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Abstract: The problem associated with economic dispatch of battery energy storage systems (BESSs) in
alternating current (AC) distribution networks is addressed in this paper through convex optimization.
The exact nonlinear programming model that represents the economic dispatch problem is transformed
into a second-order cone programming (SOCP) model, thereby guaranteeing the global optimal
solution-finding due to the conic (i.e., convex) structure of the solution space. The proposed economic
dispatch model of the BESS considers the possibility of injecting/absorbing active and reactive power,
in turn, enabling the dynamical apparent power compensation in the distribution network. A basic
control design based on passivity-based control theory is introduced in order to show the possibility
of independently controlling both powers (i.e., active and reactive). The computational validation of
the proposed SOCP model in a medium-voltage test feeder composed of 33 nodes demonstrates the
efficiency of convex optimization for solving nonlinear programming models via conic approximations.
All numerical validations have been carried out in the general algebraic modeling system.

Keywords: battery energy storage systems; economic dispatch problem; convex optimization; hyperbolic
relaxation; second-order cone programming

1. Introduction

One of the systems utilized for the purpose of improving the operation of alternative current (AC)
distribution networks is battery energy storage systems (BESSs), since they generate some benefits in the
networks [1,2], such as reducing losses in the electrical network, lessening operating costs, improving
voltage profiles, and compensating power oscillations generated by the high variability of wind speed
and solar radiation from renewable energy sources [3–5]. Hence, the operation of BESSs has a significant
impact on the performance of the AC distribution network since their inadequate operation can cause
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excessive cost in operation, deterioration of voltage profile, or increments of power oscillations [5]. For this
reason, the economic dispatch of BESSs is an important topic to study and analyze [6,7].

There are also other forms of energy storage that can improve the operation of AC networks,
such as supercapacitor energy storage systems (SCES) [8], flywheel energy storage system (FESS) [9],
superconducting energy storage systems (SMES) [10], pumped hydroelectric storage (PHS) [11],
and compressed air energy store (CAES) [12]. However, the use of BESSs for the economic dispatch
problem in AC distribution networks is more suitable, since the BESS presents some advantages in
resolving this problem [1]. In the case of the SCES, FESS, and SMES, the discharge time duration at the
rated power for these systems is very fast, between milliseconds and minutes, while for this problem,
the time operation must carry on for hours or days [11]. In case of PHS and CAES, the duration of the
discharge time at nominal power is adjusted to the operating times for the economic dispatch problem.
However, their rated powers can be very high for this problem and their efficiencies are lower than the
BESS, which makes them unsuitable [11]. Hence, the BESS can solve the economic dispatch with lower
inversion costs and greater efficiency than other energy storage technologies.

Conversely, the growing integration of renewable energy sources (e.g., solar and wind power
generators) in AC distribution networks compels the utilities to confront operational and technical
challenges [13,14]. This is due to the fact that renewable energy sources are required to be adequately
integrated into AC distribution systems, and if the integration is not carried out properly, it can lead to
operational problems in AC distribution networks [15–17]. These problems may include worsening of
voltage profiles, overload on transmission lines, or power losses increment [18]. In the case of voltage
profiles and their stability, voltage control is a fundamental topic in AC grids where various strategies
have been studied in order to keep renewable energy sources connected to the networks when the
occurring voltage drops [19]. These renewable sources must support faults and low-voltage situations
to avoid a system blackout. Overload on transmission lines can happen if dispatching of the renewable
source power injection in a node or area of the AC network is conducted in an uncoordinated form [20].
This could unnecessarily increase the power flow through transmission lines. The power losses in the AC
networks can increase if the integration and dispatch of renewable energy sources are not appropriately
executed [21]. Hence, the optimal operation of renewable energy sources is required. Additionally,
they must harmoniously operate with the BESS in order to have an operational efficiency in AC distribution
networks [18]. Due to this, the demand peaks do not necessarily coincide with the generation peaks [22].
Therefore, the BESS must be well-coordinated with solar and wind power generators in order to absorb
energy from AC system when the generation is greater than the demand. In the opposite case, the BESS
delivers energy to the system [23].

Consequently, it is necessary to propose strategies for the optimal operation of the BESS and renewable
energy sources in AC distribution networks in order to minimize their energy losses or operating costs
without compromising the quality of service [24]. Furthermore, these possible strategies must consider
the optimal management of reactive power flow that is allowed by power electronic devices in order to
enhance the voltage profiles and to reduce power losses in AC distribution systems [5].

Several strategies have been proposed for the optimal economic dispatch of BESSs and renewable
energy sources in AC distribution networks. In [25], a nonlinear formulation for the optimal operation of
BESSs was described. However, the BESS only managed active power flow, limiting the AC distribution
network’s performance improvement. In [26], a mixed-integer conic programming model was utilized
for the planning and operation of distributed generators and the BESS in the AC distribution network.
The K-means clustering method was employed to predict the uncertainties of renewable power generations.
At the same time, the BESS dispatch was computed with the mixed-integer conic programming model.
However, the BESS was only operated considering active power flow. In [5], a methodology based on a
master-slave strategy using genetic algorithms was developed for the optimal selection, dimensioning,
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and operation of BESSs in AC distribution networks. Nevertheless, BESSs were operated in a discrete form
that decreased their impact on the performance of the AC distribution network. Furthermore, renewable
energy sources were considered in this methodology. In [27], an optimal programming approach for
BESSs, which took into account the converter’s active and reactive power capabilities, was presented.
This approach used a linearization for load flow analysis, which led to errors in the calculation of the
voltage profile and power losses. In addition, this approach did not consider renewable energy sources in
its analysis. In [28], a flexible economic dispatch strategy was designed for the BESS under day-ahead
environments. For renewable power generation forecasting, an artificial neural network was employed.
However, the economic dispatch strategy was focused on a unique nodal, which limits its analysis.
Furthermore, the possibility of dispatching reactive energy was not considered. In [29], a peak-shaving
service approach for BESSs in AC distribution networks was proposed. This approach, however, only
analyzed a unique nodal dispatch. In [15], an economic-dispatch model for optimal operation of BESS,
considering the reactive power capabilities, was proposed.

