed by the
qualified packaging technologies [63]. This explains the sparsely populated area in Figure 2 for
radenv-ADCs above 1 GHz and 10 bits compared to the the state of the art. Furthermore, our study has
limited the collected data to single core solutions, while ADCs operating above 1 GHz are usually
implemented with time-interleaved multi-core architectures.
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Figure 2. Effective Number of Bits against Nyquist sampling rate.

Figure 3. Nyquist input bandwidth against signal-to-noise and distortion ratio.

Figure 3 plots the Nyquist input bandwidth against maximum SNDR for the selection’s members.
It also includes the performance of an ideal sampler with sinusoidal input for two jitter cases of its
sampling clock: solid and dashed lines represent 0.1 and 1 psrms cases respectively. For a given ENOB,
selection’s members with the highest bandwidth perform as ideal samplers with a sampling aperture
uncertainty close to 1 psrms. Jitter becomes more critical for bandwidths close to 100 MHz and above,
for which the most performing selection’s members exceed the 1 psrms line but without surpassing the
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0.1 psrms one. A practical conclusion at system level is that hi-rel TID tolerant oscillators shall provide
a sampling clock better than 0.1 psrms to avoid jitter limiting the performance of new radenv-ADC
designs; this requirement can also be extended to PLLs in SoC implementations. Note indeed that
this is a best case figure based on the comparison with a simplified mathematical model; jitter can be
more harmful in the actual performance of an ADC depending on implementation particularities of
each design. Jitter requirements for the state of the art are just above the 0.1 psrms line (less than one
order of magnitude above the selection’s). In fact, for the state of the art, jitter becomes more critical for
bandwidths close to 1 GHz and above, for which the most performing members exceed the 0.1 psrms

line. In addition, if data after 2012 of the state of the art were not considered, its envelope in Figure 3
would be similar to the one of the selection. In other words, for a given SNDR, best scientific ADCs
back in 2012 already achieved the input bandwidth that the best available radenv-ADCs do nowadays.

4.2. Power Efficiency

Differences between the selection and the state of the art are even more evident when power
consumption is considered. Figure 4 represents FOMW of each selection’s member against their Nyquist
sampling rate fs; on the other hand, Figure 5 portrays their power consumption over fs against their
peak SNDR. In both figures, the slashed line stands for the selection’s bottom line (831 fJ/level) while the
solid line does for the state of the art’s (0.89 fJ/level up to 100 MHz). Almost three orders of magnitude
separate both lines in favor of the state of the art. Again, one specimen without TID data (AD7984)
is excluded to determine the selection’s envelope. In both Figures 4 and 5, selection’s and state of the art’s
envelopes would match if data after 2002 of the state of the art were not considered. Put another way,
best scientific ADCs back in 2002 already achieved the FOMW that the best available radenv-ADCs
achieve nowadays.

Figure 4. Walden’s figure of merit against Nyquist sampling rate.

From Section 4.1 it was concluded that, for a given fs above 10 kHz, the best ENOB achievable for
the selection is 2 bits below the state of the art’s. Additionally, Figure 4 shows that, for a given fs below
100 MHz, the best FOMW achievable for the selection is more than 933 times (831/0.89) the state of the
art’s. Using this information in Equation (1), we can extract that, for a given fs between 10 kHz and
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100 MHz, the selection requires at least 233 times more power to achieve an ENOB at least 2 bits lower,
in regard to the best members of the state of the art.

Figure 5. Conversion energy against signal-to-noise and distortion ratio.

Radiation hardening entails additional power consumption. Bias currents are not optimized to
enhance radiation tolerance. In addition, a design can be hardened including specific ad hoc blocks,
which entail additional area and power. Furthermore, performance under radiation can be enhanced
increasing the separation between devices and reducing the impedance to ground of critical nodes;
both techniques increase circuit parasites and hence power consumption.

In mature CMOS technologies (180 nm nodes and above), the minimum width of ELT devices
(enclosed layout transistors, used to mitigate TID effects), is several times the width of regular
transistors, which also scale the design into a more power hungry one. From the digital circuitry point
of view, hardened cells can consume twice power and be two to four times bigger than cells with the
same functionality and speed from a commercial library [64].

