
electronics

Article

Performance Analysis of Sparse Matrix-Vector
Multiplication (SpMV) on Graphics Processing
Units (GPUs)

Sarah AlAhmadi 1, Thaha Mohammed 2 , Aiiad Albeshri 3, Iyad Katib 3

and Rashid Mehmood 4,*
1 Department of Computer and Information Sciences, Taibah University, Medina 42353, Saudi Arabia;

Shahmdi@taibahu.edu.sa
2 Department of Computer Science, Aalto University, 02150 Espoo, Finland; Thaha.Mohammed@aalto.fi
3 Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

AAAlbeshri@kau.edu.sa (A.A.); IAKatib@kau.edu.sa (I.K.)
4 High Performance Computing Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
* Correspondence: RMehmood@kau.edu.sa

Received: 15 September 2020; Accepted: 6 October 2020; Published: 13 October 2020
����������
�������

Abstract: Graphics processing units (GPUs) have delivered a remarkable performance for a variety of
high performance computing (HPC) applications through massive parallelism. One such application
is sparse matrix-vector (SpMV) computations, which is central to many scientific, engineering,
and other applications including machine learning. No single SpMV storage or computation scheme
provides consistent and sufficiently high performance for all matrices due to their varying sparsity
patterns. An extensive literature review reveals that the performance of SpMV techniques on GPUs
has not been studied in sufficient detail. In this paper, we provide a detailed performance analysis of
SpMV performance on GPUs using four notable sparse matrix storage schemes (compressed sparse
row (CSR), ELLAPCK (ELL), hybrid ELL/COO (HYB), and compressed sparse row 5 (CSR5)), five
performance metrics (execution time, giga floating point operations per second (GFLOPS), achieved
occupancy, instructions per warp, and warp execution efficiency), five matrix sparsity features
(nnz, anpr, npr variance, maxnpr, and distavg), and 17 sparse matrices from 10 application domains
(chemical simulations, computational fluid dynamics (CFD), electromagnetics, linear programming,
economics, etc.). Subsequently, based on the deeper insights gained through the detailed performance
analysis, we propose a technique called the heterogeneous CPU–GPU Hybrid (HCGHYB) scheme.
It utilizes both the CPU and GPU in parallel and provides better performance over the HYB format
by an average speedup of 1.7x. Heterogeneous computing is an important direction for SpMV
and other application areas. Moreover, to the best of our knowledge, this is the first work where
the SpMV performance on GPUs has been discussed in such depth. We believe that this work on
SpMV performance analysis and the heterogeneous scheme will open up many new directions and
improvements for the SpMV computing field in the future.

Keywords: sparse matrix-vector multiplication (SpMV); high performance computing (HPC);
sparse matrix storage; graphics processing units (GPUs); CSR; ELL; HYB; CSR5; parallelization;
heterogeneous computing

1. Introduction

Sparse matrix-vector multiplication (SpMV) is fundamental to many scientific, engineering, and other
applications [1–9]. These include web ranking [10,11], communication and networked systems [12],
finding steady-state and transient solutions of Markov chains [13,14], and many others [1,2,15].

Electronics 2020, 9, 1675; doi:10.3390/electronics9101675 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-4767-4147
https://orcid.org/0000-0002-4997-5322
http://dx.doi.org/10.3390/electronics9101675
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/10/1675?type=check_update&version=2

Electronics 2020, 9, 1675 2 of 30

Another application area of SpMV computations that has become of colossal importance these days
is machine and deep learning [16–18]. The SuiteSparse collection, the University of Florida repository of
sparse matrices [2], comprises thousands of matrices that are collected from tens of application domains.
The significance of SpMV computations is also evident from the fact that sparse linear algebra operations
is included by the Berkeley scientists in their set of motifs, called the seven dwarfs [1].

An SpMV operation can be written mathematically as y = Ax, where A is a sparse matrix, x is
a dense vector, and y is their product that needs to be computed. Sparse matrices arising from these
applications are very large and sparse. They contain a relatively small number of nonzero elements,
which arise due to various properties of the underlying system. Moreover, the sparsity structure
of these matrices varies greatly. Therefore, parallelizing and loadbalancing SpMV computations on
multiple cores or compute nodes, and the associated memory access challenges limit SpMV performance.
Naturally, a great variety of specialized data structures and algorithms have been devised over the
years for SpMV computations on the mainstream processor architectures including CPUs [19–29],
field programmable gate arrays (FPGAs) [30–37], and manycore integrate architectures (MICs) [38–44].
Graphics processing units (GPUs) that provide massive computing capability through a large number
of cores and high memory bandwidth have accelerated the performance of many applications [45–53].
SpMV is not an exception and has benefited from GPU computing [18,42,54–59]. However, due to
the extreme variations in the sparsity structure of matrices, no single scheme provides consistent and
sufficiently high performance on any processor architecture [60–65]. We have done an extensive review
of SpMV techniques on GPUs and believe that the performance of SpMV techniques on GPUs has
not been studied in sufficient detail; see for instance the most recent review of SpMV computations
on GPUs [55]. The proposed schemes are mainly being evaluated and compared in terms of the
SpMV throughput in floating point operations per second (FLOPS), which alone does not provide a
deep insight into the SpMV storage and computations. This line of research broadly aims to analyze
and improve the performance of SpMV computations. Towards this aim, we have developed a
range of techniques over the years to propose novel storage schemes and algorithms on CPU [66–72],
MIC [73–75], and GPU architectures [76,77]. Our research has also focused on the applications of
SpMV computations [78–85].

In this paper, we provide a detailed performance analysis of SpMV performance on GPUs. For the
purpose, we selected four notable sparse matrix storage schemes—compressed sparse row (CSR),
ELLAPCK (ELL), hybrid ELL/COO (HYB), and compressed sparse row 5 (CSR5)—and evaluate
their performance using five performance metrics. The five performance metrics are execution time,
giga FLOPS (GFLOPS), achieved occupancy, instructions per warp, and warp execution efficiency.
We selected 17 sparse matrices that have been widely used by SpMV researchers for performance
analysis [39,77,86,87]. These matrices are from 10 application domains including chemical simulations,
computational fluid dynamics (CFD), electromagnetics, linear programming, economics, and others.
We provide a detailed discussion of the SpMV performance in terms of the five performance metrics
mentioned above against five matrix sparsity features, the number of nonzero elements in the matrices
(nnz), the average number of nonzero elements per row (anpr), the variance in the number of nonzero
elements per row (npr variance), the maximum number of nonzero elements per row (maxnpr), and the
mean index distance between the first and the last nonzero elements in a row (distavg).

Subsequently, based on the deeper insights gained through the detailed performance analysis,
we propose a technique for improving the HYB scheme. The scheme is called the heterogeneous
CPU–GPU Hybrid (HCGHYB) scheme. It utilizes both the CPU and GPU in parallel to improve
the performance. Specifically, we multiplied matrix and vector elements on GPU, while the reduce
operation in SpMV computation (that should be carried out atomically) was performed on CPU. Since
the reduce operation is a compute-intensive atomic operation, our scheme HCGHYB provides a better
performance over the standard HYB format by an average speedup of 1.7x.

To the best of our knowledge, this is the first work where the SpMV performance on GPUs
has been discussed in such depth. The detailed performance analysis provided in this paper has

Electronics 2020, 9, 1675 3 of 30

helped us to understand the performance bottlenecks of the HYB scheme and we were able to devise
a scheme to improve its performance. The HYB scheme is a popular choice in many SpMV and
iterative solvers for sparse linear equation systems and therefore our proposed scheme is expected
to generate high impact. Moreover, heterogeneous computing involving multiple processor and
computing architectures is an important direction for SpMV and other application areas. We believe
that this work on SpMV performance analysis and the heterogeneous scheme will open up many new
directions and improvements for the SpMV computing field in the future.

The rest of the paper is organized as follows. Section 2 provides information about the matrix
dataset including sparsity features of the sparse matrices in the dataset. The next four sections, Section 3
to Section 6, provide a detailed performance analysis of the SpMV computations using the four selected
sparse storage schemes, CSR, ELL, HYB, and CSR5. Section 7 provides comparative performance of the
four sparse schemes. Section 8 introduces our proposed scheme and provides a comparative analysis
of its performance. Section 9 concludes and provides directions for future work.

2. Dataset, Sparsity Features, and Performance Metrics

2.1. Dataset and Sparsity Features

Table 1 provides details of the dataset used in this paper for the analysis of SpMV performance on
GPUs. The first column depicts the sparsity structure of the matrices. Column 2 gives the name of the
matrix followed by the number of rows and columns in the matrix. The next five columns give the
five matrix features, the number of nonzero elements in the matrices (nnz), the variance in the number
of nonzero elements per row (npr variance), the average number of nonzero elements per row (anpr),
the maximum number of nonzero elements per row (maxnpr), and the mean index distance between
the first and the last nonzero elements in a row (distavg). The last column gives the application domain
of the matrices.

2.2. Performance Metrics

We used five performance metrics for investigating the SpMV performance. The execution time
is defined as the time taken to execute SpMV in a unit of time. GFLOPS is the number of floating
point operations per second in billions achieved during the SpMV execution and hence is the measure
of computational throughput achieved for the computation on a GPU. Achieved occupancy (AO) is
defined as the ratio of the average active warps per cycle to the maximum number of warps supported
on an SM. This metric provides an indication on the utilization of the GPU. Instructions per warp (IPW)
is an indicator of the existence of thread divergence. A low IPW value indicates lower divergence
and therefore better performance [88]. In addition to the IPW metric to detect divergence, we have
the warp execution efficiency (WE) metric, which is defined as the ratio of the average number of
active threads per warp to the maximum number of threads per warp supported on a multiprocessor
expressed as a percentage [89].

Electronics 2020, 9, 1675 4 of 30

Table 1. Benchmark dataset of sparse matrices.

Structure Matrix Name Rows Columns nnz npr variance anpr maxnpr distavg Application Domain

bayer04 20,545 20,545 159,082 8.2 7 34 4115.99 Chemical Simulation

ch7-8-b5 141,120 141,120 846,720 0 6 6 40,549.39 Combinatorics

copter2 55,476 55,476 407,714 3.55 7 20 28,217.87 Computational Fluid Dynamics

fd15 11,532 11,532 44,206 1.65 3 6 2690.89 Materials

Fp 7548 7548 848,553 207.83 112 957 6388.57 Electromagnetics

lhr10 10,672 10,672 232,633 26.37 21 63 3380.56 Chemical Simulation

lp_stocfor3 16,675 23,541 76,473 3.34 4 15 3123.99 Linear Programming

mark3jac120 54,929 54,929 342,475 4.36 6 44 1960.54 Economics

Meg4 5860 5860 26,324 16.66 4 1193 1758.92 Circuit Simulation

poli4 15,575 15,575 33,074 8.93 2 491 261.04 Economics

poli_large 33,833 33,833 73,249 7.57 2 304 248.12 Economics

sinc18 16,428 16,428 973,826 34.32 59 111 4369.81 Materials

Tols4000 4000 4000 8784 5.92 2 90 1130.87 Computational Fluid Dynamics

TSOPF_RS_b300_c2 28,338 28,338 2943,887 102.4 103 209 25,564.97 Power Network

Tuma2 12,992 12,992 28,440 1.2 2 5 4226.74 2D/3D

xenon2 157,464 157,464 3866,688 4.11 24 27 4934.59 Materials

Zd_Jac6 22,835 22,835 1711,983 175.49 74 1050 3436.54 Chemical Simulation

3. Compressed Sparse Row (CSR)

Compressed sparse row (CSR) [90] is one of the earliest and perhaps the most commonly-used
format for storing sparse matrices. It uses three arrays to store a sparse matrix. A Val array is used
to store the nonzero elements by rows, A Col array is used to store the column index locations of
the nonzero elements, and a RowPtr array is used to store the row pointers to the beginning of each
matrix row.

3.1. Execution Time

Figure 1a,b analyses the performance of CSR in terms of execution time. Figure 1a compares the
number of non-zeros in each matrix against the execution time. We observe that, with few exceptions,
there is a consistent increase in the execution time as the nnz value increases.

Electronics 2020, 9, 1675 5 of 30

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80

1

2

3

4

5
 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2Ex

ec
uti

on
 Ti

me
 (m

s)

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0

1

2

3

Ex
ec

uti
on

 Ti
me

 (m
s)

V a r i a n c e

 c h 7 - 8 - b 5 T u m a 2 F d 1 5
 l p _ s t o c f o r 3 C o p t e r 2 x e n o n 2
 m a r k 3 j a c 1 2 0 T o l s 4 0 0 0 p o l i 4
 b a y e r 0 4 p o l i _ l a r g e M e g 4
 l h r 1 0 s i n c 1 8 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6 f p

(b)
Figure 1. Compressed sparse row (CSR) execution time against: (a) nonzero elements in the matrices
(nnz) and (b) nonzero elements per row (npr variance).