Unlike these previous works, we propose a second-order cone programming (SOCP) model for
addressing the economic dispatch problem of the BESS, considering the apparent power compensating
capabilities (i.e., active and reactive power dispatch independently). The SOCP model transforms the
nonlinear nonconvex economic dispatch problem into a convex problem, ensuring the global optimum for
the economic dispatch problem. The main contributions of this proposal are summarized below:

(a) The convex reformulation of the classical and well-known economic dispatch problem via conic
programming by applying the hyperbolic relaxation of the power balance equations, which
has not previously reported in the literature pertaining to economic dispatch analyses in AC
distribution networks;

(b) The validation of the positive impacts that have the usage of the apparent power capabilities in
batteries to reduce the energy purchasing costs in conventional sources, which allows additional
improvements of about 2% when it comes to classical unity power factor scenarios for the operation
of BESSs.

It is important to mention that the numerical results reported in this research, in general, coincide
with the large-scale nonlinear solvers available in the GAMS software. However, the nonlinear nonconvex
structure of the original NLP model affects the processing time behaviors of these solvers, and there
does not exist a theoretical guarantee of reaching the global optimum unlike the case of the proposed
SOCP reformulation addressed in this paper, which corresponds indeed with the main contribution of this
research work.

The remainder of this study is organized as follows: Section 2 presents the original NLP programming
formulation for operating batteries in AC distribution networks, considering the apparent power support
capabilities. Section 3 reports the SOCP reformulation of the economic dispatch problem in AC distribution
networks considering BESSs with active and reactive power compensation capabilities. This reformulation
is based on the hyperbolic relaxation of the product between two variables. Section 4 presents the
possibility of controlling the active and reactive power in three-phase distribution networks with batteries
interfaced with voltage source converters via passivity-based control theory. Section 5 presents the main
characteristics of the distribution test feeder, which is composed of 33 nodes and 32 lines, contains four
renewable generators and three BESSs, and is operated at medium-voltage levels with 12.66 kV. Section 6
presents all the computational validations of the proposed SOCP model for optimal operation of BESSs
systems in the 33-node test feeder considering the unity and variable power factor in batteries and
variations in the renewable generation penetration. Section 7 presents the main conclusions derived from
this work and some possible future research based on the SOCP optimization model studied in this paper.
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2. Nonlinear Programming Formulation

The optimal operation of battery energy storage systems in AC distribution networks corresponds
to a nonlinear programming optimization model with continuous variables in terms of voltage profiles,
power generations, or states-of-charges. The typical objective function is the minimization of the energy
purchase cost in the conventional sources (i.e., substations or diesel generators), subject to power balance
equations, states-of-charge in batteries, voltage regulation bounds, and power generation capabilities,
among others. The complete mathematical formulation of the optimal operation of battery energy storage
systems in AC distribution networks considering reactive power capabilities was presented in [15].

2.1. Objective Function

The objective function of the problem of the economic dispatch operation of BESSs and AC grids
with high penetration of renewable energy resources is typically an economic aspect. In this study,
we consider minimizing the spot market’s energy purchase, where the utility company participates.
The objective function of this problem corresponds with a linear expression as a power generation function
in conventional sources.

min Ecost =
T

∑
t=1

Ngc

∑
i=1

cgc
i,t pgc

i,t ∆T, (1)

where Ecost is the objective function value; cgc
i,t and pgc

i,t represent, respectively, the cost of the power
generation and the power output in a conventional generator installed at node i in the period of time t; and
∆T is the fraction of time under analysis, which, in economic dispatch analysis for distribution networks,
can be 0.25 h, 0.50 h, and 1 h. However, the selection of this length of the period of time depends on the
available information regarding power consumption and renewable generation. T and Ngc correspond to
the number of periods considered in the day-ahead economic dispatch and the amount of conventional
generators inside of the distribution network, respectively.

2.2. Set of Constraints

The most classical constraints in power system analysis regarding distribution networks correspond
to power balance equations, which evaluates the second Tellegens’ theorem at each node regarding
active and reactive injections at node i in the period of time t. In addition, we add the classical voltage
regulation constraint that deals with the operative limits of the voltage profile in AC distribution grids.
These constraints take the following structure:

pgc
i,t + pgd

i,t + pb
i,t − pd

i,t = vi,t

n

∑
j=1

Yijvj,t cos
(
θi,t − θj,t + δij

)
, {t ∈ T , i ∈ N} (2)

qgc
i,t + qgd

i,t + qb
i,t − qd

i,t = vi,t

n

∑
j=1

Yijvj,t sin
(
θi,t − θj,t + δij

)
, {t ∈ T , i ∈ N} (3)

vmin
i ≤ vi,t ≤ vmax

i , {t ∈ T , i ∈ N} . (4)

where pgc
i,t and qgc

i,t correspond to the active and reactive power outputs in the conventional power sources

connected at node i at the period of time t. pgd
i,t and qgd

i,t respectively represent the active and reactive
power outputs of the distributed generators connected to node i at the period of time t; pb

i,t and qb
i,t are,

respectively, the active and reactive power injections/consumption of the batteries energy storage devices
connected at node i in the period of time t; pd

i,t and qd
i,t are the active and reactive power consumption at
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node i at time t, respectively; vi,t and θi,t are the voltage magnitude and angle of the voltage profile at node
i at the period t; Yij and δij correspond to the admittance magnitude and angle that relates nodes i and j;
and vmin