4.3. Radiation Performance

TID is usually measured up to a predefined dose that can be lower than the maximum bearable
before performance degradation. Something similar occurs with SEL characterization, where the
maximum LET tested does not necessarily provoke latch-up events. SET and SEU tests have several
degrees of freedom—test method, event detection criteria, sampling frequency, bias conditions,
etc.—that make each ADC characterization very specific. In Table 2, we have listed the nine test
methods used in the literature to evaluate the soft-error sensibility of radenv-ADCs; methods known
by two different names are presented in the same line. Identified test methods for the selection
are collected in column ‘SEE Test’ of Table 1. Unfortunately, different test methods used for the
same ADC give similar SET LETth but different SET cross-sections (even if within the same order
of magnitude) [3,34,35,37,65]. In addition, SET/SEU cross-sections can depend on the sampling
frequency of the ADC under test [34] and on the ionizing dose [5,66]. Therefore, comparing radiation
performance across devices shall be accomplished carefully. This variability in test complicates the
extraction of patterns on radiation performance. FOMTID and FOMSET can be used as a first filter to
compare performance, but a closer look is required when figures are close.
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Table 2. Detection methods of soft errors in radenv-ADCs testing.

# Test Method Abbreviation Reference(s)

1 Beat Frequency/Two-Point BF/2P [34,37,65,67]
2 Code Error Rate/Coherent Sampling CER/CS [4,51,54,68]
3 Comparison with DAC input DAC [1]
4 Comparison with ‘golden chip’ GOLD [69]
5 Dynamic Input Signal DIS [70]
6 Four-Point 4P [3,34,71,72]
7 Quasi-Static QS [36]
8 Single-Point 1P [3,34,45]
9 Static S [35,37,73,74]

Figure 6 plots the reported TID against nominal power consumption for each selection’s member.
As expected, the best performing ADCs (slashed line), present greater TIDs for higher nominal power
consumptions. However, power consumption is also related with other ADC parameters; the most
important ones are included in FOMW ( fs and ENOB). Since FOMTID combines TID with FOMW ,
it can be used to evaluate the efficiency of an ADC including its TID performance. Figure 7 represents
the calculated FOMTID against nominal power consumption for each selection’s member. Just Boeing-1
ADC [50,51] with 8.85× 109 levels/mg surpasses the selection’s envelope (slashed line), established in
2× 109 levels/mg by the rest of the best performing ADCs. This ADC is analyzed with other particular
cases in Section 4.7.

Figure 6. Total ionizing dose against power consumption.

The fact that FOMW ’s envelope is constant across fs for the selection (see Figure 4) could help
to extract patterns about σsat, and hence FOMSET , across fs. SET and SEU data were both used to
calculate FOMSET due to the common physical phenomenon producing both effects. It is expected for
both transients and upsets that LETth and σsat envelopes increase with P and fs respectively. Even if
the selection seems to behave so, the limited number of selection’s members characterized in transients
and/or upsets does not allow to extract clear patterns about these effects.
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Figure 7. FOMTID against power consumption.

Figure 8. FOMSET against power consumption.

Figure 8 plots the calculated FOMSET for both SET and SEU against the nominal power
consumption for each selection’s member. Also in this scenario, Boeing-1 ADC clearly outperforms the
rest of the selection: its FOMSET (3.37× 107 levels/mg) is around two orders of magnitude above the
second best value: 5× 105 levels/mg obtained by AD9246S. In a closer look to these two best values,
both have similar FOMW but the radiation performance of Boeing-1 ADC is clearly better than those
of AD9246S (LETth: 30.9 > 10 MeV·cm2/mg, σsat: 1.3× 10−7 < 2.5× 10−6 cm2/device). Considering
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only upsets, the best FOMSEU is obtained by ADC128S102QML-SP with 2.7× 104 levels/mg; its good
performance is not only due to a good FOMW (second best with 831 fJ/level), but also to a reduced
σsat (4.14× 10−5 cm2/device).

Since Boeing-1 has both the best FOMTID and the best FOMSET (both several times better than
the second classified), we can conclude that it is the most power efficient randenv-ADC of the selection.