Generally, the sparse matrices can be classified as structured or unstructured based on the sparsity
pattern. However, within both these sparsity patterns, hierarchically there exists more complex
structural patterns that affects the performance. For example, if we consider poli_large and fd15
matrices, fd15 requires lower execution time than poli_large even though fd15 has a higher nnz value.
This is because fd15 has a lower variance value than poli_large. Another example involves sinc18 and fp
matrices, both of which are unstructured, but with different sparsity patterns. Although sinc18 has
a higher nnz value than fp, it requires a shorter execution time than fp due to its sparsity structure.
Moreover, sinc18 has a lower variance value than fp. From the matrix visualization, it is clear that
sinc18 has a sparsity structure simpler than that of fp, and sinc18 has a better nnz distribution than fp,
where they are spread out among the matrix dimensions.

Figure 1b compares the execution time of CSR with respect to variance. We see that, with some
exceptions, a consistent increase in execution time as variance increases. A higher variance value is
defined as a higher variation in the nnz values of each row in a matrix. This leads to load imbalance
among the threads when a single thread per row is utilized as seen in CSR. The load imbalance issue is
one of the main drawbacks of SpMV computations on the GPU. However, other factors can definitely
cause the existing exceptions. For example, in the case of the mark3jac120 and tols4000 matrices,
even though the latter has a larger variance value than mark3jac120, it has a better execution time due
to the considerable difference in their nnz values, which are 8784 and 34,2475, respectively. The same is
the case for xenon2 and mark3jac120 even though both have structured patterns and similar variances.
In this case, mark3jac120 exceeds xenon2 because xenon2 is much larger than mark3jac120 in terms
of nnz values. In addition to the nnz value’s impact, the sparsity pattern can also cause exceptions.
For example, lhr10 exceeds meg4 despite its larger variance value because meg4’s sparsity pattern is
more complex than lhr10’s in terms of nnz distribution. This is clear if we examine the differences
between the anpr and max_npr features, which are larger in meg4 compared to lhr10.

3.2. GPU Throughput

Figure 2a,b illustrate the GPU throughput of the CSR scheme with a comparison of each matrix
nnz variance values. Figure 2a shows a regular increase in the first twelve matrices, followed by a break
at the fp matrix and a subsequent return to increasing GFLOPS. The rest of the matrices after the peak
GFLOPS values (i.e., ch7-8-b5 and copter2) are fp, sinc18, Zd_Jac6, TSOPF_RS_b300_c2, and lp_stocfor3.
Although xenon2, is the larger matrix in terms of nnz and has a structured pattern, the unstructured

Electronics 2020, 9, 1675 6 of 30

matrices ch7-8-b5 and copter2 exceed it and have higher GFLOPS values. We noted that the sparsity
pattern plays an important role in this variation.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80

1

2

3

4

5

GF
LO

Ps

n n z

 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0

2

4

6

GF
LO

Ps
V a r i a n c e

 c h 7 - 8 - b 5 T u m a 2 F d 1 5
 l p _ s t o c f o r 3 C o p t e r 2 x e n o n 2
 m a r k 3 j a c 1 2 0 T o l s 4 0 0 0 p o l i 4
 b a y e r 0 4 p o l i _ l a r g e M e g 4
 l h r 1 0 s i n c 1 8 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6 f p

(b)
Figure 2. CSR giga floating point operations per second (GFLOPS) against: (a) nnz and (b) npr variance.

More precisely, two main factors affect sparsity. One is the distance between nnzs within a row
in terms of granularity (in the case of CSR, we have one thread per row for processing). Therefore,
the distance between the nnzs in a row affects the overall throughput because it affects the memory
access pattern. In SpMV computations, we usually deal with multiple arrays to read the data, and the
more gaps we have between nnzs in a row, the slower the access, specifically for the array x in
the equation Ax = b. The second factor is the number of nnzs on each row. In our study, this is
measured using variance. To prove this, we examined the fp matrix at the changing point in the figure,
and if we accurately measure the distances between the nnzs on each row, we find large gaps in the
rows. In addition, there is a variation in the number of nnzs within the rows. Compared to the best
performance at ch7-8-b5 and copter2, which have variance values of 0 and 3.55, respectively, fp has a
value of 207.83. This proves that the second factor of sparsity impact, the distances between nnzs in
both matrices, are better than in fp, as the visualization indicates. However, we have fewer GFLOPS
for tols4000 and meg4 than for fp, but this is due to their small nnz value, whereas we compared fp with
similar matrices.

There is no direct relation between matrix variance and GPU GFLOPS as observed in Figure 2b.
However, we can generally observe, lower variance values have better GFLOPS when there exists a
good sparsity pattern and a large number of nnz. In other words, for tols4000 the variance of 5.92 is
relatively small but it has lower GFLOPS compared to matrices with larger variance values due to the
big difference between the number of nnz (e.g., tols4000 and sinc18), which have a variance of 34.32.
The same occurs with fd15 with a variance of 1.65 and TSOPF_RS_b300_c2 with a variance of 102.4.
Ch7-8-b5 has 0 variance, which indicates that all rows have the same number of nnz in addition to
relatively close distances between nnz per row and a max-nnz. This is evident in our findings for other
matrices such as, copter2, xenon2, and mark3jac120 with a variance of 3.55, 4.11, and 4.36 respectively.

3.3. GPU Utilization

Figure 3a,b report the results of the achieved occupancy of the CSR scheme. AO affects the
performance since it indicates the rate of GPU SM utilization. More exploitation of GPU parallelization
capabilities improves the overall performance. Generally, from Figure 3a, a higher nnz leads to
better achieved occupancy, but then we observe a few matrices with higher nnz and lower achieved
occupancy. Consider fp and zd_Jac6, both which have a large number of nnz but attained low achieved
occupancy. This is also the reason for the higher execution time for these two matrices. We reason that

Electronics 2020, 9, 1675 7 of 30

the features of the sparsity structures include nnz, npr variance and the existence of gaps per row on
the matrices. The last two conditions are in existence since we have a big variance for both matrices
and there exists gaps within a row. The first three matrices have lower achieved occupancy since they
are considered the smallest matrices in terms of nnz. The highest occupancy is attained by ch7-8-b5
and xenon2, where all the conditions are satisfied (i.e., large number of nnz, low variance, and small
gaps in the rows).

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
hie

ve
d O

ccu
pa

nc
y

n n z

 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
hie

ve
d O

ccu
pa

nc
y

V a r i a n c e

 c h 7 - 8 - b 5 T u m a 2
 F d 1 5 l p _ s t o c f o r 3
 C o p t e r 2 x e n o n 2
 m a r k 3 j a c 1 2 0 T o l s 4 0 0 0
 p o l i 4 b a y e r 0 4
 p o l i _ l a r g e M e g 4
 l h r 1 0 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2 Z d _ J a c 6
 f p

(b)
Figure 3. CSR achieved occupancy against: (a) nnz and (b) npr variance.

In Figure 3b, we study the effect of matrix variance on the achieved occupancy. We find that
low variance results in higher achieved occupancy while higher variance results in lower achieved
occupancy. However, we cannot ignore the impact of nnz, which reverses this trend in some cases as
in tols4000, meg4, and poli_large.

Figure 4a,b shows the instructions per warp (IPW) for the CSR scheme. Figure 4b illustrates
that with higher variance values (which means a large variation of number of nnz per rows) we have
a higher IPW, which indicates a higher divergence. However, in some cases such as Zd_Jac6 and
fp, although the variance of fp is larger than Zd_Jac6, Zd_Jac6 has higher IPW due to larger nnz than
fp. The same happens for mark3jac120 and xenon2, where the latter is a little higher than the former.
Moreover, tols4000 has fewer IPW than mark3jac120 and xenon2, although its variance is higher than
mark3jac120 and xenon2, but this is due to its small nnz. So, we can conclude that with more nnz
variation per row in a matrix we have more divergence and therefore low performance while taking
into consideration the matrix size in terms of nnz. In addition to the IPW metric to detect the existing
divergence, we have the warp execution efficiency metric. In case of warp divergence some threads
will be permanently switched off for various reasons such as, the presence of conditional control
statements (which cause MIMD) or uncoalesced memory access (which causes waiting time to bring
the data in different memory transactions). These factors affect the active threads within a warp
because they result in work variation within a warp and this sometimes serializes the work as GPU is
an SIMD device. Thus, warp efficiency metric provides a deep understanding of GPU utilization and
indicates the level of parallelism exploited. High warp efficiency percentage indicates a high level of
thread exploitation, and low warp efficiency indicates the existence of divergence.

Electronics 2020, 9, 1675 8 of 30

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

IPW

n n z

 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

IPW

V a r i a n c e

 c h 7 - 8 - b 5
 T u m a 2
 F d 1 5
 l p _ s t o c f o r 3
 C o p t e r 2
 x e n o n 2
 m a r k 3 j a c 1 2 0
 T o l s 4 0 0 0
 p o l i 4
 b a y e r 0 4
 p o l i _ l a r g e
 M e g 4
 l h r 1 0
 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6
 f p

(b)
Figure 4. CSR instructions per warp (IPW) against: (a) nnz and (b) npr variance.

Figure 5a shows the impact of nnz on warp efficiency. There is no real impact or consistent increase
of warp efficiency as nnz increase. Figure 5b shows a comparison between warp efficiency and matrix
variance. In CSR, when the granularity is one thread per row, we need a conditional control statement.
In cases of high variation of nnz per row, there is a high possibility of warp divergence as the execution
times per thread differ, which results in the shorter threads waiting for the longer threads and hence
idle threads (within a warp). Subsequently, the overall performance is impacted. Figure 5b provides
evidence for our findings. We observe that matrices with low variance have high warp efficiency and
matrices with high variance have lower warp efficiency with some exceptions. These exceptions exist
because we definitely have other factors that affect the performance. The main factor that causes these
exceptions is the number of nnz per row. When the average nnz per row (regardless of the variance) is
higher, it will give us better warp efficiency. For example, fp and Zd_Jac6 both have big variance but fp,
which has the highest variance, has achieved better warp efficiency than Zd_Jac6 because the average
number of nnz per row (anpr) on fp is 112 and on Zd_Jac6 it is 74. So, having more nnz on rows results in
better warp efficiency. This happens with mark3jac120 and xenon2, where anpr was 6 and 24, respectively.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Wa
rp

Eff
icie

nc
y

n n z

 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Wa
rp

Eff
icie

nc
y

V a r i a n c e

 c h 7 - 8 - b 5
 T u m a 2
 F d 1 5
 l p _ s t o c f o r 3
 C o p t e r 2
 x e n o n 2
 m a r k 3 j a c 1 2 0
 T o l s 4 0 0 0
 p o l i 4
 b a y e r 0 4
 p o l i _ l a r g e
 M e g 4
 l h r 1 0
 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6
 f p

(b)
Figure 5. CSR warp efficiency against: (a) nnz and (b) npr variance.

4. ELLPACK (ELL)

The ELLPACK (ELL) [91] format uses two 2D arrays Val and Col to store a sparse matrix. The Val
array contains the nonzero values while the 2D array Col contains the column indices of the nonzero
elements. The correct row index is preserved in the Col array.

Electronics 2020, 9, 1675 9 of 30

4.1. Execution Time

Figure 6a,b illustrates the ELL execution time. Figure 6a compares the execution time of each
matrix against its nnz value. There is a variation in the attained execution time as the number of
nnz increases. Thus, nnz does not have a heavy impact on the execution time. The peak times were
achieved by the matrices, Zd_Jac6, fp, poli4, meg4, and poli_large. All these matrices have different nnz
that varies from quite high to very low values. This implies that the affect of nnz on execution time for
ELL is negligible. Besides, all the matrices that have slow execution time are the unstructured matrices.
This is not surprising as ELL is mainly suitable for structured matrices.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80

1

2

Ex
ec

uti
on

 Ti
me

 (m
s)

n n z

 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Ex
ec

uti
on

 Ti
me

 (m
s)

V a r i a n c e

 c h 7 - 8 - b 5 T u m a 2
 F d 1 5 l p _ s t o c f o r 3
 C o p t e r 2 x e n o n 2
 m a r k 3 j a c 1 2 0 T o l s 4 0 0 0
 p o l i 4 b a y e r 0 4
 p o l i _ l a r g e M e g 4
 l h r 1 0 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2 Z d _ J a c 6
 f p

(b)
Figure 6. ELLPACK (ELL) execution time against: (a) nnz and (b) npr variance.