i and vmax
i are, respectively, the minimum and maximum voltage limits allowed for the voltage

profile at each node at each period of time.
In order to study the economic dispatch problem in AC distribution networks in the presence of

battery energy storage systems including reactive power capabilities as well as renewable generation
sources, the following constraints must be added to the mathematical optimization model:

socb
i,t = socb

i,t−1 − ϕb
i pb

i,t∆T, {t ∈ T , i ∈ N} , (5)(
pb

i,t

)2
+
(

qb
i,t

)2
≤
(

sb,max
i

)2
, {t ∈ T , i ∈ N} , (6)

pb,min
i,t ≤ pb

i,t ≤ pb,max
i,t , {t ∈ T , i ∈ N} , (7)

socb,min
i ≤ socb

i,t ≤ socb,max
i , {t ∈ T , i ∈ N} , (8)

pgd,min
i,t ≤ pgd

i,t ≤ pgd,max
i,t , {t ∈ T , i ∈ N} , (9)

where socb
i,t is the state-of-charge of the energy storage device connected at node i at the time t; ϕb

i is
the efficiency of the charging/discharging performance of the battery at node i (this corresponds to the
most basic linear model for operating batteries initially reported in [30]); and socb,min

i and socb,min
i are the

minimum and maximum limits of the state-of-charge variable (to ensure the useful life of the battery, these
are typically greater than zero and lower than one). Observe that pb,min

i,t and pb,max
i,t represent the active

power bounds of the energy storage devices and sb,max
i is the maximum apparent power transference

capability of the energy storage device connected to node i. Finally, pgd,min
i,t and pgd,max

i,t correspond to the
minimum and maximum power bounds of the renewable energy resources connected at node i at each
period of time.

The complete interpretation of the mathematical Equations (1)–(9) for the problem of the economic
dispatch of the BESS in distribution networks is as follows: Equation (1) defines the objective function
calculation for the total energy purchase costs of energy in conventional power sources (i.e., spot electricity
market) for a day of operation of the distribution system. Equations (2) and (3) define the active and
reactive power balance equilibrium at each node, which corresponds with Kirchhoff’s laws in the form of
power. Box-type constraint (4) defines the region of the admissibility of the voltage profiles. This constraint
is typically known as the voltage regulation constraint in scientific literature. Equation (5) defines the
linear relation between the BESS charging/discharging coefficient with the state-of-charge and the amount
of power absorbed from/injected into the grid at each period of time. The inequality constraint (6) defines
the power triangle of powers, i.e., active, reactive, and apparent, which must be satisfied at each time by
the BESS system in order to ensure the correct operation of the power electronic converters that interface
them to the power grid. Box-type constraints (7)–(9) determine the admissible region for active power
in batteries as well as their states-of-charge and the amount of power available in the renewable energy
resources, respectively.

Remark 1. The mathematical model that represents the economic dispatch problem of the BESS in AC distribution
networks (see the model (1)–(9)) is nonlinear and nonconvex due to the active and reactive power balance constraints
defined in (2) and (3); this complicates the finding of the global optimal solution due to the nonconvexities of the
solution space [31]. However, this model can be convexified via SOCP reformulation in the complex domain. This will
be presented in the next section.
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It is essential to highlight that the inequality constraint (6) is nonlinear but convex, since it corresponds
to the circle of powers where its border and inside are free of holes [32].

3. Second-Order Cone Programming Reformulation

The SOCP programming is a branch of the convex optimization that deals with a class of optimization
problems with conic structures that can be solved efficiently via interior point methods [33]. The main
idea of reformulating the economic dispatch optimization problem into a SOCP equivalent is to rewrite
the power balance constraints (2) and (3) into a linear equivalent via hyperbolic relaxations [34]. In order
to do so, let us rewrite these power balance equations in their complex form:

(
Sgc

i,t + Sgd
i,t + Sb

i,t − Sd
i,t

)?
= V?

i,t

n

∑
j=1

YijVj,t, {t ∈ T , i ∈ N} (10)

where Sgc
i,t = pgc

i,t + jqgc
i,t is the apparent power generation at conventional sources; Sgd

i,t = pgd
i,t + jqgd

i,t
corresponds to the apparent power generation in the renewable energy resources; Sb

i,t = pb
i,t + jqb

i,t
is the apparent power injection/absorption in the batteries; Sd

i,t = pd
i,t + jqd

i,t represents the apparent
power consumption in load nodes; V?

i,t is the complex voltage profile, with (·)? being the complex
conjugate operation of the argument; and Yij is the complex admittance component that relates nodes
i and j, respectively.

In order to transform the complex apparent power balance constraint (10) into a linear convex
restriction, let us define the following auxiliary variable:

Uij,t = V?
i,tVj,t. (11)

Note that, from (11), we can define Uii,t = ‖Vi,t‖2 and Ujj,t =
∥∥Vjj,t

∥∥2, which implies that if we elevate
Equation (10) in both sides at square, then we have∥∥Uij,t

∥∥2
= ‖Vi,t‖2 ∥∥Vj,t

∥∥2
= Uii,tUjj,t. (12)

The structure of Equation (12), which corresponds to the product between two auxiliary variables
on the right-hand side, can be rewritten as recommended in [35], through its hyperbolic representation,
as follows: ∥∥Uij,t

∥∥2
= Uii,tUjj,t =

1
4
(
Uii,t + Ujj,t

)2 − 1
4
(
Uii,t −Ujj,t

)2

∥∥2Uij,t
∥∥2

+
(
Uii,t −Ujj,t

)2
=
(
Uii,t + Ujj,t

)2 ,∥∥∥∥∥ 2Uij,t
Uii,t −Ujj,t

∥∥∥∥∥ = Uii,t + Ujj,t. (13)