4.4. Technologies

Bipolar, CB (complementary-bipolar), LC2MOS (linear compatible CMOS), BiCMOS
(bipolar-CMOS) and pure CMOS processes [75–77] are found among the selection (cf. column ‘Tech.’
in Table 1). Particularly, MOS processes have characteristic lengths of 0.35 µm, 250 nm, 180 nm, 130 nm,
90 nm, 65 nm and 32 nm, being 0.35 µm and 180 nm the two more recurrent (with at least ten and
eleven specimens, respectively). Both 0.35 µm and 180 nm MOS nodes are usually accompanied with
other process options—BJTs (bipolar juntion transistors), additional thicker gate oxide, etc.—that allow
to integrate in a monolithic solution a wide voltage range analog front-end together with the ADC.

The organization contributing the most to the selection is Texas Instruments (with 22 specimens).
BiCom3 and CMOS9 are its most recurrent technologies within the selection (with at least six and seven
specimens, respectively); both are briefly described below.

BiCom3 is a CB SiGe BiCMOS triple-metal technology on SOI [78]. It includes 5V NPN and PNP
SiGe BJTs and isolated 3.3 V 0.35 µm CMOS devices. It offers several process options for faster BJTs
(3X and 3Y options for 25 and 33 GHz, respectively), for high voltage applications (3XHV option, up to
36 V) and without SOI (3XL bulk option); however, only BiCom3 (basic) and BiCom3X options can
be found within the selection. The technology can be considered latch-up free and ELDRS immune
(enhanced low dose rate sensitivity), and has been tested up to 150 krad(Si) of TID (ADS5424-SP)
and up to 6.08× 1011 neutrons/cm2 of DDD (DD dose) (ADS5400-SP).

CMOS9 is a DGO (dual gate oxide) CMOS process using STI (shallow trench isolation)
for inter-device isolation [23]. It provides 1.8 V and 3.3 V CMOS devices with, respectively, 180 nm and
<400 nm minimum gate lengths, and 5 nm and <10 nm gate oxide thicknesses. The process is originally
from National Semiconductor, derived from the TSMC’s 180 nm process (Taiwan Semiconductor
Manufacturing Company). The technology can be considered ELDRS immune and has been tested up
to 300 krad(Si) at LDR and HDR of TID (ADC08D1000).

Special mention is deserved by the 32 nm CMOS SOI technology by IBM used to implement the
best FOMTID and FOMSET specimen: the Boeing-1 pipelined ADC [50]. Combined with on-chip
calibration, the technology has shown practically no variation up to 1 Mrad(Si) of TID for this
application. In addition to analog-to-digital conversion, the technology was also proven suitable
for other high-speed applications (such as SerDes, PLL and DRAM) in heavy-ions environments.

Radiation hardening in ADC applications can be achieved with multiple technologies; several
options are combined to achieve a versatile and power efficient design. RHBD (radiation hardening
by design) techniques at physical level (additional contact rings, smart device distribution, etc.)
and certain technology options (buried layers, trenches, etc.) are used to enhance radiation performance.
The smallest MOS node (32 nm) used up to now for radenv-ADCs seems, not only the most suitable
for a SoC solution, but also the most power + radiation efficient when combined with calibration;
however, greater nodes (0.35 µm and 180 nm, including other technology options) offer the possibility
to integrate a wide voltage range analog front-end without neglecting the power + radiation efficiency.
In any case, we shall remark that the SOI feature is always present in the best performing specimens of
the selection.

4.5. Architectures and Applications

Five architectures can be found among the selection: ∆Σ, SAR (successive approximation register),
PIP (pipelined), F (flash), and FIF (folded interpolated flash). We have illustrated this diversity by
discerning data by architecture in Figures 2–8 (cf. legends). Additionally, we have denoted surmised
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architectures with a question mark in column ’Arc.’ of Table 1. As a briefing, we have collected in
Table 3 the number of specimens, the ranges of ENOB, fs and FOMW , and the average FOMTID and
FOMSET for each architecture. Flash was dismissed from Table 3, since only one specimen uses this
architecture among the selection.

Table 3. Operation ranges within the selection segregated by architecture.