In Figure 6b, we study the execution time for ELL against the nnz variance. We observe the
matrices with larger nnz and variance have achieved the highest execution time as compared to the
matrices with lower variances. However, even with a low variance, some matrices attained high
execution times (e.g., poli4 and meg4). This is because there are other factors that affects the execution
time. In the ELL storage format, the row size is equal to maxnpr and the remaining rows are padded
with zeros. If we take this into consideration in poli4 (as an example), it indeed has relatively small
variance but the maximum nnz among its rows (max_anpr) is 304 while the anpr is 2. This is a big
difference and this implies that large number padded zeros are required to store these matrices in ELL.
Therefore during the SpMV computations, we exclude these zeros using a conditional control statement,
which as we have illustrated before causes a thread divergence, and hence leads to higher execution
time. The same happens with poli_large where the anpr and max_anpr are 2 and 491, respectively.
Similarly, in case of meg4, the anpr and max_anpr are 4 and 1193, respectively.

4.2. GPU Throughput

Figure 7a illustrates the throughput achieved by CSR with varying nnz. We observe that there
is an increase in GFLOPS as the nnz increase with some exceptions. These exceptions are poli4, fp,
and Zd_Jac6, which are unstructured matrices. In Figure 7b, we study the throughput relation to
the matrix variance. There is no consistent trend that can be observed. Thus, the achieved GFLOPS
does not depend on the matrix variance but rather it depends more on the nnz as shown in Figure 7a,
considering the discussed factors.

Electronics 2020, 9, 1675 10 of 30

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0 1

0 . 1

1

1 0

GF
LO

Ps

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0 1

0 . 1

1

1 0

GF
LO

Ps

V a r i a n c e
(b)

Figure 7. ELL GFLOPs against: (a) nnz and (b) npr variance.

4.3. GPU Utilization

Figures 8–10 provide a detailed description of GPU utilization on ELL scheme. Figure 8a,b discuss
the achieved occupancy. Higher exploitation of GPU parallelization capabilities results in better
performance. Generally, as observed in Figure 8a, a larger nnz leads to better achieved occupancy with
some exceptions, such as in lhr10 compared to bayer04 and fp compared to ch7-8-b5. This is explained
well by considering other matrix features in Figure 8b.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
hie

ve
d O

ccu
pa

nc
y

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
hie

ve
d O

ccu
pa

nc
y

V a r i a n c e
(b)

Figure 8. ELL achieved occupancy against: (a) nnz and (b) npr variance.

In Figure 8b, we see the variance of lhr10 (26.37) is bigger than bayer04 (8.2), which is the reason
for lhr10’s low achieved occupancy. Furthermore, fp and ch7-8-b5 are similar, where variances are
207.83 and 0, respectively. However, there are other cases where we have a higher achieved occupancy
even with higher variance (e.g., TSOPF_RS_b300_c2 and Zd_Jac6 compared to sinc18). That is definitely
caused by other factors such as nnz, which is greater on TSOPF_RS_b300_c2 and Zd_Jac6 than
sinc18 or meg4. Nevertheless, in some cases this is not totally true, such as in mark3jac120 and
TSOPF_RS_b300_c2, where mark3jac120 is smaller than TSOPF_RS_b300_c2 in terms of nnz and they
have a different variance of 4.36 and 102.4, respectively. However, they have achieved similar achieved
occupancy although both are structured. That is due to another factor, which is the gaps between nnz
on each row among all rows, which TSOPF_RS_b300_c2 has but mark3jac120 does not.

Electronics 2020, 9, 1675 11 of 30

Figure 9a studies the impact of nnz on the IPW metric, which indicates the existence of divergence.
As we can see, there is a variation on the achieved IPW as the nnz increases, and this indicates that the
sparsity structure of the matrices play a more important role than nnz alone, as we can see in Figure 9b
showing the comparison against matrix variance.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

81 0 0

1 0 0 0

1 0 0 0 0

IPW

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

1 0

1 0 0

1 0 0 0

1 0 0 0 0

IPW
V a r i a n c e

(b)
Figure 9. ELL instructions per warp (IPW) against: (a) nnz and (b) npr variance.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

8

0 . 9 9 3

0 . 9 9 4

0 . 9 9 5

0 . 9 9 6

0 . 9 9 7

0 . 9 9 8

0 . 9 9 9

1 . 0 0 0

Wa
rp

Eff
icie

nc
y

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 9 9 3

0 . 9 9 4

0 . 9 9 5

0 . 9 9 6

0 . 9 9 7

0 . 9 9 8

0 . 9 9 9

1 . 0 0 0

Wa
rp

Eff
icie

nc
y

V a r i a n c e
(b)

Figure 10. ELL warp efficiency against: (a) nnz and (b) npr variance.

In Figure 9b, we can see that with higher variance values we have a high IPW, which indicates a
higher divergence with some exceptions. As an example, for poli4 and bayer04 (where the variances are
7.57 and 8.2, respectively), the divergence level on bayer04 is less than poli4 despite its bigger variance.
This is due to the big difference between anpr and max-npr of 2 and 304, respectively, on poli4, while they
are 7 and 34 on bayer04, respectively. This factor will cause divergence as explained earlier, and this is
mainly because ELL depends on the max-npr to determine the size of the matrix row. The same occurs
with meg4 and lhr19 where the variance is 16.66 and 26.37, respectively. meg4 has an anpr and max-npr
of 4 and 1193, respectively, while lhr10 has 21 and 63, respectively.

Figure 10a shows the attained warp execution efficiency. All the matrices achieve a high warp
execution efficiency regardless of nnz and are above 99% with some differences of the fractions.
This indicates that there is an extremely low level of warp divergence in ELL format. Moreover, nnz
does not affect this metric too much but it tends to have more warp efficiency with a higher nnz,
with some exceptions resulting from the differences in the sparsity structures.

Electronics 2020, 9, 1675 12 of 30

Figure 10b shows the impact of variance on the warp execution efficiency metric. We tend to
have lower warp efficiency with the bigger variances. However, we have exceptions such as in meg4,
which has the lowest warp efficiency, although there are matrices with bigger variances and that have
achieved better warp efficiency, such as sinc18 and lhr10. This is again due to the big difference between
max-npr and anpr, which are 1193 and 4, respectively, in meg4, while this difference is too small on the
comparable matrices. However, sometimes this is not the only factor that affects the warp efficiency;
in some cases we also have better warp efficiency compared with matrices with lower variances, such
as in xenon2 compared to fd15 and lp_stocfor3. The differences between max-npr and anpr are relatively
small in all of them, but the nnz is bigger in xenon2.

5. Hybrid ELL/COO (HYB)

The hybrid ELL/COO (HYB) [56] format uses the ELL format to store most of the nonzero
elements of the sparse matrix. The remaining nonzero elements are stored using the COO format.

5.1. Execution Time

Figure 11a,b describes the HYB execution time. Figure 11a plots the execution time against nnz
value for the 17 matrices. We tend to have a high execution time as nnz value increases. In Figure 11a
we can observe fp and Zd_Jac6 have the peak execution times in the figure, whereas TSOPF_RS_b300_c2
and xenon2 are bigger matrices but have attained short execution times. Thus, there has to be other
factors that affect the result, and mostly they relate to the sparsity structure as shown in Figure 11b
and is further discussed below.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 1

1

1 0

1 0 0 T o l s 4 0 0 0 M e g 4
 T u m a 2 p o l i _ l a r g e
 F d 1 5 p o l i 4
 l p _ s t o c f o r 3 b a y e r 0 4
 l h r 1 0 m a r k 3 j a c 1 2 0
 C o p t e r 2 c h 7 - 8 - b 5
 f p s i n c 1 8
 Z d _ J a c 6 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

Ex
ec

uti
on

 Ti
me

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 1

1

1 0

1 0 0 c h 7 - 8 - b 5
 T u m a 2
 F d 1 5
 l p _ s t o c f o r 3
 C o p t e r 2
 x e n o n 2
 m a r k 3 j a c 1 2 0
 T o l s 4 0 0 0
 p o l i 4
 b a y e r 0 4
 p o l i _ l a r g e
 M e g 4
 l h r 1 0
 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6
 f pEx

ec
uti

on
 Ti

me
 (m

s)

V a r i a n c e
(b)

Figure 11. Hybrid ELL/COO (HYB) execution time against: (a) nnz and (b) npr variance.

In Figure 11b, we study the effect of nnz variance on the execution time. We find that the execution
time increases as the variance of nnz increases. In addition, it is very clear that fp and Zd_Jac6 have
the biggest variance values and therefore have the longest execution times. As the variance value
increase, the execution time also increase. However, we observe that TSOPF_RS_b300_c2, which has
a big variance and a large nnz, has achieved better execution time compared to sinc18, which has
smaller variance and a smaller nnz. This is because anpr in TSOPF_RS_b300_c2 is bigger than in sinc18.
The same happens with bayer04 and poli4 with a variance 8.2 and 7.57, respectively. bayer04 achieved
better execution time than poli4 and again this was due to its bigger nnz and anpr compared to poli4.
So, we conclude that variance value has a direct impact on the execution time for HYB format.

Electronics 2020, 9, 1675 13 of 30

5.2. GPU Throughput

Figure 12a shows the attained GFLOPS compared to nnz. As we see, the GFLOPS increased as the
nnz increased. Except again with Zd_Jac6 and fp, which attained the smallest throughput. They both
attained the longest execution times. So their structures are the worst ones for HYB format. Both have
big variance and big difference between anpr and max-npr. A similar case was seen with bayer04 and
lhr10, where lhr10’s variance was bigger than bayer04’s. We further discuss this issue in Figure 12b.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0 1

0 . 1

1

1 0 T o l s 4 0 0 0 M e g 4
 T u m a 2 p o l i _ l a r g e
 F d 1 5 p o l i 4
 l p _ s t o c f o r 3 b a y e r 0 4
 l h r 1 0 m a r k 3 j a c 1 2 0
 C o p t e r 2 c h 7 - 8 - b 5
 f p s i n c 1 8
 Z d _ J a c 6 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

GF
LO

Ps

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0 1

0 . 1

1

1 0

GF
LO

Ps

V a r i a n c e
(b)

Figure 12. HYB GFLOPs against: (a) nnz and (b) npr variance.

Figure 12b shows the variance values for all the matrices and their achieved GFLOPS. As discussed,
the matrices with the highest variances achieved the lowest GFLOPS and they are Zd_Jac6 and
fp. In addition, from Figure 12b it is clear that the matrices with the lowest variance attained the
highest GFLOPS compared to the matrices with the highest variance values. Certainly, there are
some exceptions due to other sparsity factors. One case involves TSOPF_RS_b300_c2 and sinc18,
where TSOPF_RS_b300_c2 attained higher GFLOPS than sinc18 although it has bigger variance. This is
because TSOPF_RS_b300_c2 has a bigger nnz than sinc18. The same occurs between lp_stocfor3 and
copter2 and between poli4 and tols4000.

5.3. GPU Utilization

Figure 13a,b report the results of the achieved occupancy of the HYB scheme. This metric
affects the performance since it indicates the rate of GPU SM utilization. More exploitation of GPU
parallelization capabilities equals better performance.

From Figure 13a, a higher nnz leads to better achieved occupancy, but we observe a few exceptions.
Let us consider sinc18 and ch7-8-b5, both which have a larger number of nnz, but sinc18 attained a lower
achieved occupancy compared to ch7-8-b5. This may also be considered a clarification of the sinc18
matrix’s high execution time. We might deduce again that the main features of the sparsity structures
are the nnz, variance, the existing gaps per row on the matrices, or the difference between anpr and
max-npr. Again, looking to sinc18 and ch7-8-b5 sparsity structures, starting with variance we find that
the variance of ch7-8-b5 is lower than sinc18, which are 0 and 34.32, respectively. Thus, less variance
leads to better achieved occupancy besides large nnz. This is further clarified in Figure 13b.