Note that Equation (13) is still nonconvex due to the equality symbol; however, as recommended
in [35], it is possible to relax this expression by changing the equality symbol with a lower-equal one,
which allows for the translation of this equation into a conic-convex constraint:∥∥∥∥∥ 2Uij,t

Uii,t −Ujj,t

∥∥∥∥∥ ≤ Uii,t + Ujj,t. (14)
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In order to complete the SOCP programming reformulation of apparent power balance constraints,
let us substitute Expression (11) into (10), which produces

(
Sgc

i,t + Sgd
i,t + Sb

i,t − Sd
i,t

)?
=

n

∑
j=1

YijUij,t, {t ∈ T , i ∈ N} (15)

This can be split into its real and imaginary part as follows (Uij,t = Ur
ij,t + jUi

ij,t):

pgc
i,t + pgd

i,t + pb
i,t − pd

i,t =
n

∑
j=1

(
GijUr

ij,t − BijUi
ij,t

)
, {t ∈ T , i ∈ N} (16)

qgc
i,t + qgd

i,t + qb
i,t − qd

i,t = −
n

∑
j=1

(
BijUr

ij,t + GijUi
ij,t

)
, {t ∈ T . i ∈ N} (17)

where Yij = Gij + jBij.
In addition, the voltage regulation constraint (4) can be redefined as a function of the auxiliary

variables in the following manner:(
vmin

i

)2
≤ Uii,t ≤ (vmax

i )2 , {t ∈ T . i ∈ N} . (18)

Finally, the inequality constraint (6) can be rewritten using the conic form as presented below:∥∥∥∥∥pb
i,t

qb
i,t

∥∥∥∥∥ ≤ sb,max
i , {t ∈ T , i ∈ N} . (19)

Remark 2. After the convexification of the power balance constraints, the SOCP model that represents the economic
dispatch problem of the batteries in the AC distribution systems considering apparent power compensation and high
penetration of renewables is defined by the set of Equations (1), (5), (7)–(9), (14), and (16)–(19), respectively.

4. Dynamic Active and Reactive Power Control

In order to demonstrate the possibility of controlling the active and reactive power of a form
independent considering a BESS connected to an electrical AC distribution network, consider the
interconnection of this battery via a voltage source converter (VSC) as depicted in Figure 1.

Voltage Source Inverter

RL-filter
ia

ib

ic

S1

S4

S3

S6

S5

S2

vabc

vdc

Figure 1. Schematic of a voltage source converter (VSC) that interfaces a battery connected to an ac grid.
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For the purpose of reaching the dynamical model of the BESS connected to the distribution network,
we apply the second Kirchhoff’s law on the AC side, which produces in the Park reference frame the
following expressions [36]:

l
d
dt

id = −rid + ωliq + vbmd − vd, (20a)

l
d
dt

iq = −riq −ωlid + vbmq − vq, (20b)

where l and r are the parameters of the resistive-inductive (RL) filter, id and iq correspond to the currents
flowing through the filter in the dq-reference frame, md and mq represent the average the modulation
indexes, vd and vq are the voltages of the AC network, and ω corresponds to the angular frequency of the
grid voltages.

Note that, if we consider balanced operative conditions in the AC distribution network, the dynamical
model (20) can be transformed into a model with active and reactive power variables, i.e., p and q,
by considering that, under balanced grid voltage conditions, vq = 0, which implies that

p = vdid ↔
d
dt

p = vd
d
dt

id, (21a)

q = −vdiq ↔
d
dt

p = −vd
d
dt

iq, (21b)

Now, if (20) is substituted in (21) and we make some algebraic operations, we find the following result:

l
d
dt

p = −rp−ωlq + vmd − v2
d, (22a)

l
d
dt

q = −rq + ωlp− vmq, (22b)

where v = vbvd. Additionally, the direct power model (22) can be expressed as a port-Hamiltonian system
with the following structure:

Dẋ = [J −R]∇H (x) + gu + ζ, (23)

where D is known as the inertia matrix by its similitude with mechanical systems, J represents the
interconnection matrix that is skew-symmetric, R is the damping matrix being positive semi-definite,
H (x) is the Hamiltonian function, G represents the input matrix, ζ constitutes the vector of external
perturbations, and x and u correspond to the state variables and control inputs, respectively. Note that
each term in (23) is defined as follows:

D =

[
l 0
0 l

]
, J −R =

[
−r −ωl
ωl −r

]
, G = v

[
1 0
0 −1

]

u =

[
md
mq

]
, x =

[
p
q

]
, ζ = −

[
v2

d
0

]
, H (x) =

1
2

xTx,

Observe that the Hamiltonian function H (x) is a positive definite function with a hyperboloidal
structure, which can be used to explore the stability properties of the dynamical model (23).

Remark 3. The control of the Hamiltonian model that represents the connection of a battery package to the
AC grid via a voltage source converter can be made via the passivity-based control theory as demonstrated [37],
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guaranteeing global asymptotic convergence properties in the sense of Lyapunov [38]. The control laws developed via
the passivity-based theory for active and reactive power independent control are presented below [38]:

m̃d = −kp1v (p− p?)− ki1v
∫ t

0
(p− p?) dt, (24a)

m̃q = kp2v (p− p?) + ki2v
∫ t

0
(q− q?) dt, (24b)

m?
d =

1
v

(
rp + ωlq + v2

d

)
, (24c)

m?
q = −1

v
(rq−ωlp) . (24d)

where the complete control laws are md = m̃d + m?
d and mq = m̃q + m?

q [39]. Note that kp1, kp2, ki1, and ki2 are
the proportional and integral gains with a must-be positive definite.