Architecture Count ENOB fs FOMW FOMT ID FOMSET
[MHz] [pJ/Level] [Levels/mg]

∆Σ 5 [16; 20.3] [0.001; 0.125] [1; 37.8] 6 2320
SAR 19 [8; 16] [0.025; 500] [0.1; 78125] 34 83,313
PIP 21 [7.4; 12.9] [3; 3200] [0.8; 24.8] 109 2,139,462
FIF 8 [6.8; 9.4] [1000; 2200] [1.4; 26.5] 79 303

ADC architectures are similarly distributed along frequency and resolution either the
target application operates under radiation or not: ∆Σ ADCs target low-frequencies
high-resolution applications, SAR do low/medium-frequencies medium/high-resolution, PIP do
medium/high-frequencies moderate-resolution, and FIF do high-frequencies low-resolution. Radiation
hardening can be enhanced at the expense of area and power consumption by including additional
blocks (triple redundancy, anti-glitches, anti-bubbles, SEL and/or SEFI watch-dogs, digital error
correction, etc.). On the other hand, selecting specific circuit structures for the composing blocks of the
randenv-ADC can also enhance its radiation performance without significant impact in area or power
consumption (i.e., using auto zeroing comparators against SET). The PIP architecture presents the best
FOMTID and FOMSET within the selection (cf. Table 3). In fact, PIP is the preferred architecture for
hardened ADCs, with 21 specimens among the selection. SAR is also well represented, but it has more
COTS among its population (7/19 versus 3/21 for PIP), and worst FOMTID and FOMSET .

Latency is a major concern for some ADC applications. As a rule of thumb, we can arrange
architectures in the following order, from shorter to longer latency: flash < FIF < PIP < SAR < ∆Σ.
Additionally, some ADC applications recur to down-sampling to extend the analogue bandwidth to
be digitized; this technique has being lately the tendency in satellite communications where digital
down-conversion of L- and S-bands signals relaxes the requirements of the RF front end. On the other
hand, the inherent loop filter of ∆Σ architectures provides an intrinsic anti-aliasing feature that can
save additional filtering stages at system level. In addition, the intrinsic oversampling feature of ∆Σ
ADCs can be seen as a redundancy spread in time [79].

Considering the virtues and drawbacks of each architecture briefly discussed in this section,
in Table 4 we have linked the more recurrent applications in radiation environments with their most
suitable ADC architectures; a higher suitability is emphasized with a double check mark instead
of a single one. We can consider SAR the most versatile architecture since it fits in almost all the
considered applications.

Depending on the target application, some soft error test methods (cf. Table 2) could be more
adequate than others. In Table 5, we present our recommendations according to the following
criteria: test methods 1P or S are dismissed due to their reduced monitoring of output codes;
QS is perfect for slow high-resolution applications; DAC method is discarded for long latency
and/or very high resolution applications; the other test methods are similar, and can all fit for
medium/high-speed applications.
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Table 4. Suitability of ADC architectures for applications in radiation environments.

Application ∆Σ SAR PIP FIF Flash

collider experiments XX X
discrete-time control X XX X

earth observation XX X
house-keeping X X

satellite communications base-band XX X
DDC XX XX X

sensor acquisition
thermistor XX X
gauge XX X
magnetometer XX X

star tracker X XX
sun sensor X XX

telemetry fast dynamics X
slow dynamics XX X

video X XX

Table 5. Suitability of ADC soft error test methods for applications in radiation environments.

Application BF CS DAC GOLD DIS 4P QS 1P S

collider experiments X X X X X X
discrete-time control X X X X X X

earth observation X X
house-keeping X X X

satellite communications base-band X X X X X
DDC X X X X

sensor acquisition
thermistor X X
gauge X X
magnetometer X X

star-tracker X X X X X X
sun sensor X X X X X X

telemetry fast dynamics X X X X X X
slow dynamics X X

video X X X X X X

4.6. COTS within the Selection

COTS are marked with a double asterisk (**) after their name in Table 1 (ADS1281, AD7712,
AD7872T, MAX145, ADS1258, LTC1604, LTC1409, ADC124S101, AD7984, AD6640, ADS5483 and
SPT7725); they are also easily recognizable therein since their temperature range is smaller than
[−55; 125] ◦C. Two main reasons explain the presence of COTS in the selection: either they cover a
range of sampling frequencies that hardened ADCs do not, or they offer a better FOMW compared to
their surrounding hardened counterparts.