Figure 13b shows the impact of variance value on the achieved occupancy metric. We have found
that there is no consistent behavior of the curve since we have high achieved occupancy with low and
high variance, and this proves the impact of nnz on GPU utilization. We can also note the achieved
occupancy of the matrix with variance 0 is similar to the matrix with variance 102.4 with the latter’s
superiority. This is due to many reasons. Firstly, the matrix with 102.4 variance (i.e., TSOPF_RS_b300_c2)
has a larger nnz than the matrix with 0 variance (i.e., ch7-8-b5). Despite the large difference between nnz

Electronics 2020, 9, 1675 14 of 30

for both matrices, ch7-8-b5 has closer achieved occupancy than TSOPF_RS_b300_c2 and this is due to
its smaller variance value. So, variance and nnz are complementary factors in HYB achieved occupancy.
More evidence of nnz’s impact is seen if we compare TSOPF_RS_b300_c2 with xenon2, which has as
large an nnz as TSOPF_RS_b300_c2. We see they achieved similar achieved occupancy despite the
big difference between their variance with superiority of TSOPF_RS_b300_c2 That is because anpr is
larger in TSOPF_RS_b300_c2 than xenon2 despite xenon2 having a larger nnz and lower variance than
TSOPF_RS_b300_c2. The same happened between bayer04 and poli4, as well as between xenon2 and
copter2. We can conclude that the first factor that affects HYB achieved occupancy is the nnz, then the
variance value, then the anpr value, such that a high nnz with a low variance and big anpr give high
achieved occupancy.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

Ac
hie

ve
d O

ccu
pa

nc
y

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
he

ive
d O

ccu
pa

nc
y

V a r i a n c e
(b)

Figure 13. HYB achieved occupancy against: (a) nnz and (b) npr variance.

Figure 14a,b shows the IPW results for the HYB scheme. This metric acts as an indicator of the
existence of a divergence where low IPW values indicate a lower divergence and therefore better
performance [88].

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

81 0

1 0 0

1 0 0 0

 T o l s 4 0 0 0 M e g 4
 T u m a 2 p o l i _ l a r g e
 F d 1 5 p o l i 4
 l p _ s t o c f o r 3 b a y e r 0 4
 l h r 1 0 m a r k 3 j a c 1 2 0
 C o p t e r 2 c h 7 - 8 - b 5
 f p s i n c 1 8
 Z d _ J a c 6 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

IPW

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

1 0

1 0 0

1 0 0 0

IPW

V a r i a n c e
(b)

Figure 14. HYB instructions per warp (IPW) against: (a) nnz and (b) npr variance.

In Figure 14a, where we see the impact of nnz on the IPW metric, we note that there is oscillation
between the lows and highs, the tendency to have a high IPW value with a higher nnz can be observed.
Analyzing some case studies will clarify this variation. If we take sinc18, meg4, and xenon2, which have

Electronics 2020, 9, 1675 15 of 30

similar IPW values and big differences in nnzs (26324, 973826, and 3866688, respectively), we conclude
that the nnz does not play an important role in IPW value. This leads to the conclusion that the sparsity
features definitely have a strong impression on the level of divergence we have on this scheme. This is
further clarified in Figure 14b.

In Figure 14b we can see that with high variance values we tend to have a high IPW that indicates
a high divergence. However, in some cases, such as mark3jac120 and xenon2, although the variance
of mark3jac120 is larger than xenon2, xenon2 has higher IPW due to its larger nnz than mark3jac120.
The same happened for bayer04 and copter2. Nevertheless, we see the opposite between bayer04 and
poli4, where bayer04 has the bigger variance as well as the bigger nnz compared to poli4. This is because
poli4 has a big difference between anpr and max-npr. The same occurs between meg4 and lhr10. So,
we can conclude that with more variation of nnz per row in a matrix we have more divergence and
therefore low performance, taking into consideration the matrix size in terms of nnz value.

In addition to the IPW metric to detect the existing divergence, we have the warp execution
efficiency metric. Therefore, in case of warp divergence some threads will be permanently switched off
for reasons such as the presence of conditional control statements (which cause MIMD) or uncoalesced
memory access (which causes waiting time to bring the data in multiple memory transactions).
These factors affect the active threads within a warp because they result in work variation within
a warp, and this sometimes serializes the work due to GPU is SIMD processor. Thus, this metric
is another deep study of GPU utilization to clarify whether we have exploited the highest possible
parallelism or not. High warp efficiency percentage indicates a high level of thread exploitation,
and low warp efficiency indicates divergence existence.

Figure 15a shows a comparison between warp execution efficiency and the nnz value. We have a
variation on the attained warp efficiency as nnz value increased. We can see we have high efficiency with
a low nnz as well as with a high nnz. In addition, we have low warp efficiency with a low nnz as well as
with a high nnz. Starting with the lowest warp efficiency in sinc18 and lhr10, both with big differences in
nnz have achieved similar warp efficiency percentage. We can first figure out that the impact of nnz on
HYB warp efficiency is less than the impression of sparsity features. This will be clearer with the next
figure, where we study the impact of variance feature on the attained warp efficiency.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 5

1 . 0

Wa
rp

Eff
icie

nc
y

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

Wa
rp

Eff
icie

nc
y

V a r i a n c e
(b)

Figure 15. HYB warp efficiency against: (a) nnz and (b) npr variance.

Figure 15b shows the impact of variance value on warp execution efficiency. It is clear that the
matrices with lower variance values have achieved higher warp efficiency than the matrices with
higher variance values. Looking at the variance of our example from the previous figure showing sinc18
and lhr10, they have closer variance values with high efficiency at the variance values of the matrices
before and after them! Thus, looking to other examples will eliminate this ambiguity. Why does

Electronics 2020, 9, 1675 16 of 30

TSOPF_RS_b300_c2 with 102.4 variance have higher efficiency than sinc18 with 34.32 variance value?
TSOPF_RS_b300_c2 has a higher nnz than sinc18. The anpr of TSOPF_RS_b300_c2 is higher than it is for
sinc18. In addition, sinc18 is an unstructured matrix while TSOPF_RS_b300_c2 is a structured matrix.
For more evidence, take xenon2 and TSOPF_RS_b300_c2 as another example, since both have similar
warp efficiency with a big difference in variance value They also have similarly high nnzs and they are
both structured matrices. Looking at poli4 and bayer04, which have 7.57 and 8.2, respectively, bayer04
has achieved higher warp efficiency due to its higher nnz compared to poli4. Consequently, a high nnz
in addition to a high anpr with a structured pattern of the matrix is the best combination to obtain high
warp efficiency in the HYB scheme.

6. Compressed Sparse Row 5 (CSR5)

The CSR5 [39] format is an improvement over the classical CSR format. See [39] for details.

6.1. Execution Time

Figure 16a,b describe CSR5 execution time. Figure 16a shows the execution time of each matrix
against the nnz. We observe from Figure 16b that the execution time increase as the value of the nnz
increase. Thus, the value of nnz has a direct effect on the execution time while using CSR5 scheme.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Ex
ec

uti
on

 Ti
me

 (m
s)

n n z

 T o l s 4 0 0 0 M e g 4
 T u m a 2 p o l i _ l a r g e
 F d 1 5 p o l i 4
 l p _ s t o c f o r 3 b a y e r 0 4
 l h r 1 0 m a r k 3 j a c 1 2 0
 C o p t e r 2 c h 7 - 8 - b 5
 f p s i n c 1 8
 Z d _ J a c 6 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0

0 . 2

0 . 4

0 . 6

Ex
ec

uti
on

 Ti
me

 (m
s)

V a r i a n c e

 c h 7 - 8 - b 5
 T u m a 2
 F d 1 5
 l p _ s t o c f o r 3
 C o p t e r 2
 x e n o n 2
 m a r k 3 j a c 1 2 0
 T o l s 4 0 0 0
 p o l i 4
 b a y e r 0 4
 p o l i _ l a r g e
 M e g 4
 l h r 1 0
 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6
 f p

(b)
Figure 16. Compressed sparse row 5 (CSR5) execution time against: (a) nnz and (b) npr variance.

Figure 16b plots a comparison between execution time and variance for the CSR5 scheme.
We observe a variation in the variance values and it tends to have longer execution times with the larger
variance values. The matrices mark3jac120 and xenon2 with variance values 4.36 and 4.11, respectively,
are exceptions. Although mark3jac120 has larger variance than xenon2, it achieves better execution time
due to its smaller nnz value compared to xenon2. The same happens for fp and Zd_Jac6 because Zd_Jac6
has a bigger nnz than fp. This again be observed again in case of mark3jac120 and bayer04, with the
latter’s superiority due to its smaller nnz value. All these examples are evidence of the bigger impact
nnz values has on the execution time than the impact variance of nnz values has on the execution time
for CSR5.

6.2. GPU Throughput

Figure 17a,b illustrate GPU throughput of the CSR5 scheme with a comparison against the nnz
value and the variance of each matrix. In Figure 17a, there is a kind of regular increase of attained
GFLOPS as the nnz value increased with some exceptions. Examples of those exceptions include the
mark3jac120 and copter2 matrices. Although copter2 has a higher nnz value than mark3jac120, it has

Electronics 2020, 9, 1675 17 of 30

fewer GFLOPS. This is due to mark3jac120’s structured pattern, while copter2 has an unstructured
pattern. Another example is fp and ch7-8-b5; both are considered unstructured matrices and it is
exception case of expectation. This indicates the impact of other sparsity features of the sparse matrices
as shown in Figure 17b with variance feature.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80

5

1 0

1 5

2 0

GF
LO

Ps

n n z

 T o l s 4 0 0 0 M e g 4
 T u m a 2 p o l i _ l a r g e
 F d 1 5 p o l i 4
 l p _ s t o c f o r 3 b a y e r 0 4
 l h r 1 0 m a r k 3 j a c 1 2 0
 C o p t e r 2 c h 7 - 8 - b 5
 f p s i n c 1 8
 Z d _ J a c 6 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0

5

1 0

1 5

2 0 c h 7 - 8 - b 5
 T u m a 2
 F d 1 5
 l p _ s t o c f o r 3
 C o p t e r 2
 x e n o n 2
 m a r k 3 j a c 1 2 0
 T o l s 4 0 0 0
 p o l i 4
 b a y e r 0 4
 p o l i _ l a r g e
 M e g 4
 l h r 1 0
 s i n c 1 8
 T S O P F _ R S _ b 3 0 0 _ c 2
 Z d _ J a c 6
 f p

GF
LO

Ps

V a r i a n c e
(b)

Figure 17. CSR5 GFLOPs against: (a) nnz and (b) npr variance.

Regarding the impact of the matrix variance and GPU GFLOPS in Figure 17b, there is no direct
relation between them from the diagram. However, we can generally say lower variance values have
better GFLOPS when conditions make available a good sparsity pattern and higher nnz value. If we
look at the same example, fp and ch7-8-b5, we see that the last has 0 variance where fp has 207.84 variance
value, and this clarifies the reason why cha7-8-b5 exceeds fp on the attained GFLOPS despite having
a smaller nnz value. In general, as Figure 17b shows, the impact of variance on the attained GFLOPS
varies among all matrices. In addition, the attained GFLOPS in the CSR5 scheme is considered weak in
general. Let us consider more examples to analyze the reasons. In the case of TSOPF_RS_b300_c2 and
xenon2, both have higher nnz values among the dataset and have big differences in their variance values,
but they have attained approximate GFLOPS. Although the lower nnz TSOPF_RS_b300_c2 matrix has
a relatively big variance value compared to xenon2, it exceeds xenon2 on the attained GFLOPS! That
is because the anpr value of TSOPF_RS_b300_c2 (i.e., 103) is bigger than xenon2 (i.e., 24). The same
happened in many cases that achieved the bigger nnz condition, as between Zd_Jac6 and ch7-8-b5 and
between Zd_Jac6 and sinc18. Thus, GFLOPS in the CSR5 scheme was mainly affected by nnz value,
then by variance value, and then by anpr number, such that a large nnz value led to high GFLOPS.
Smaller variance led to higher GFLOPS with some exceptions due to the existence of higher nnz value
or higher anpr number where they have bigger impact than variance number.

6.3. GPU Utilization

Figure 18a,b report the results of the achieved occupancy of the CSR5 scheme. Generally, from
Figure 18a, a higher nnz value leads to better achieved occupancy, but what are the reasons for opposite
cases? Let us study copter2 compared to mark3jac120, lhr10 compared to bayer04, and fp compared
to ch7-8-b5. Copter2, lhr10, and fp matrices have higher nnz values than their compared matrices.
Therefore, this indicates the impact of sparsity features on the achieved occupancy, as shown in
Figure 18b.

Electronics 2020, 9, 1675 18 of 30

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 0

0 . 2

0 . 4

0 . 6

0 . 8 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

Ac
hie

ve
d O

ccu
pa

nc
y

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

Ac
hie

ve
d O

ccu
pa

nc
y

V a r i a n c e
(b)

Figure 18. CSR5 achieved occupancy against: (a) nnz and (b) npr variance.