In order to demonstrate the fact that the passivity-based control design can independently control
active and reactive power, consider the BESS and filter parameters reported in Table 1. In addition,
we consider that the battery charges with 7 kW between 0 ms and 150 ms; then, this battery is operated
in repose (150 ms and 250 ms). Finally, it discharges with 6 kW after 250 ms, while the reactive
power is defined to be 5 kVAr while t ≤ 200 ms, and −6 kVAR otherwise in the dq−reference frame.
The performance of the passivity-based controller is reported in Figure 2.

Table 1. Test system parameters.

Parameter Value Unit Parameter Value Unit Parameter Value Unit

l 1.25 mH r 0.20 Ω f 50 Hz
c 4.40 µF vb 400 V - - -

Regarding battery parametrization, it was assumed that it operates with 390 V as nominal voltage,
a current rate capability of about 0.75 Ah, and an initial state-of-charge of about 45 %. All of these
parameters have been taken from [40].

From Figure 2, we can observe that the active and reactive power can be controlled independently in
four quadrants with step-responses of about 15 ms (see Figure 2b). In addition, the three-phase currents
present a phase inversion at t = 200 ms since, at this moment, the active power is zero and the reactive
power passes from a positive to a negative value. For this simulation case, the maximum THD is 4.40%
for the period comprehended between 150 ms and 200 ms; nevertheless, this THD is in the international
range standards and fulfills grid-code requirements. It is worth mentioning that, as presented in Figure 2a,
the state-of-charge of the battery energy storage system is only dependent on the amount of active power
interchanged with the AC grid (compare with Figure 2b), since we observe that, when p < 0, the soc
increases, when p = 0, the soc is constant and, when p > 0, the soc decreases. These behaviors are
especially important when batteries are incorporated into the AC grid, as it is possible to support active
and reactive power in four quadrants by adequately controlling the VSC that interfaces the battery package.

Remark 4. Note that the capability of using a BESS to control active and reactive power independently is exploited
in this research as proposed in [15] with the main advantage that the complete optimization model has a convex
structure that allows ensuring the optimum global.
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Figure 2. Independent active and reactive power control: (a) state-of-charge behavior, (b) active and
reactive power in the dq−reference frame, and (c) three-phase currents.

5. Test Systems

In order to validate the proposed SOCP model for optimal operation of battery energy storage
systems in AC distribution networks using a day-ahead economic dispatch approach, we consider



Electronics 2020, 9, 1677 11 of 23

two test distribution test feeders composed of 33 and 69 nodes, respectively, both with radial topology.
The information regarding these test feeders has been taken from [15].

5.1. 33-Node Test Feeder

This is a radial test system composed of 33 nodes and 32 lines, which operates with a unique substation
with a voltage profile of 12.66 kV. The total demand at the peak hour for this test system is 3715 kW and
2300 kVAr. Figure 3 depicts the electrical interconnection among all the nodes, and Table 2 presents the
relevant information from left to right as follows: sending node, receiving node, resistance, reactance of
the line, and active and reactive power consumed at the receiving node.

slack

1 2

3 4
5 6

7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

19
20

21 22 27 28 29 30 31 32 33

26

Figure 3. IEEE 33-node test feeder topology.

Table 2. The IEEE 33-node test feeder parameters.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40

5.2. 69-Node Test Feeder

This test feeder is composed of 69 nodes and 68 branches, with an operative voltage of 12.66 kV at
the substation, which is located at node 1. The amounts of active and reactive power consumption in this
test feeder are 3890.7 kW and 2693.6 kVAr, respectively. The electrical configuration of this test feeder
regarding nodal connections is presented in Figure 4. In addition, all the branches and nodal information
regarding active and reactive power are reported in Table 3, where columns have the same interpretation
of the 33-node test system.
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Figure 4. IEEE 69-node test feeder topology.

Table 3. The IEEE 69-node test feeder parameters.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW)

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0
4 5 0.0251 0.0294 0 0 38 39 0.0304 0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17
6 7 0.3811 0.1941 40.4 30 40 41 0.7283 0.8509 102 1
7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0
8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0478 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0

10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0
13 14 1.0440 0.3450 8 5 47 48 0.0851 0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5
15 16 0.1966 0.0650 45 30 49 50 0.0822 0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1140 3.6 2.7
18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5
19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0
23 24 0.3463 0.1145 28 20 57 58 0.7837 0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888
3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23

28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162
30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42
31 32 0.3510 0.1160 0 0 11 66 0.2012 0.0611 18 13
32 33 0.8390 0.2816 10 10 66 67 0.0047 0.0014 18 13
33 34 1.7080 0.5646 14 14 12 68 0.7394 0.2444 28 20
34 35 1.4740 0.4873 4 4 68 69 0.0047 0.0016 28 20

Note that, for both text feeders, 100 kVA and 12.66 kV are used as powder and used as powder and voltage bases.

5.3. Renewable Energy Behavior

In order to deal with the stochastic variations of the renewable energy behavior, in this work of
research, we implement the forecasting methodology reported in [15], which is based on recursive neural
networks to predict the renewable power output with a length of 24 h considering as inputs humidity,
pressure, time, and wind speed for wind power generation, and solar radiation, time, and temperature for
a photovoltaic generation. The renewable generation power curves considered in this work are presented
in Figure 5; they have been taken from [38].
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Figure 5. Operational curves for day-ahead economic dispatch approach: (a) renewable generation,
and (b) demand and cost curves [15].