If we consider the efficiency including TID performance, COTS are far from the envelopes in
Figures 6 and 7. On the other hand, even if the best performing COTS are far from the most efficient
specimen in Figure 8 (Boeing-1 pipelined ADC), they present good FOMSET compared to other
hardened ADCs. In other words, COTS could have shorter lifetime due to TID compared to hardened
ADCs; however, since soft errors are almost impossible to be totally mitigated (even in hardened
ADCs), COTS usage could be worthy in short lifetime applications, where the power consumption
and/or the cost are prioritized. HEP (where data acquisition systems can be replaced) and fleets of
small satellites (where the viability depends on the price per satellite) are de facto target applications
for COTS.
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4.7. Particular Cases

ADCs of the selection with outstanding efficiency under radiation are deeply analyzed below.

AD7984: This COTS is a SAR ADC with the best FOMW of the selection (122 fJ/level). It offers 16
ENOB sampling at 1.33 MS/s. No TID data were found in the literature, but its good electrical
performance gives to this ADC a high FOMSET (9.6 × 104 levels/mg). It also has a high SEL
LETth (106.2 MeV·cm2/mg).
ADC128S102QML-SP: This qualified SAR ADC is implemented with a 0.35 µm CMOS process.
Its 2.7 mW reduced power consumption together with its 11.7 ENOB at 1 MS/s give it a FOMW
of 0.8 pJ/level. Its good FOMW combined with its performance under radiation give it the best
FOMSET for SEU (2.7× 104 levels/mg). It also has a high FOMTID (1.2× 109 levels/mg for both
LDR and HDR) and SEL LETth (121.8 MeV·cm2/mg).
Boeing-1: This pipelined ADC is implemented with a 32 nm CMOS SOI process. Its high 200 MS/s
sampling rate together with its 7.4 ENOB and 39 mW power consumption give it a FOMW of
1.1 pJ/level. It performs exceptionally good under radiation (mainly due to its calibration features
and the technology used for its implementation) which, combined with a good FOMW , results in
the best FOMTID and FOMSET within the selection (8.8× 109 and 3.37× 107 levels/mg, respectively).
It also offers the best SEL LETth (170 MeV·cm2/mg).

5. Design Guidelines

From the analysis presented in Section 4, we have extracted several recommendations for the
circuit design of radenv-ADCs. We have distributed these advises along the following simplified 5-step
design flow:

Step 1—Analysis of the target application and the available solutions
Step 2—Selection of the manufacturing technology
Step 3—Selection of the ADC architecture
Step 4—Circuit design
Step 5—Design validation

For a better understanding, before describing each step in Sections 5.2–5.6, we have summarized
in Section 5.1 the overall radiation hardening strategy across the design flow.

5.1. Radiation Hardening Strategy

The hardening strategy against radiation effects mainly depends on the target application (Step 1)
and the selected manufacturing technology (Step 2). Nevertheless, an optimum outcome is only
possible when the strategy is tailored for the whole design flow. Below, we have broken down our
proposal into a sequence of activities linked with the design steps (specified in parentheses):

1. For mature applications, reference data are extracted from previous radenv-ADC
solutions. (Step 1)

2. Electrical and radiation requirements are specified based on the high-level requirements of the
target application. (Step 1)

3. Technologies and architectures in line with the specified requirements are noted down. (Step 1)
4. Hardening-by-process options and hardening-by-design techniques are identified and analyzed

for each considered technology. (Step 2)
5. Technologies offering libraries of hardened cells and/or basic IP-cores are prioritized. (Step 2)
6. As a result of the two previous activities, the manufacturing technology is selected from the

preliminary options. (Step 2)
7. Devices to be used in the design are chosen from the technology libraries. (Step 2)
8. Needed rad-hard cells (but unavailable in the selected technology) are identified. (Step 2)
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9. Relying on the previous technological choices, the basic ADC architecture is selected from
the preliminary options. Hardening blocks against SEFI (current alarms, watch-dogs, etc.),
and test structures (test buses, built-in self tests, etc.) are included as part of the radenv-ADC
architecture. (Step 3)

10. Unhardened ADC designs with compatible requirements, implemented in the same technology,
and with the same architecture, are compiled and analyzed. If plausible, one of them could be
used as the starting point of the circuit design. (Step 4)

11. Unavailable rad-hard cells are designed with a full-custom approach. (Step 4)
12. Hardening-by-design techniques are applied at block-level. (Step 4)
13. Electrical and radiation requirements are verified by simulation for the whole design. (Step 4)
14. Electrical and radiation requirements are validated with test measurements. (Step 5)

Note that this hardening strategy can be adapted with minor changes to the design flow of other
mixed-signal devices.