Figure 18b illustrates the effect of variance values on the achieved occupancy metric. We tend to
have higher achieved occupancy with lower variance values and lower achieved occupancy with higher
variance values, with exceptions. Let us discuss the same examples starting with copter2 compared to
mark3jac120 with 3.55 and 4.36 variance values, respectively. We see that copter2 has less variance and a
higher nnz value than mark3jac120 and has achieved lower achieved occupancy because mark3jac120 is
a structured matrix while copter2 not. However, in the other cases, such as in lhr10 compared to bayer04
and fp compared to ch7-8-b5, the matrices with lower variance (i.e., bayer04 and ch7-8-b5) have attained
higher achieved occupancy although they have smaller nnz values. We can conclude that higher nnz
value besides lower variance value is a good combination to obtain high achieved occupancy in CSR5.

Figure 19a,b show the IPW results for the CSR5 scheme. This metric acts as an indicator of the
existence of the divergence, where lower IPW values indicate lower divergence and therefore better
performance [88].

Figure 19a plots the impact of nnz on the attained IPW. In this case, there is a tendency to have
higher IPW with higher nnz. Nevertheless, there are some exceptions, which indicates the impact of
sparsity structure of the matrices on the IPW result. We see that mark3jac120, copter2, and ch7-8-b5
have fewer IPW than lhr10 although they have higher nnzs! This is because they have lower variance
values than lhr10. We further explain this with the next figure where we look at the variance effect.

In Figure 19b, we can see as variance value increased the IPW values increased, which indicates
that with higher variance value the possibility of having higher divergence is high. However, in some
cases, such as Zd_Jac6 and fp, Zd_Jac6 has higher IPW due to its larger nnz value compared to fp,
although the variance of fp is larger than Zd_Jac6. The same happened for mark3jac120 and xenon2,
where the last was higher than the first, and tols4000 had lower IPW than mark3jac120 and xenon2
despite its variance being higher than them, but this was due to its smaller nnz value. So, we can
conclude that the main factor that affects IPW is the variance value such that with more variation of
nnz per row in a matrix we have higher divergence and therefore lower performance, taking into
consideration the matrix size in terms of nnz value. In other words, a low variance value leads to
less divergence by obtaining a lower IPW value. However, the opposite case happens because the
matrices with higher nnz values require more instructions and therefore in those cases have stronger
impact than variance value. In addition to the IPW metric to detect the existence of divergence, we have
the warp execution efficiency metric. Therefore, in the case of warp divergence some threads will
be permanently off for reasons such as the presence of conditional control statements (which cause
MIMD) or uncoalesced memory access (which causes waiting time to bring the data in different
memory transactions). These factors affect the active threads within a warp because they result in
work variation within a warp, and this serializes the work due to the GPU being an SIMD processor.

Electronics 2020, 9, 1675 19 of 30

Thus, this metric is another deep study of GPU utilization to clarify whether we have exploited the
highest possible parallelism or not. High warp execution efficiency percentage indicates a high level of
thread exploitation, and low warp efficiency indicates divergence existence.

Figure 20a shows the impact of nnz on warp execution efficiency. We have in general a higher level
of warp execution efficiency in this scheme, and there is a tendency to have an increased percentage of
warp efficiency as the nnz value increases. Figure 20b shows a comparison between warp execution
efficiency and matrix variance. There is oscillation between ups and downs over the variance axis.
However, if we assume that a lower variance value is always the best case to obtain better warp
efficiency, then it is better to study the opposite cases. Starting with lp_stocfor3 and copter2 with 3.34
and 3.55 variance values, respectively, we find that copter2 has achieved higher warp efficiency than
lp_stocfor3 due to its higher nnz value compared to lp_stocfor3. The same happened with bayer04 and
poli4, as well as sinc18 and lhr10. Thus, the main factor that affects the warp execution efficiency is
nnz value such that a higher nnz gives higher warp efficiency and therefore less warp divergence
occurrence with consideration of variance value.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80

5 0 0

1 0 0 0

IPW

n n z

 T o l s 4 0 0 0
 M e g 4
 T u m a 2
 p o l i _ l a r g e
 F d 1 5
 p o l i 4
 l p _ s t o c f o r 3
 b a y e r 0 4
 l h r 1 0
 m a r k 3 j a c 1 2 0
 C o p t e r 2
 c h 7 - 8 - b 5
 f p
 s i n c 1 8
 Z d _ J a c 6
 T S O P F _ R S _ b 3 0 0 _ c 2
 x e n o n 2

(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0

5 0 0

1 0 0 0
IPW

V a r i a n c e

c h 7 - 8 - b 5
T u m a 2
F d 1 5
l p _ s t o c f o r 3
C o p t e r 2
x e n o n 2
m a r k 3 j a c 1 2 0
T o l s 4 0 0 0
p o l i 4
b a y e r 0 4
p o l i _ l a r g e
M e g 4
l h r 1 0
s i n c 1 8
T S O P F _ R S _ b 3 0 0 _ c 2
Z d _ J a c 6
f p

(b)
Figure 19. CSR5 instructions per warp (IPW) against: (a) nnz and (b) npr variance.

87
84

26
32

4
28

44
0

33
07

4
44

20
6

73
24

9
76

47
3

15
90

82
23

26
33

34
24

75
40

77
14

84
67

20
84

85
53

97
38

26
17

11
98

3
29

43
88

7
38

66
68

80 . 6

0 . 8

1 . 0

Wa
rp

Eff
icie

nc
y

n n z
(a)

0 1.2 1.6 3.3 3.5 4.1 4.3 5.9 7.5 8.2 8.9 16
.6

26
.3

34
.3

10
2.4

17
5.4

20
7.8

0 . 6

0 . 8

1 . 0

Wa
rp

Eff
icie

nc
y

V a r i a n c e
(b)

Figure 20. CSR5 warp efficiency against: (a) nnz and (b) npr variance.

Electronics 2020, 9, 1675 20 of 30

7. SpMV Performance on GPUs (Summary)

Table 2 summarizes our findings of the impact of sparsity features on the SpMV performance on
GPUs for the four schemes. The performance involves the execution time, GPU utilization, and GPU
throughput. Except for the nnz feature, it reports the effect of GPU utilization and GPU throughput
and excludes the execution time since it is logically to have more execution time with a higher nnz.
The SpMV computations performance on GPUs depends on many factors and we shall find a good
configuration to obtain a high performance. Table 2 shows the various configuration possibilities of each
scheme in terms of the sparsity features that would provide good performance. Some of the sparsity
features have a high effect on some schemes while they have medium or low effect on others. Such as a
high value of npr variance (the variance in the number of nonzero elements per row) will have a high
effect on CSR and ELL; medium effect on HYB and low effect on CSR5. This is because in CSR and ELL
the variance affects the contiguous memory access and causes thread divergence. In addition it creates
surplus zero padding in ELL. The features maxnpr and anpr directly correlate with npr variance as the
difference between the two features provides an average variance for all the rows. The zero paddings
due to a higher npr variance is reduced in HYB due to a better partitioning of scheme, and CSR5 further
optimizes the partition and improves the coalesced access and thread divergence.

Table 2. Performance of the four sparse storage scheme against the five matrix sparsity features.

nnz npr variance distavg anpr maxnpr

CSR medium high medium medium high
ELL medium high low medium high
HYB medium medium low medium medium
CSR5 medium low low medium low

8. The Proposed Scheme (HCGHYB)

In this section, we discuss our proposed scheme, the heterogeneous CPU–GPU hybrid (HCGHYB)
scheme, which is an enhanced version of the HYB scheme. We explain the scheme in Section 8.1,
followed by its detailed performance analysis in comparison with all four schemes in Section 8.2.

8.1. HCGHYB: Motivation and Description

The main idea of this scheme is to divide the work between the CPU and GPU to accelerate the
computations. The motivation of this acceleration is to avoid using the atomic operation that is used
on regular HYB in COO portion of the computation. The atomicAdd operation is used usually to
avoid the race condition problem on the parallel environments. In COO portion multiple threads are
assigned per row, whose values needs to be added to compute the partial sums in the SpMV process.
Unfortunately, the regular HYB uses atomicAdd operation to accomplish this addition. However,
atomic operations are kind of synchronization processes that prevent the interference between threads
on multithreaded environment such as writing on the same memory location. But in this case the
threads will be serialized which can be quite costly and result in slow down the performance. We avoid
this issue by doing the multiplication process on the GPU in parallel while doing the addition part
on the CPU. Multiplication is costly operation compared to addition so we do it on parallel on GPU.
While on the other hand, the simpler operation (i.e., addition) is done on CPU. This result in better
performance than HYB as shown on the following section.

Many challenges are involved in CPU–GPU heterogeneous computing [92]. They can by
processing unit specific such as computational power of processing units, achieving load balance
among the processing units, utilizing the memory bandwidth between CPUs and GPU, avoiding
the overhead of launching the GPU kernels and extra data transfer, and architectural differences
between various processing units. Other issues that need to be considered are pipelining data transfer
between CPU and GPU with computation. We also need to consider the limitations of both processing
units (CPU and GPU) in terms of memory, bandwidth, the number of GPU threads and CPU cores

Electronics 2020, 9, 1675 21 of 30

(and threads per cores), etc. [92]. Other issues are more application-specific such as complexity and
nature of algorithms, level of parallelism offered by the algorithm, best strategy for dividing the work
among CPUs and GPUs and solving data dependency. The partitioning problem is one of the most
challenging problems especially with regards to SpMV [93]. A combination of different SpMV kernels
along with dynamic partitioning is required to achieve the best performance. The remaining challenges
are based on the objective or attaining certain goals such as performance and energy saving.

8.2. HCGHYB: Performance Analysis

In this section we analyze the performance of HCGHYB compared to CSR, ELL, HYB, and CSR5
to depict the achieved level of optimization. The performance metrics considered are: execution time,
GPU throughput in terms of GFLOPS, and GPU utilization (achieved occupancy, instructions per warp,
and warp efficiency).

8.2.1. Execution Time

Figure 21 illustrates the achieved execution time of all notable schemes. We can see from the
figure, the shortest time is attained by CSR5. This is due to improved load balancing among the threads
and improved coalesced memory accesses. The next better scheme is HCGHYB and this is due to
avoiding the latency of atomic operations that exists on HYB and dividing the work among the CPU
and GPU processors. It is clear that our proposed scheme outperforms the HYB scheme by attaining
less execution time for almost all the matrices. This is due to removing the serialization, which was
caused by the atomic operation required by the HYB scheme. We achieve speedups of 375.75x and
54.53x in the best and average cases, respectively. There was a single case where HYB performed
slightly better than our proposed HCGHYB scheme and resulted in HCGHYB providing a speedup of
0.99x. The average speedup is calculated using the following equation.

speedupavg =
∑16

i=0 HYBi

∑16
i=0 HCGHYBi

(1)

On the other hand, the worst schemes are HYB and CSR while in some cases is ELL such as in
poli_large and poli4. The relation of the performance of each scheme and the impact of the sparsity
pattern is explained in detail in the previous sections. HCGHYB attains an average execution time of
0.264 seconds compared to 14.39 (HYB), 0.56 (ELL), 0.88 (CSR), and 0.14 (CSR5) seconds.

To
ls4

00
0

po
li_l

arg
e

Fd
15 fp

lp_
sto

cfo
r3

TS
OP

F

Tu
ma

2

Me
g4

ba
ye

r04

Zd
_J

ac
6

ch
7-8

-b5

sin
c1

8

po
li4

Co
pte

r2

ma
rk3 lhr
10

xe
no

n2

0 . 0 1

0 . 1

1

1 0

1 0 0

Ex
ec

uti
on

 Ti
me

 (m
s)

 C S R 5
 C S R
 E L L
 H Y B
 H C G H Y B

Figure 21. HCGHYB execution time compared to CSR, ELL, HYB, and CSR5.