Note that, in the case of renewable generation, cost and demand curves are plotted in Figure 5.
We consider that, for the 33-node test feeder, (1), the photovoltaic sources PV1 and PV2 are connected at
nodes 13 and 25 with nominal generation capacities of 450 kW and 1500 kW, respectively; (2) the wind
turbines WT1 and WT2 are connected at nodes 13 and 30 with maximum power generation rates of 825 kW
and 1200 kW, respectively; (3) regarding the 69-node test feeder, the photovoltaic plant PV1 and the wind
generator WT2 with nominal rates of 1050 kW and 1000 kW are connected at node 12. Additionally,
the second photovoltaic generator PV2 is connected to the node 22 with a power rate of 850 kW and
the second wind turbine WT2 is connected at the node 61 with a nominal power capacity of 760 kW;
(4) the costs of the energy at the slack node is assumed as the energy cost reported by CODENSA utility
from Colombia in May 2019, which is COP$/kWh 479.3389 [15]; and (5) the per unit curve regarding the
demand plotted in Figure 5b multiplies at each period the peak load consumption reported in Table 2.

5.4. Battery Information

For both test feeders, as reported in [38], it is considered that the utility company has installed three
and four batteries. The information regarding these batteries is reported in Table 4.
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Table 4. Type of batteries connected in the 33- and 69-node test feeders.

Type Nominal
Energy (kWh) Charge/Dis. Time (h) Nominal

Power (kW)

A 1000 4 250
B 1500 4 375
C 2000 5 400
D 3000 6 500

The distribution of the batteries for each test feeder is reported below:

(a) In the case of the 33-node test feeder, the batteries installed by the utility are distributed as follows:
at node 6, a C-type battery is installed; at node 14, an A-type battery is installed, and at node 31,
a B-type battery is installed; and

(b) For the 69-node test feeder, the four batteries installed by the utility are connected at nodes 40, 64, 16,
and 9 of the A, B, C, and D model types, respectively.

6. Computational Validations

In order to solve the general NLP model that represents the problem of optimal operation of battery
energy storage systems in AC distribution networks with dynamic active and reactive power capabilities
as well as the equivalent SOCP reformulation proposed in this research work, we implement these models
in GAMS software by using the nonlinear solver IPOPT on a desk computer INTEL(R) Core(TM) i5-3550,
3.50 GHz, 8 GB RAM with 64-bits Windows 7 Professional.

6.1. Simulations Cases

In order to validate the effectiveness of the proposed SOCP reformulation to operate BESS in
distribution networks considering the possibility of supporting active and reactive power in AC
distribution systems, we consider the following simulation cases:

• Case 1 (C1): The operation costs of the distribution network are evaluated by only considering the
activation of the distributed generation.

• Case 1 (C2): The operation costs of the distribution network are evaluated by considering the
activation of the distributed generation and the possibility of injecting only reactive power with
batteries (zero power factor).

• Case 2 (C3): The operational cost of the network is evaluated by considering renewable generation
and batteries operated with a unity power factor.

• Case 3 (C4): The operational cost of the network is evaluated in the presence of the distributed
generation and batteries operated with apparent power support compensation capabilities.

For simulation cases that consider BESSs, we assume that minimum and maximum states of charge
of 10 % and 90 % for ion-lithium are recommended in scientific literature batteries [41]. Additionally,
the BESS starts and ends each day with 50% of their charge, as proposed in [25].

6.2. Numerical Performance of the 33-Node Test Feeder

In order to demonstrate the efficiency of the proposed SOCP reformulation for optimal power flow
and economic dispatch approaches in AC distribution networks, we simulate the C1 considering different
solvers available in GAMS for NLP problems as well as the proposed SOCP reformulation.
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Table 5. GAMS solutions for the simulation C1.

Solver Objective Function (MCOP$) Proc. Times (s)

CONOPT 5.80782906 16.618
IPOTH 5.80782906 4.164
KNITRO 5.80782906 4.081
MINOS 5.80782906 4.124
SOCP 5.80782906 3.167

The results in Table 5 demonstrate that the proposed SCOP approach deals with optimal solutions
of the economic dispatch problem of batteries in AC distribution networks for the simulation C1, which
coincides with the solutions reported by different NLP solvers available in GAMS. However, it is essential
to mention that the SCIP solver of GAMS, even if it works with NLP models, cannot deal with the solution
of the problem, which is attributable to the nonconvex structure of the solution space. In addition, other
NLP solvers available in GAMS, such as MOSEK, BARON, and ANTIGONE, cannot solve the exact model
since they do not support trigonometric functions. In this sense, an adequate formulation to address the
problem of the economic dispatch problem of BESS in distribution networks corresponds to the SOCP
proposal since (1) no trigonometric functions appear in this reformulation, (2) the convex structure makes
it possible to reach the optimal solution with the speediest convergence (see the third column in Table 5),
and (3) the SOCP formulation can be implemented in free software such as Python with the theoretical
advantage that the solution reached is indeed the global optimal.

Remark 5. Due to fact that the solutions reached by the GAMS NLP solvers and the proposed SOCP coincide,
ahead in this study, we only report the solutions found by the proposed SOCP reformulation for the remainder
simulation cases.

Figure 6 shows the expected energy purchasing costs finally in the 33-node test feeder at each one of
the simulation cases.

Case 1 Case 2 Case 3 Case 4
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Figure 6. Daily energy purchasing costs for each simulation case.

From Table 6, we can observe the following:

(a) The integration of the reactive power capabilities of the BESSs in the C2 reduces the total energy
purchasing cost regarding C1 of about 3.41%. This is an important improvement since BESSs are
generally not for apparent power support.

(b) The operation of BESSs considering the unity power factor (i.e., C3) allows for reduction of the
total energy purchasing costs in the conventional source about 23.14%, which demonstrates the
efficiency of combining BESSs with renewable power sources for active power support in AC
distribution networks.
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(c) Simulation C4 allows an additional improvement regarding C3 respect to the base case about 2.21%,
which confirms that the usage of the apparent power capabilities in BESSs allows for improvements of
the grid performance in relation to energy purchasing costs in conventional sources (i.e., substations
and/or diesel generators).

Table 6 reports the grid performance when there are variations in renewable generation availability,
which can be associated with cloudy (rainy) or low wind speed days. This table compares C1 and C4 for
penetrations of renewable generation from 0% to 120%.