5.2. Step 1—Analysis of the Target Application and the Available Solutions

A good understanding of the target application is critical to effectively extract the functional
(interfaces, communication protocols, operating modes, etc.), electrical (voltage levels, expected
power consumption, etc.), mechanical (die and package dimensions, bond-pads dimension and
position, bonding method, etc.), environmental (temperature range, performance under radiation, etc.),
and reliability (lifetime, SER, etc.), requirements of the new radenv-ADC. Particularly, radiation and
reliability requirements can be estimated using space environments software, models, and tools, such
as CRÈME [80,81], FASTRAD [82], GEANT4 [83,84], OMERE [85], etc. Furthermore, previous solutions
(i.e., data collected in Table 1) and/or cutting-edge technologies can inspire particular requirements
and other design features (such as the manufacturing technology and the ADC architecture).

For novel applications, new radenv-ADCs are developed to fulfill key requirements that available
radenv-ADCs cannot fulfill. On the other hand, for mature applications, new developments usually
enhance important parameters that were considered secondary in early stages of the application’s life
cycle. A good example illustrating both cases is the power consumption of radenv-ADCs targeting
digital down-conversion of L-band signals; this requirement has become more demanding over time
to offer more competitive solutions. It is hence critical to identify in Step 1 which parameters should
be prioritized above others, considering that the preferences could have changed over time for mature
applications. This approach helps solving possible trade-off conflicts in later steps.

The recent industrial trend of compact-size satellite-fleets in LEO with reduced lifetime (5 to
7 years) relaxes the radiation requirements of radenv-ADCs targeting related applications. In fact, TID
is smaller for shorter missions, and the exposure to solar particle events in LEO is reduced compared
to higher orbits. Collaterally, this approach reduces power consumption and shielding requirements,
and is hence consistent with the size and weight reduction of the overall satellite.

The most important outcomes of Step 1 are the requirements specification, and the preliminary
options of manufacturing technologies and ADC architectures that are suitable for the new design.

5.3. Step 2—Selection of the Manufacturing Technology

In this step, the best technology for the implementation of the new radenv-ADC is identified.
The options were limited in Step 1 to those in line with the application requirements. For example,
a low-voltage technology could be incompatible with the monolithic implementation of a radenv-ADC
requiring a wide voltage front-end. In fact, technologies without radiation characterization data are
usually discarded, but those with latch-up immunity and minimum TID degradation are marked as
preferential. Particularly, deep sub-micron CMOS nodes offering SOI-FinFET, UTBB-FDSOI [13], high-κ
dielectrics, or devices with Ge or SiGe p-channel should be preferred [11,12]. For all the considered
technologies, the following features should be analyzed:
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• Inter-device isolation options—LOCOS (LOCal Oxidation of Silicon), STI, DTI (Shallow or Deep
Trench Isolation), buried layers, SOI, etc.—to evaluate the SEL sensibility.

• TID degradation and possible countermeasures: ELT availability, transistors minimum aspect
ratio to mitigate performance degradation, etc.

• Effective volume of the technology devices to calculate the collected charge at an ion strike for
different energies (for SET simulations).

• Availability of rad-hard libraries and IP-cores.

The selected technology is the one offering the best trade-off between electrical performance,
hardening capability, and manufacturing price (usually following this prioritized order for
radenv-applications). After the technology’s choice, the process options (top-metal thickness, use of
buried layers, etc.) and the technology devices to be used in the design are selected. Additionally,
missing rad-hard cells considered important for the design are identified for their later implementation
in Step 4.