8.2.2. GPU Throughput

Figure 22 shows the GPU throughput comparison among all the schemes. The highest single
GFLOPS among all schemes for all the matrices is for CSR5. The next best scheme is HCGHYB.
While the worst GFLOPS is achieved by HYB then by ELL, while CSR is in the middle between

Electronics 2020, 9, 1675 22 of 30

the best and worst cases, except in some cases such as when computing copter2 and mark3jac120.
By removing the synchronization caused by atomic operations, we successfully increase the attained
GFLOPS compared to HYB. We achieve GFLOPS gain of 375.57x and 1.7x in the best and average
cases, respectively. There was a single case where HYB performed slightly better than our proposed
HCGHYB scheme and resulted in HCGHYB providing a GFLOPS of 0.99x. The values below 1 indicate
that HYB performed better than our scheme. We note that in xenon2 matrix case the throughput is the
same for both schemes, this is due to the fact that the whole matrix is processed as ELL (no COO part),
so our optimization does not affect its performance. The average GFLOPS gain is calculated using the
following equation:

GFLOPS_gainavg =
∑16

i=0 HCGHYBi

∑16
i=0 HYBi

(2)

HCGHYB attains an average throughput of 3.94 GFLOPs compared to 2.31 (HYB), 2.71 (ELL),
1.38 (CSR), and 6.9 (CSR5) GFLOPS.

To
ls4

00
0

po
li_l

arg
e

Fd
15 fp

lp_
sto

cfo
r3

TS
OP

F

Tu
ma

2

Me
g4

ba
ye

r04

Zd
_J

ac
6

ch
7-8

-b5

sin
c1

8

po
li4

Co
pte

r2

ma
rk3 lhr
10

xe
no

n2

0 . 0 1

0 . 1

1

1 0

GF
LO

Ps

 C S R 5
 C S R
 E L L
 H Y B
 H C G H Y B

Figure 22. Heterogeneous CPU–GPU hybrid (HCGHYB) GPU throughput compared to CSR, ELL,
HYB, and CSR5.

8.2.3. GPU Utilization

Figure 23 reports the achieved occupancy for all the notable schemes among the discussed
matrices. Avoiding the usage of atomic operation in HCGHYB results in a higher occupancy than
HYB in most cases. We attain an achieved occupancy gain of 1.3x and 1.01x in the best and average
cases, respectively. There were a few cases where HYB performed slightly better than our proposed
HCGHYB scheme and resulted in HCGHYB providing an achieved occupancy of 0.72x. The average
achieved occupancy gain is calculated using the following equation:

AchivedOccup_gainavg =
∑16

i=0 HCGHYBi

∑16
i=0 HYBi

(3)

The best achieved occupancy has been attained by HCGHYB scheme with a competition in some
cases with ELL and sometimes with HYB. The worst occupancy has been achieved by CSR5 then by
CSR. HCGHYB attains an average achieved occupancy of 0.61 compared to 0.606 (HYB), 0.604 (ELL),
0.42 (CSR), and 0.36 (CSR5).

Figure 24 shows the instructions per warp metric for the compared schemes. And as we explained
previously a high IPW indicates presence of divergence. We can see from the figure in most cases the
HCGHYB has less IPW than HYB which indicates that our proposed scheme also has less divergence
level than HYB. We achieve better IPW of 21.65x and 1.6x in the best and average cases, respectively.

Electronics 2020, 9, 1675 23 of 30

There were some cases where HYB performed slightly better than our proposed HCGHYB scheme and
resulted in HCGHYB providing 0.97x. The average IPW gain is calculated using the following equation:

IPW_gainavg =
∑16

i=0 HCGHYBi

∑16
i=0 HYBi

(4)
To

ls4
00

0

po
li_l

arg
e

Fd
15 fp

lp_
sto

cfo
r3

TS
OP

F

Tu
ma

2

Me
g4

ba
ye

r04

Zd
_J

ac
6

ch
7-8

-b5

sin
c1

8

po
li4

Co
pte

r2

ma
rk3 lhr
10

xe
no

n2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Ac
hie

ve
d O

ccu
pa

nc
y

 C S R 5
 C S R
 E L L
 H Y B
 H C G H Y B

Figure 23. HCGHYB achieved occupancy compared to CSR, ELL, HYB, and CSR5.

To
ls4

00
0

po
li_l

arg
e

Fd
15 fp

lp_
sto

cfo
r3

TS
OP

F

Tu
ma

2

Me
g4

ba
ye

r04

Zd
_J

ac
6

ch
7-8

-b5

sin
c1

8

po
li4

Co
pte

r2

ma
rk3 lhr
10

xe
no

n2

1 0

1 0 0

1 0 0 0

1 0 0 0 0

IPW

 C S R 5
 C S R
 E L L
 H Y B
 H C G H Y B

Figure 24. HCGHYB IPW compared to CSR, ELL, HYB, and CSR5.

We can see that the lowest IPW has been achieved by HCGHYB and this explains why it has the
best achieved occupancy. In some cases there is a competition between HCGHYB and HYB. The worst
case is given by ELL scheme since it has the highest IPW almost among all the matrices. The second
worst scheme is CSR5. This indicates that lower divergence rate can be attained by HCGHYB then ELL
and HYB while CSR and CSR5 have a higher level of divergence. HCGHYB attains an average IPW of
340 compared to 562 (HYB), 4140 (ELL), 397 (CSR), and 474 (CSR5).

Figure 25 shows the warp execution efficiency results for compared schemes. As shown HCGHYB
has achieved better warp efficiency than HYB in most cases. We attain warp execution efficiency gain
of 1.76x and 1.2x in the best and average cases, respectively. The worst case is 1.00x which indicates
both schemes performed equally. The average warp execution efficiency gain is calculated using the
following equation.

WE_gainavg =
∑16

i=0 HCGHYBi

∑16
i=0 HYBi

(5)

Electronics 2020, 9, 1675 24 of 30

To
ls4

00
0

po
li_l

arg
e

Fd
15 fp

lp_
sto

cfo
r3

TS
OP

F

Tu
ma

2

Me
g4

ba
ye

r04

Zd
_J

ac
6

ch
7-8

-b5

sin
c1

8

po
li4

Co
pte

r2

ma
rk3 lhr
10

xe
no

n2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Wa
rp

Eff
icie

nc
y

 C S R 5 C S R E L L H Y B H C G H Y B

Figure 25. HCGHYB execution efficiency compared to CSR, ELL, HYB, and CSR5.

Figure 25 shows the warp execution efficiency which is a metric with high percentage indicates
to high level of threads exploitation and low warp efficiency indicates to divergence existence.
Consequently, we can conclude that the existence of the atomic operations areas on of having high
divergence rate by having less warp efficiency and more instructions per warp. HCGHYB attains an
average WE of 99.79% compared to 83.43% (HYB), 99.91% (ELL), 65.90% (CSR), and 85.45% (CSR5).

9. Conclusions and Future Work

SpMV is fundamental to many scientific, engineering, business, and social applications, such as
CFD, electromagnetics, economics, and machine and deep learning. The University of Florida
repository of sparse matrices comprises thousands of matrices that are collected from tens of
application domains. Also, SpMV is a core operation in finding the iterative solution of sparse
linear equation systems.

A great variety of specialized data structures and algorithms have been devised over the years
for SpMV computations on the mainstream processor architectures. However, due to the extreme
variations in the sparsity structure of matrices, parallelizing and loadbalancing SpMV computations
on multiple cores or compute nodes, and the associated memory access challenges limit SpMV
performance. No single scheme provides consistent and sufficiently high performance on any processor
architectures. An extensive review of SpMV techniques on GPUs shows that the performance of SpMV
techniques on GPUs has not been studied in sufficient detail. SpMV computations are mainly being
evaluated and compared for their SpMV throughput in FLOPS, which alone does not provide a deep
insight into the SpMV performance.

In this paper, we provided a detailed performance analysis of SpMV performance on GPUs using
four notable sparse matrix storage schemes (CSR, ELL, HYB, and CSR5), five performance metrics
(execution time, GFLOPS, achieved occupancy, instructions per warp, and warp execution efficiency),
five matrix sparsity features (nnz, anpr, npr variance, maxnpr, and distavg), and 17 sparse matrices from
10 application domains (chemical simulations, CFD, electromagnetics, linear programming, economics,
etc.). To the best of our knowledge, this is the first work where the SpMV performance on GPUs has
been discussed in such depth.

Subsequently, we proposed the heterogeneous CPU–GPU Hybrid (HCGHYB) scheme that utilizes
both the CPU and GPU in parallel to improve the performance. Specifically, we multiply the matrix
and vector elements on GPU, while the atomic reduce operation in SpMV computation is performed on
CPU. Since the atomic reduce operation is a compute-intensive operation, our scheme HCGHYB provides
better performance over the standard HYB format by an average speedup of 1.7x. The HYB scheme is
a popular choice in many SpMV and iterative solvers for sparse linear equation systems and therefore
our proposed scheme is expected to generate high impact.

The detailed performance analysis provided in this paper has helped us to understand the
performance bottlenecks of the HYB and other schemes and we were able to devise a scheme to

Electronics 2020, 9, 1675 25 of 30

improve the performance of the HYB scheme. Heterogeneous computing that involves multiple
processor and computing architectures is an important direction for SpMV and other application areas.
We believe that this work on SpMV performance analysis and the heterogeneous scheme will open up
many new directions and improvements for the SpMV computing field in the future.

The directions for future work are many. The knowledge gained from the current performance
analysis shows that the compute kernels in the existing schemes such as HYB and CSR5 can be
parallelized on GPUs using multiple SMs or on heterogeneous architectures. Our proposed scheme
that uses both CPU and GPU can be improved by improved parallelization on the GPU and CPU cores.
Moreover, in the future, we plan to improve the breadth, depth, and quality of our performance
analysis work on GPU and other architectures. This would help us to further understand the
performance bottlenecks of the existing SpMV schemes and the performance profiles of various
processor architectures.

Author Contributions: Conceptualization, S.A., T.M., and R.M.; methodology, S.A., T.M., and R.M.; software,
S.A.; validation, S.A., T.M., and R.M.; formal analysis, S.A., T.M., R.M., I.K., and A.A.; investigation, S.A., T.M.,
and R.M.; resources, R.M., I.K., and A.A.; data curation, S.A.; writing—original draft preparation, S.A., T.M., and
R.M.; writing—review and editing, R.M.; visualization, S.A. and T.M.; supervision, R.M.; project administration,
R.M., A.A., and I.K.; funding acquisition, R.M., A.A., and I.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR) at the King Abdulaziz University,
Jeddah, under grant number RG-10-611-38.

Acknowledgments: The authors acknowledge with thanks the technical and financial support from the Deanship
of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under Grant No.
RG-10-611-38. The experiments reported in this paper were performed on the Aziz supercomputer at KAU.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Asanovic, K.; Bodik, R.; Catanzaro, B.C.; Gebis, J.J.; Husbands, P.; Keutzer, K.; Patterson, D.A.; Plishker, W.L.;
Shalf, J.; Williams, S.W.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; Technical
Report UCB/EECS-2006-183; EECS Department, University of California: Berkeley, CA, USA, 2006.

2. Davis, T.A.; Hu, Y. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 2011,
38, 1:1–1:25. [CrossRef]

3. Yang, W.; Li, K.; Li, K. A hybrid computing method of SpMV on CPU–GPU heterogeneous computing
systems. J. Parallel Distrib. Comput. 2017, 104, 49–60. [CrossRef]

4. Huan, G.; Qian, Z. A new method of Sparse Matrix-Vector Multiplication on GPU. In Proceedings of the
2012 2nd International Conference on Computer Science and Network Technology, Changchun, China,
29–31 December 2012. [CrossRef]

5. Hassani, R.; Fazely, A.; Choudhury, R.U.A.; Luksch, P. Analysis of Sparse Matrix-Vector Multiplication Using
Iterative Method in CUDA. In Proceedings of the 2013 IEEE Eighth International Conference on Networking,
Architecture and Storage, Xi’an, China, 17–19 July 2013. [CrossRef]

6. Guo, P.; Wang, L. Auto-Tuning CUDA Parameters for Sparse Matrix-Vector Multiplication on GPUs.
In Proceedings of the 2010 International Conference on Computational and Information Sciences, Chengdu,
China, 17–19 December 2010. [CrossRef]

7. Merrill, D.; Garland, M. Merge-Based Parallel Sparse Matrix-Vector Multiplication. In Proceedings of
the SC16: International Conference for High Performance Computing, Networking, Storage and Analysis,
Salt Lake City, UT, USA, 13–18 November 2016. [CrossRef]

8. Ahamed, A.K.C.; Magoulès, F. Efficient implementation of Jacobi iterative method for large sparse linear
systems on graphic processing units. J. Supercomput. 2016, 73, 3411–3432. [CrossRef]

9. Hou, K.; Feng, W.-C.; Che, S. Auto-Tuning Strategies for Parallelizing Sparse Matrix-Vector (SpMV)
Multiplication on Multi- and Many-Core Processors. In Proceedings of the 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, USA,
29 May–2 June 2017. [CrossRef]

http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1016/j.jpdc.2016.12.023
http://dx.doi.org/10.1109/iccsnt.2012.6526085
http://dx.doi.org/10.1109/nas.2013.41
http://dx.doi.org/10.1109/iccis.2010.285
http://dx.doi.org/10.1109/sc.2016.57
http://dx.doi.org/10.1007/s11227-016-1701-3
http://dx.doi.org/10.1109/ipdpsw.2017.155

Electronics 2020, 9, 1675 26 of 30

10. Langville, A.N.; Meyer, C.D. A survey of eigenvector methods for web information retrieval. SIAM Rev.
2005, 47, 135–161. [CrossRef]

11. Kamvar, S.D.; Haveliwala, T.H.; Manning, C.D.; Golub, G.H. Extrapolation methods for accelerating
PageRank computations. In Proceedings of the 12th International Conference on World Wide Web; ACM:
New York, NY, USA, 2003; pp. 261–270.