Table 6. Energy purchasing cost considering simulation C4 and different levels of renewable generation
availability compared with C1.

Ren. Gen. Penetration (%) Case 1 (MCOP$) Case 4 (MCOP$) Improvement (%)

0 26.46526228 25.69225835 2.92
20 21.92858267 21.18970791 3.37
40 17.49097304 16.77957827 4.07
60 13.15636581 12.45626953 5.32
80 9.11315544 8.22151412 9.78

100 5.80782812 4.33582081 25.35
120 4.04589413 2.91587411 27.93

From Table 6, we can observe the positive impact of the BESS system with apparent power support
in improving the performance of the distribution networks since the energy purchasing cost in the
conventional power sources as the availability of renewable generation increases. Note that the percentage
of improvement in regarding the purchasing costs when compared C1 and C4 is an increasing function
of the renewable generation penetration and can be understood as a possibility of having 100% clean
energy resources if the combination of renewable generation and batteries allows avoiding (eliminating)
the dependency of conventional sources. This situation is critical since the proposed optimization model
can be extended to optimal design active distribution networks in urban and rural areas minimizing or
eliminating greenhouse gas emissions.

6.3. Numerical Performance of the 69-Node Test Feeder

To validate the SOCP model in the 69-node test feeder, we consider the same simulation scenarios
applied to the 33-node test feeder. However, the objective function has been modified to consider the
minimization of emissions of CO2 to the atmosphere during the daily operation. In this sense, the objective
function is slightly modified as defined in Equation (25).

min Gemissions =
T

∑
t=1

Ngc

∑
i=1

ggc
i,t pgc

i,t ∆T, (25)

where Gemissions corresponds to the amount of the CO2 emitted to the atmosphere measured in
pounds-per-day, i.e., lb

day , and ggc
i,t corresponds to the amount of greenhouse emissions per megawatt-hour

of generation, which is considered here that for diesel generator is about 1350 lb
MWh , as suggested in [38].

Table 7 presents the simulation results for each of the simulation cases 1, 3, and 4, considering that the
objective of minimization is given by Equation (25), where the renewable generation is operated under
nominal conditions. Note that C2 is not analyzed since it is not typical that batteries are used only for
reactive compensation due to its main purpose in electrical networks is to provide active compensation
service [42].
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Table 7. Evaluation of C1, C3, and C4 for the 69-node test feeder.

Scenario (%) Gemissions

(
lb

MWh

)
Gcost (MCOP$)

Case 1 2.656999 ×104 8.62394538
Case 3 2.509434 ×104 8.10450580
Case 4 2.431309 ×104 7.87427882

The numerical results in Table 7 shows that, (1) comparing C1 with C4, the greenhouse gas emissions
of CO2 are reduced about 8.49% and 8.69% regarding daily operative costs with the inclusion of the
battery energy storage systems with apparent power compensation capabilities and, (2) if these results are
compared with C3, then we observe that the reduction regarding the base case are about 5.55%, and 6.02%,
which demonstrates the positive effects of including reactive power capabilities of batteries to improve
the grid performance of the distribution networks in relation with greenhouse gas emissions and energy
purchasing costs, since additional 2.94%, and 2.67% where reactive power is introduced, respectively.

6.4. Complementary Analysis

To demonstrate that the SOCP formulation can find the global optimum of the studied problem in
contrast to conventional metaheuristic optimization procedures, in this section, we resolve a simplistic
optimization problem widely known in the literature as an optimal power flow problem in AC distribution
networks [43,44]. This problem is the one-hour equivalent of the economic dispatch problem studied in
the mathematical model (1)–(9), which implies that batteries can be assumed at this period as generators
or loads; here, we assume that these are under a neutral operative condition, i.e., they do not consume or
generate power. For both test feeders, we consider the optimal location of distributed generators reported
in multiple articles available in the scientific literature for the 33-node test feeder. These are krill herd
algorithm (KHA) [45], loss sensitivity factor simulated annealing (LSFSA) [45], combined genetic algorithm
(GA) and particle swarm optimization (PSO) (GA-PSO) [46], teaching-learning based optimization
(TLBO) [47], quasi-oppositional teaching-learning-based optimization (QOTLBO) [47], harmony search
algorithm with PSO embedded artificial bee colony (HSA-PABC) [48], hybrid intelligent water drops and
GA (GA-IWD) [49], heuristic approach (AHA) [50], mutated salp swarm algorithm (MSSA) [51], MINLP
model [52], constructive heuristic vortex search algorithm (CHVSA) [53], and the hybrid approach based on
the Chu & Beasley genetic algorithm and the vortex-search algorithm (CBGA-VSA) [54]. We also consider
these distributed generators with capabilities between 300 kW and 1200 kW for this simulation case.

Table 8 presents the numerical validations of the comparative metaheuristic approaches and the SOCP
formulation to solve the problem of the optimal power flow in AC distribution networks.
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Table 8. Comparative results between literature approaches and the second-order cone programming
(SOCP) for optimal power solutions.