5.4. Step 3—Selection of the ADC Architecture

Usually, after analyzing the radenv-ADC requirements in Step 1, no more than two possible
architectures are considered. Traditionally, the preferred choice has been a PIP architecture, since it
offers a good trade-off between electrical performance and radiation robustness (cf. Section 4.5). In fact,
PIP achieves higher resolutions than F or FIF, and is easier to harden against SET than ∆Σ or SAR.
However, PIP cannot reach the ENOB that ∆Σ does, or be as power efficient as modern SAR. In short,
the architecture choice is highly dependent on the particular radenv-ADC requirements. As a rule
of thumb, it is advisable to use ∆Σ architecture for low-frequencies high-resolution applications,
SAR for low/medium-frequencies medium/high-resolution, PIP for medium/high-frequencies
moderate-resolution, and FIF for high-frequencies low-resolution.

Once the basic ADC architecture is chosen, the need of additional hardening blocks against
SEFI (current alarms, watch-dogs, etc.) is evaluated with system-level simulation. Additionally,
test structures (test buses, built-in self tests, etc.) to be included are also assessed.

5.5. Step 4—Circuit Design

Intuitively, it makes sense to start a new radenv-ADC from a previous unhardened design with
good electrical performance. However, the hardening task may be impractical if important radiation
hardening considerations were overlooked in the original design. For example, for technologies
requiring the replacement of the planar transistors by ELTs [86,87] (to avoid excessive performance
degradation caused by TID), it must be checked that the original design does not have planar transistors
narrower than the minimum width required by ELTs (Wmin,ELT ≈ 3·Wmin,planar). Something similar
occurs for the node splitting technique [88] against SET (transistor width should allow being divided
at least by two or four in the dual- and quad-paths hardening, respectively). The comparison between
radenv-ADCs and scientific ADCs (cf. Sections 4.1 and 4.2) gives an order of magnitude of what is
reasonable to increase the power consumption to mitigate radiation effects (for a given fs between
10 kHz and 100 MHz, collected radenv-ADCs require at least 200 times more power to achieve an
ENOB at least 2 bits lower than scientific ADCs). In any case, a new radenv-ADC can be designed
from scratch, considering all the applicable hardening-by-design techniques from the beginning.
To avoid unnecessary design effort, the unavailable rad-hard cells identified in Step 4 are designed
with advanced TCAD (Technology Computer-Aided Design) tools once it is required to integrate them
in the circuit. Furthermore, to avoid unnecessary power consumption, it is strongly recommendable to
tailor the hardening effort for each particular design case: not all nodes are critical, and some of them
can be SET hardened with a capacitance to ground (DC biased nodes, for example). A good approach
to detect SET sensitive nodes is by analyzing the effects of injecting calibrated current pulses [89]
throughout the circuit in different moments of a transient simulation [90,91].
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5.6. Step 5—Design Validation

The test conditions for the soft error characterization of the developed radenv-ADC shall emulate
the target application as much as possible. Considering the features of each soft error test method, QS
better fits with low-speed high-resolution applications, and CS with the rest.

6. Conclusions

After an exhaustive search in the literature, we have analyzed a collection of radenv-ADCs able
to bear TID above 50 krad(Si) and without latch-up below 50 MeV·cm2/mg regarding resolution,
characteristic frequencies, power efficiency, radiation performance, manufacturing technologies, circuit
architectures, and possible applications. Furthermore, we have also exposed remarks about its COTS
sub-population and other particular cases. For the analyses only relying on electrical parameters,
we have compared the extracted patterns with those of scientific ADCs. In this comparison, we have
extracted that, for a given fs between 10 kHz and 100 MHz, collected radenv-ADCs require at least
200 times more power to achieve an ENOB at least 2 bits lower than scientific ADCs.

In this survey, we have discerned up to nine different test methods to characterize the soft errors
of an ADC under heavy ions; two of them can be considered obsolete because of the scarce output
codes monitored. Unfortunately, radiation performance is not consistent among different test methods
for the same ADC, which complicates the comparison between ADCs characterized with different test
methods. In any case, RHBD was proven to be effective in almost all CMOS technology nodes from
350 nm down to 32 nm; particularly, the SOI feature can be considered a mandatory technology option
to achieve an optimum radiation performance. Regarding ADC architectures, we have confirmed that
pipeline is the most recurrent among hardened ADCs; however, we have considered SAR the most
versatile, since it is suitable for the vast majority of applications in radiation environments. We have
pointed out that systems engineers recur to COTS looking for specific sampling frequencies or higher
electrical performance uncovered by hardened ADCs. However, radiation characterization of COTS
cannot be skipped and additional countermeasures could be required to avoid unacceptable system
malfunctioning. Furthermore, we have defined FOMTID and FOMSET , two new figures of merit that
evaluate the efficiency of radenv-ADCs considering electrical and radiation performance. These FOMs
were used as a first approximation to orient many of our analyses; however, a closer look to the
appropriate specific data is required afterwards to extract accurate conclusions about radenv-ADCs.