12. Heffes, H.; Lucantoni, D. A Markov Modulated Characterization of Packetized Voice and Data Traffic and
Related Statistical Multiplexer Performance. IEEE J. Sel. Areas Commun. 1986, 4, 856–868. [CrossRef]

13. Bylina, J.; Bylina, B.; Karwacki, M. An efficient representation on GPU for transition rate matrices for Markov
chains. In Parallel Processing and Applied Mathematics; Springer: Berlin, Germany, 2013.

14. Bylina, J.; Bylina, B.; Karwacki, M. A Markovian Model of a Network of Two Wireless Devices.
Comput. Netw. 2012. [CrossRef]

15. Ahamed, A.K.C.; Magoules, F. Fast sparse matrix-vector multiplication on graphics processing unit for finite
element analysis. In Proceedings of the 2012 IEEE 14th International Conference on High Performance
Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and
Systems, Liverpool, UK, 25–27 June 2012. [CrossRef]

16. Yu, J.; Lukefahr, A.; Palframan, D.; Dasika, G.; Das, R.; Mahlke, S. Scalpel: Customizing DNN Pruning to the
Underlying Hardware Parallelism. In Proceedings of the 44th Annual International Symposium on Computer
Architecture; Association for Computing Machinery: New York, NY, USA, 2017; pp. 548–560. [CrossRef]

17. Mohammed, T.; Joe-Wong, C.; Babbar, R.; Francesco, M.D. Distributed Inference Acceleration with Adaptive
DNN Partitioning and Offloading. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on
Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 854–863. [CrossRef]

18. Benatia, A.; Ji, W.; Wang, Y.; Shi, F. BestSF: A Sparse Meta-Format for Optimizing SpMV on GPU. ACM Trans.
Archit. Code Optim. 2018, 15. [CrossRef]

19. Abdali, S.K.; Wise, D.S. Experiments with quadtree representation of matrices. In Proceedings of the
Symbolic and Algebraic Computation International Symposium ISSAC ’88, Rome, Italy, 4–8 July 1988;
Springer: Berlin/Heidelberg, Germany, 1989; pp. 96–108. [CrossRef]

20. Langr, D.; Simecek, I.; Tvrdik, P. Storing sparse matrices to files in the adaptive-blocking hierarchical storage
format. In Proceedings of the 2013 Federated Conference on Computer Science and Information Systems
(FedCSIS), Krakow, Poland, 8–11 September 2013; pp. 479–486.

21. Simecek, I.; Langr, D.; Tvrdík, P. Space efficient formats for structure of sparse matrices based on tree
structures. In Proceedings of the 2013 15th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), Timisoara, Romania, 23–26 September 2013; pp. 344–351.

22. Simecek, I.; Langr, D. Tree-based space efficient formats for storing the structure of sparse matrices.
Scalable Comput. Pract. Exp. 2014, 15, 1–20.

23. Zhang, J.; Wan, J.; Li, F.; Mao, J.; Zhuang, L.; Yuan, J.; Liu, E.; Yu, Z. Efficient sparse matrix–vector
multiplication using cache oblivious extension quadtree storage format. Future Gener. Comput. Syst. 2016,
54, 490–500.

24. Meyer, J.C.; Natvig, L.; Karakasis, V.; Siakavaras, D.; Nikas, K. Energy-efficient Sparse Matrix Auto-tuning
with CSX. In Proceedings of the 27th IEEE International Parallel & Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), Cambridge, MA, USA, 20–24 May 2013.

25. Elafrou, A.; Goumas, G.I.; Koziris, N. A lightweight optimization selection method for Sparse Matrix-Vector
Multiplication. CoRR 2015, arXiv:1511.02494.

26. Shaikh, M.A.H.; Hasan, K.M.A. Efficient storage scheme for n-dimensional sparse array: GCRS/GCCS.
In Proceedings of the 2015 International Conference on High Performance Computing Simulation (HPCS),
Amsterdam, The Netherlands, 20–24 July 2015; pp. 137–142. [CrossRef]

27. Martone, M.; Filippone, S.; Tucci, S.; Paprzycki, M.; Ganzha, M. Utilizing Recursive Storage in Sparse
Matrix-Vector Multiplication-Preliminary Considerations. In CATA; ISCA: Honolulu, HI, USA, 2010;
pp. 300–305.

28. Martone, M. Efficient multithreaded untransposed, transposed or symmetric sparse matrix–vector
multiplication with the recursive sparse blocks format. Parallel Comput. 2014, 40, 251–270. [CrossRef]

29. Guo, D.; Gropp, W. Applications of the streamed storage format for sparse matrix operations. Int. J. High
Perform. Comput. Appl. 2014, 28, 3–12. [CrossRef]

http://dx.doi.org/10.1137/S0036144503424786
http://dx.doi.org/10.1109/JSAC.1986.1146393
http://dx.doi.org/10.1007/978-3-642-31217-5_43
http://dx.doi.org/10.1109/hpcc.2012.193
http://dx.doi.org/10.1145/3079856.3080215
http://dx.doi.org/10.1109/infocom41043.2020.9155237
http://dx.doi.org/10.1145/3226228
http://dx.doi.org/10.1007/3-540-51084-2_9
http://dx.doi.org/10.1109/HPCSim.2015.7237032
http://dx.doi.org/10.1016/j.parco.2014.03.008
http://dx.doi.org/10.1177/1094342012470469

Electronics 2020, 9, 1675 27 of 30

30. Bakos, J.D.; Nagar, K.K. Exploiting Matrix Symmetry to Improve FPGA-Accelerated Conjugate Gradient.
In Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines;
IEEE Computer Society: Washington, DC, USA, 2009; pp. 223–226. [CrossRef]

31. Grigoras, P.; Burovskiy, P.; Hung, E.; Luk, W. Accelerating SpMV on FPGAs by Compressing Nonzero Values.
In Proceedings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing
Machines; IEEE Computer Society: Washington, DC, USA, 2015; pp. 64–67. [CrossRef]

32. Boland, D.; Constantinides, G.A. Optimizing Memory Bandwidth Use and Performance for Matrix-vector
Multiplication in Iterative Methods. ACM Trans. Reconfigurable Technol. Syst. 2011, 4, 22:1–22:14. [CrossRef]

33. Kestur, S.; Davis, J.D.; Chung, E.S. Towards a Universal FPGA Matrix-Vector Multiplication Architecture.
In Proceedings of the 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines;
IEEE Computer Society: Washington, DC, USA, 2012; pp. 9–16. [CrossRef]

34. deLorimier, M.; DeHon, A. Floating-point Sparse Matrix-vector Multiply for FPGAs. In Proceedings of the
2005 ACM/SIGDA 13th International Symposium on Field-Programmable Gate Arrays; ACM: New York, NY,
USA, 2005; pp. 75–85. [CrossRef]

35. Dorrance, R.; Ren, F.; Marković, D. A Scalable Sparse Matrix-vector Multiplication Kernel for Energy-efficient
Sparse-blas on FPGAs. In Proceedings of the 2014 ACM/SIGDA International Symposium on Field-programmable
Gate Arrays; ACM: New York, NY, USA, 2014; pp. 161–170. [CrossRef]

36. Grigoraş, P.; Burovskiy, P.; Luk, W.; Sherwin, S. Optimising Sparse Matrix Vector multiplication for large scale
FEM problems on FPGA. In Proceedings of the 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9. [CrossRef]

37. Kuzmanov, G.; Taouil, M. Reconfigurable sparse/dense matrix-vector multiplier. In Proceedings of the
2009 International Conference on Field-Programmable Technology, Sydney, Australia, 9–11 December 2009;
pp. 483–488. [CrossRef]

38. Yan, S.; Li, C.; Zhang, Y.; Zhou, H. yaSpMV: Yet Another SpMV Framework on GPUs; ACM SIGPLAN Notices;
ACM: New York, NY, USA, 2014; Volume 49, pp. 107–118.

39. Liu, W.; Vinter, B. CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication.
In Proceedings of the 29th ACM on International Conference on Supercomputing; ACM: New York, NY, USA, 2015;
pp. 339–350. [CrossRef]

40. Liu, X.; Smelyanskiy, M.; Chow, E.; Dubey, P. Efficient sparse matrix-vector multiplication on x86-based
many-core processors. In Proceedings of the 27th International ACM Conference on International Conference on
Supercomputing; ACM: New York, NY, USA, 2013; pp. 273–282.

41. Saule, E.; Kaya, K.; Çatalyürek, Ü.V. Performance Evaluation of Sparse Matrix Multiplication Kernels
on Intel Xeon Phi. In Parallel Processing and Applied Mathematics, Proceedings of the 10th International
Conference, PPAM 2013, Warsaw, Poland, 8–11 September 2013; Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J., Eds.; Revised Selected Papers, Part I; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 559–570. [CrossRef]

42. Kreutzer, M.; Hager, G.; Wellein, G.; Fehske, H.; Bishop, A.R. A unified sparse matrix data format for
efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units. SIAM J.
Sci. Comput. 2014, 36, C401–C423. [CrossRef]

43. Yzelman, A.N. Generalised Vectorisation for Sparse Matrix: Vector Multiplication. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms; ACM: New York, NY, USA, 2015; pp. 6:1–6:8.
[CrossRef]

44. Tang, W.T.; Zhao, R.; Lu, M.; Liang, Y.; Huynh, H.P.; Li, X.; Goh, R.S.M. Optimizing and Auto-tuning
Scale-free Sparse Matrix-vector Multiplication on Intel Xeon Phi. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization; IEEE Computer Society: Washington, DC, USA,
2015; pp. 136–145.

45. Cheng, J.R.; Gen, M. Accelerating genetic algorithms with GPU computing: A selective overview.
Comput. Ind. Eng. 2019, 128, 514–525. [CrossRef]

46. Jeon, M.; Venkataraman, S.; Phanishayee, A.; Qian, J.; Xiao, W.; Yang, F. Analysis of large-scale multi-tenant
{GPU} clusters for {DNN} training workloads. In Proceedings of the 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), Renton, WA, USA, 10 July 2019; pp. 947–960.

47. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter Traffic Prediction
Using Big Data, In-Memory Computing, Deep Learning and GPUs. Sensors 2019, 19, 2206. [CrossRef]

http://dx.doi.org/10.1109/FCCM.2009.44
http://dx.doi.org/10.1109/FCCM.2015.30
http://dx.doi.org/10.1145/2000832.2000834
http://dx.doi.org/10.1109/FCCM.2012.12
http://dx.doi.org/10.1145/1046192.1046203
http://dx.doi.org/10.1145/2554688.2554785
http://dx.doi.org/10.1109/FPL.2016.7577352
http://dx.doi.org/10.1109/FPT.2009.5377625
http://dx.doi.org/10.1145/2751205.2751209
http://dx.doi.org/10.1007/978-3-642-55224-3_52
http://dx.doi.org/10.1137/130930352
http://dx.doi.org/10.1145/2833179.2833185
http://dx.doi.org/10.1016/j.cie.2018.12.067
http://dx.doi.org/10.3390/s19092206

Electronics 2020, 9, 1675 28 of 30

48. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Rapid Transit Systems:
Smarter Urban Planning Using Big Data, In-Memory Computing, Deep Learning, and GPUs. Sustainability
2019, 11, 2736. [CrossRef]

49. Magoulès, F.; Ahamed, A.K.C. Alinea: An Advanced Linear Algebra Library for Massively Parallel
Computations on Graphics Processing Units. Int. J. High Perform. Comput. Appl. 2015, 29, 284–310.
[CrossRef]

50. Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. UbeHealth: A Personalized Ubiquitous Cloud and
Edge-Enabled Networked Healthcare System for Smart Cities. IEEE Access 2018, 6, 32258–32285. [CrossRef]

51. Kirk, D.B.; Hwu, W.M.W. Programming Massively Parallel Processors: A Hands-on Approach, 1st ed.;
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2010.