Method Location (Node) Loss (kW) Loss (SOCP) (kW)

KHA [45] {13,25,30} 75.4116 73.5035
LSFSA [45] {6,18,30} 82.0525 81.8853
GA-PSO [46] {11,16,32} 103.3600 86.0107
TLBO [47] {10,24,31} 75.5400 74.5106
QOTLBO [47] {12,24,29} 74.1008 74.1006
HSA-PABC [48] {14,24,30} 72.8129 72.7897
GA-IWD [49] {11,16,32} 110.5100 86.0107
AHA [50] {13,24,30} 72.8340 72.7853
MSSA [51] {13,24,30} 72.7854 72.7853
MINLP [52] {13,24,30} 72.7862 72.7853
CHVSA [53] {6,14,31} 78.4534 78.4532
CBGA-VSA [54] {13,24,30} 72.7853 72.7853

The numerical simulations in Table 8 highlight that the SOCP programming formulation for the
optimal power flow problem finds the global optimal for the different locations of the distributed generators
reported in the scientific literature with conventional metaheuristic techniques. Furthermore, only two
of them, named MSSA and CBGA-VSA, manage to reach the same solution found by the SOCP model.
These results show that only 16.67% of the tested combinatorial methods can reach the best solution for
the optimal power flow problem in the 33-node test feeder. However, this is a very simplified optimization
problem compared with the day-ahead economic dispatch problem, including apparent power capabilities
in BESS systems, a time-couple problem that includes T couple optimal power flows. Therefore, the
studied problem reduces the possibility of finding the global optimal with metaheuristics. While in the
case of the SOCP, reformulation always reaches the global solution of the problem due to the solution
space’s convex structure [31].

It is worth mentioning that the usage of metaheuristic optimization methods to solve continuous
optimization problems in AC distribution networks requires the usage of some heuristic parameters such
as population size and number of iterations, among others, that make these methods sensible to the
programmer, and their convergence and optimization capabilities can be compromised if these are not
correct selected; in addition, to demonstrate the efficiency of these combinatorial methods statistical tests
are required that imply higher computational times due to the multiple runs employed on them [55,56].
The main problem is that the optimal solution always varies, even if these variations are slightly. It is no
possible to ensure the global optimum finding; however, the proposed SOCP formulation does not require
any parametrization strategy and, due to the convex properties of the solution space, it does not require
statistical tests since their optimal finding properties are theoretical [35].

7. Conclusions and Future Works

A new reformulation of the economic dispatch problem of battery energy storage with apparent
power injection capabilities using second-order cone programming formulation has been proposed in
this paper. The main advantage of the SOCP formulations in optimal power flow and economic dispatch
analysis is the convex structure of the solution space. This is attained by employing a hyperbolic relaxation
of the product between voltage variables in the power balance equations, due to the possibility of being
able to guarantee finding the optimal solution and its uniqueness, which is not possible in nonconvex
solution spaces.
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Numerical validations of the proposed approach in a classical AC distribution test feeder composed of
33 nodes have confirmed the advantages of using the reactive power capabilities of batteries in conjunction
with their energy storage capabilities to reduce the total energy purchasing cost in the conventional sources
in contrast with the conventional unity power factor operation case with additional improvements of
about 2% (with 100% penetration of renewable generation). This improvement is essential, economically
speaking, since utilities have opportunities for using existing devices in their grids to have additional
profits with minimum investment.

Analysis of the objective function regarding minimization of the CO2 emissions to the atmosphere in
the 69-node test feeder has demonstrated that using the reactive power capabilities of the voltage source
converters that interface BESS with AC distribution networks permits reducing the contaminant effects of
the diesel generators for electricity generation. This apparent power compensation has allowed reaching
additional improvements of about 2.94% in the daily greenhouse gas emissions compared with the classical
unit power factor scenario, which is an important percentage that can help distribution companies fill the
energetic sustainability challenges imposed by regulatory entities.

The evaluation of different metaheuristic optimization techniques in the 33-node test feeder regarding
the classical optimal power flow problem resolving continuous optimization problem. The best alternative
is convex optimization since it can deal with the global optimum at each running, which is not possible
with metaheuristics. In addition, due to the combinatorial methods’ random search procedures, these can
be stuck in locally optimal solutions while the SOCP formulation always reaches the global one.

Regarding future research, the following topics can be addressed: (1) extend the conic convex
optimization studied in this paper to the problem of the optimal placement and sizing renewable
generation and batteries by reformulating the original mixed-integer nonlinear programming model into a
mixed-integer SOCP model with global optimum finding capabilities via branch and bound methods and
(2) combine the studied SOCP model with heuristic and metaheuristic optimization techniques to plan
AC distribution in rural areas involving renewable energies and batteries to eliminate the dependency of
fossil fuels.
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Acronyms
AC Alternating Current
BESS Battery energy storage systems
NLP Nonlinear Programming
GAMS General Algebraic Modeling System
SOCP Second-order cone programming

Sets and subscripts
N Set of nodes
T Set of periods
d Demand
gd Distributed generator
gc Conventional power source
b Battery
i or j Node
t Period of time

Parameters
Yij Component of the admittance matrix that relates nodes i and j
Yij Complex admittance component that relates nodes i and j
δij Angle of the admittance matrix that relates nodes i and j

Variables
Ecost Objective function value
vi Voltage profile at node i
θi Angle of voltage profile at node i
socb

i State-of-charge of the BESS connected at node i
ϕb

i Charging/discharging of the BESS at node i
Uij Cross-product of voltage i with voltage j

Control variables
pd, qd Active and reactive power demanded by loads
pgc, qgc Active and reactive power generated by conventional generators
pgd, qgd Active and reactive power generated by distributed source
pb, qb Active and reactive power delivered/absorbed by the BESS
sd Apparent power demanded by loads
sgc Apparent power generated by conventional generators
sgd Apparent power generated by distributed source
sb Apparent power delivered/absorbed by the BESS

Limits
vmin, vmax Minimum and maximum voltage profile
pgc,min, pgc,max Minimum and maximum active power by conventional generator
qgc,min, qgc,max Minimum and maximum reactive power by conventional generator
pgd,min, pgd,max Minimum and maximum active power by generated source
qgd,min, qgd,max Minimum and maximum reactive power by generated source
pb,min, pb,max Minimum and maximum active power by the BESS
qb,min, qb,max Minimum and maximum reactive power by the BESS
socb,min, socb,max Minimum and maximum limits by soc
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