Finally, based on the analyses that we have presented before, we have recommended some
guidelines for circuit designers interested in the development of radenv-ADCs.
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Abbreviations

The following abbreviations are used in this manuscript:

1P Single-Point (SEE test method)
4P Four-Points (SEE test method)
ADC Analog-to-Digital Converter
AMICSA (International Workshop on) Analogue and Mixed-Signal Integrated Circuit for Space Applications
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BF Beat Frequency (SEE test method)
BiCMOS Bipolar CMOS
BJT Bipolar Junction Transistor
BOX Buried Oxide
CER Code Error Rate (SEE test method)
COTS Commercial Off-The-Shelf (ADCs)
CMG Control Moment Gyroscope
CMOS Complementary Metal-Oxide Semiconductor
CS Coherent Sampling (SEE test method)
DAC Digital-to-Analog Converter
DC Direct Current
DD Displacement Damage
DDC Digital Down-Converter
DDD DD Dose
DGO Dual Gate Oxide
DIS Dynamic Input Signal (SEE test method)
DNL Differential Non-Linearity
DOI Digital Object Identifier
DR Dynamic Range
DS or ∆Σ Delta-Sigma (ADC architecture)
DT Dynamic Threshold (SEE test method)
DTI Deep Trench Isolation
ELDRS Enhanced Low Dose Rate Sensitivity
ELT Enclosed Layout Transistor
EM Engineering Model
ENOB Effective Number Of Bits
ESA European Space Agency
F Flash (ADC architecture)
FDSOI Fully Depleted Silicon On Insulator
FIF Folded-Interpolated Flash (ADC architecture)
FinFET Fin-shaped Field Effect Transistor
FOM Figure Of Merit
GNSS Global Navigation Satellite Systems
HDR High Dose Rate
HEP High Energy Physics
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
INL Integral Non-Linearity
IP-core Intellectual Property core
ISSCC International Solid-State Circuit Conference
LC2MOS Linear Compatible CMOS
LDR Low Dose Rate
LEO Low Earth Orbit
LETth Linear Energy Transfer Threshold
LOCOS LOCal Oxidation of Silicon
LSB Least Significant Bit
MDPI Multidisciplinary Digital Publishing Institute
MOS Metal-Oxide Semiconductor
NASA National Aeronautics and Space Administration (USA)
NB Number of Bits
NSREC Nuclear and Space Radiation Effects Conference
P Power (consumption)
PIP Pipelined (ADC architecture)
PLL Phase-Locked Loop
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QS Quasi-Static (SEE test method)
RADECS (European Conference on) Radiation and its Effects on Components and Systems
radenv (ADCs/applications operating in) Radiation Environments
rad-hard Radiation Hardened
R&D Research and Development
REDW Radiation Effects Data Workshop
RF Radio Frequency
S Static (SEE test method)
SAR Successive Approximation Register (ADC architecture)
SEB Single Event Burnout
SEDR Single Event Dielectric Rupture
SEE Single Event Effect(s)
SEFI Single Event Functional Interrupt
SEHE Single Event Hard Error
SEL Single Event Latch-up
SER statistical error rate
SESB Single Event Snap-Back
SET Single Event Transient
SEU Single Event Upset
SFDR Spurious Free Dynamic Range
SINAD Signal-to-Noise And Distortion (ratio)
SNDR Signal-to-Noise and Distortion Ratio
SNR Signal-to-Noise Ratio
SoC System on-Chip
SOI Silicon On Insulator
STI Shallow Trench Isolation
TCAD Technology Computer-Aided Design
THD Total Harmonic Distortion
TID Total Ionizing Dose
TSMC Taiwan Semiconductor Manufacturing Company
USA United States of America
UTBB Ultra-Thin Body and BOX
VLSI Very Large Scale Integration
VLSICS VLSI Circuits Symposium
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