52. Owens, J.; Houston, M.; Luebke, D.; Green, S.; Stone, J.; Phillips, J. GPU Computing. Proc. IEEE 2008,
96, 879–899. [CrossRef]

53. Fevgas, A.; Daloukas, K.; Tsompanopoulou, P.; Bozanis, P. Efficient solution of large sparse linear systems in
modern hardware. In Proceedings of the 2015 6th International Conference on Information, Intelligence,
Systems and Applications (IISA), Corfu, Greece, 6–8 July 2015. [CrossRef]

54. Nisa, I.; Siegel, C.; Rajam, A.S.; Vishnu, A.; Sadayappan, P. Effective Machine Learning Based Format
Selection and Performance Modeling for SpMV on GPUs. In Proceedings of the 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, Canada, 21–25 May
2018; pp. 1056–1065. [CrossRef]

55. Filippone, S.; Cardellini, V.; Barbieri, D.; Fanfarillo, A. Sparse Matrix-Vector Multiplication on GPGPUs.
ACM Trans. Math. Softw. 2017, 43, 1–49. [CrossRef]

56. Bell, N.; Garland, M. Efficient Sparse Matrix-Vector Multiplication on CUDA; Techreport NVR-2008-004;
Nvidia Corporation: Santa Clara, CA, USA, 2008.

57. Choi, J.W.; Singh, A.; Vuduc, R.W. Model-driven Autotuning of Sparse Matrix-vector Multiply on GPUs.
SIGPLAN Not. 2010, 45, 115–126. [CrossRef]

58. Flegar, G.; Anzt, H. Overcoming Load Imbalance for Irregular Sparse Matrices. In Proceedings of the Seventh
Workshop on Irregular Applications: Architectures and Algorithms; ACM: New York, NY, USA, 2017; pp. 2:1–2:8.
[CrossRef]

59. Ashari, A.; Sedaghati, N.; Eisenlohr, J.; Parthasarathy, S.; Sadayappan, P. Fast Sparse Matrix-vector
Multiplication on GPUs for Graph Applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis; IEEE Press: Piscataway, NJ, USA, 2014; pp. 781–792.
[CrossRef]

60. Su, B.Y.; Keutzer, K. clSpMV: A Cross-Platform OpenCL SpMV Framework on GPUs. In Proceedings of
the 26th ACM International Conference on Supercomputing; ACM: New York, NY, USA, 2012; pp. 353–364.
[CrossRef]

61. Guo, P.; Wang, L.; Chen, P. A Performance Modeling and Optimization Analysis Tool for Sparse Matrix-Vector
Multiplication on GPUs. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 1112–1123. [CrossRef]

62. Li, J.; Tan, G.; Chen, M.; Sun, N. SMAT: An Input Adaptive Auto-tuner for Sparse Matrix-vector
Multiplication. SIGPLAN Not. 2013, 48, 117–126. [CrossRef]

63. Sedaghati, N.; Mu, T.; Pouchet, L.N.; Parthasarathy, S.; Sadayappan, P. Automatic Selection of Sparse Matrix
Representation on GPUs. In Proceedings of the 29th ACM on International Conference on Supercomputing; ACM:
New York, NY, USA, 2015; pp. 99–108. [CrossRef]

64. Benatia, A.; Ji, W.; Wang, Y.; Shi, F. Sparse Matrix Format Selection with Multiclass SVM for SpMV on GPU.
In Proceedings of the 2016 45th International Conference on Parallel Processing (ICPP), Philadelphia, PA,
USA, 16–19 August 2016; pp. 496–505. [CrossRef]

65. Li, K.; Yang, W.; Li, K. Performance Analysis and Optimization for SpMV on GPU Using Probabilistic
Modeling. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 196–205. [CrossRef]

66. Kwiatkowska, M.; Parker, D.; Zhang, Y.; Mehmood, R. Dual-Processor Parallelisation of Symbolic
Probabilistic Model Checking. In Proceedings of the IEEE Computer Society’s 12th Annual International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems; IEEE Computer
Society: Washington, DC, USA, 2004; pp. 123–130.

http://dx.doi.org/10.3390/su11102736
http://dx.doi.org/10.1177/1094342015576774
http://dx.doi.org/10.1109/ACCESS.2018.2846609
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/iisa.2015.7388040
http://dx.doi.org/10.1109/IPDPSW.2018.00164
http://dx.doi.org/10.1145/3017994
http://dx.doi.org/10.1145/1837853.1693471
http://dx.doi.org/10.1145/3149704.3149767
http://dx.doi.org/10.1109/SC.2014.69
http://dx.doi.org/10.1145/2304576.2304624
http://dx.doi.org/10.1109/TPDS.2013.123
http://dx.doi.org/10.1145/2499370.2462181
http://dx.doi.org/10.1145/2751205.2751244
http://dx.doi.org/10.1109/ICPP.2016.64
http://dx.doi.org/10.1109/TPDS.2014.2308221

Electronics 2020, 9, 1675 29 of 30

67. Mehmood, R.; Parker, D.; Kwiatkowska, M. An Efficient BDD-Based Implementation of Gauss-Seidel for CTMC
Analysis; Technical Report CSR-03-13; School of Computer Science, University of Birmingham: Birmingham,
UK, 2003.

68. Mehmood, R.; Crowcroft, J. Parallel Iterative Solution Method for Large Sparse Linear Equation Systems; Technical
Report UCAM-CL-TR-650; University of Cambridge, Computer Laboratory: Cambridge, UK, 2005.

69. Mehmood, R.; Crowcroft, J.; Elmirghani, J.M.H. A Parallel Implicit Method for the Steady-State Solution of
CTMCs. In Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation,
Monterey, CA, USA, 11–14 September 2006; pp. 293–302.

70. Mehmood, R.; Lu, J.A. Computational Markovian Analysis of Large Systems. J. Manuf. Technol. Manag. 2011,
22, 804–817. [CrossRef]

71. Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A.; Altowaijri, S. ZAKI: A Smart Method and Tool for
Automatic Performance Optimization of Parallel SpMV Computations on Distributed Memory Machines.
Mob. Networks Appl. 2019. [CrossRef]

72. Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A. ZAKI+: A Machine Learning Based Process Mapping Tool
for SpMV Computations on Distributed Memory Architectures. IEEE Access 2019, 7, 81279–81296. [CrossRef]

73. Alyahya, H.; Mehmood, R.; Katib, I. Parallel Sparse Matrix Vector Multiplication on Intel MIC: Performance
Analysis. In Smart Societies, Infrastructure, Technologies and Applications; Mehmood, R., Bhaduri, B., Katib, I.,
Chlamtac, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 306–322.

74. Alyahya, H.; Mehmood, R.; Katib, I. Parallel Iterative Solution of Large Sparse Linear Equation Systems on
the Intel MIC Architecture. In Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies;
Mehmood, R., See, S., Katib, I., Chlamtac, I., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 377–407. [CrossRef]

75. Alzahrani, S.; Ikbal, M.R.; Mehmood, R.; Fayez, M.; Katib, I. Performance Evaluation of Jacobi Iterative
Solution for Sparse Linear Equation System on Multicore and Manycore Architectures. In Smart Societies,
Infrastructure, Technologies and Applications; Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 296–305.

76. AlAhmadi, S.; Muhammed, T.; Mehmood, R.; Albeshri, A. Performance Characteristics for Sparse
Matrix-Vector Multiplication on GPUs. In Smart Infrastructure and Applications: Foundations for Smarter
Cities and Societies; Mehmood, R., See, S., Katib, I., Chlamtac, I., Eds.; Springer International Publishing:
Cham, Switzerland, 2020; pp. 409–426. [CrossRef]

77. Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. SURAA: A Novel Method and Tool for Loadbalanced
and Coalesced SpMV Computations on GPUs. Appl. Sci. 2019, 9, 947. [CrossRef]

78. El-Gorashi, T.; Pranggono, B.; Mehmood, R.; Elmirghani, J. A Mirroring Strategy for SANs in a Metro WDM
Sectioned Ring Architecture under Different Traffic Scenarios. J. Opt. Commun. 2008, 29, 89–97. [CrossRef]

79. Mehmood, R.; Alturki, R.; Zeadally, S. Multimedia applications over metropolitan area networks (MANs).
J. Netw. Comput. Appl. 2011, 34, 1518–1529. [CrossRef]

80. Mehmood, R.; Graham, G. Big Data Logistics: A health-care Transport Capacity Sharing Model.
Procedia Comput. Sci. 2015, 64, 1107–1114. [CrossRef]

81. Mehmood, R.; Meriton, R.; Graham, G.; Hennelly, P.; Kumar, M. Exploring the Influence of Big Data on City
Transport Operations: A Markovian Approach. Int. J. Oper. Prod. Manag. 2017, 37, 75–104. [CrossRef]

82. El-Gorashi, T.E.H.; Pranggono, B.; Mehmood, R.; Elmirghani, J.M.H. A data Mirroring technique for SANs
in a Metro WDM sectioned ring. In Proceedings of the 2008 International Conference on Optical Network
Design and Modeling, Vilanova i la Geltru, Spain, 12–14 March 2008; pp. 1–6. [CrossRef]

83. Pranggono, B.; Mehmood, R.; Elmirghani, J.M.H. Performance Evaluation of a Metro WDM Multi-channel
Ring Network with Variable-length Packets. In Proceedings of the 2007 IEEE International Conference on
Communications, Glasgow, UK, 24–28 June 2007; pp. 2394–2399. [CrossRef]

84. Altowaijri, S.; Mehmood, R.; Williams, J. A Quantitative Model of Grid Systems Performance in Healthcare
Organisations. In Proceedings of the 2010 International Conference on Intelligent Systems, Modelling and
Simulation, Liverpool, UK, 27–29 January 2010; pp. 431–436.

85. Kwiatkowska, M.; Mehmood, R.; Norman, G.; Parker, D. A Symbolic Out-of-Core Solution Method for
Markov Models. Electron. Notes Theor. Comput. Sci. 2002, 68, 589–604. [CrossRef]

86. Langr, D.; Tvrdik, P. Evaluation Criteria for Sparse Matrix Storage Formats. IEEE Trans. Parallel Distrib. Syst.
2016, 27, 428–440. [CrossRef]

http://dx.doi.org/10.1108/17410381111149657
http://dx.doi.org/10.1007/s11036-019-01318-3
http://dx.doi.org/10.1109/ACCESS.2019.2923565
http://dx.doi.org/10.1007/978-3-030-13705-2_16
http://dx.doi.org/10.1007/978-3-030-13705-2_17
http://dx.doi.org/10.3390/app9050947
http://dx.doi.org/10.1515/JOC.2008.29.2.89
http://dx.doi.org/10.1016/j.jnca.2010.08.002
http://dx.doi.org/10.1016/j.procs.2015.08.566
http://dx.doi.org/10.1108/IJOPM-03-2015-0179
http://dx.doi.org/10.1109/ONDM.2008.4578420
http://dx.doi.org/10.1109/ICC.2007.402
http://dx.doi.org/10.1016/S1571-0661(05)80394-9
http://dx.doi.org/10.1109/TPDS.2015.2401575

Electronics 2020, 9, 1675 30 of 30

87. Abu-Sufah, W.; Karim, A.A. An Effective Approach for Implementing Sparse Matrix-Vector Multiplication
on Graphics Processing Units. In Proceedings of the 2012 IEEE 14th International Conference on High Performance
Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems;
IEEE Computer Society: Washington, DC, USA, 2012; pp. 453–460. [CrossRef]

88. Professional CUDA C Programming, 1st ed.; Wrox Press Ltd.: Birmingham, UK, 2014.
89. Profiler User’s Guide, Available online: https://docs.nvidia.com/cuda/profiler-users-guide/index.html

(accessed on 12 October 2020).
90. Saad, Y. SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations—Version 2. 1994. Available online:

https://www-users.cs.umn.edu/~saad/software/SPARSKIT/ (accessed on 12 October 2020).
91. Grimes, R.G.; Kincaid, D.R.; Young, D.M. ITPACK 2.0 User’S Guide; Center for Numerical Analysis,

The University of Texas at Austin: Austin, TX, USA, 1979.
92. Mittal, S.; Vetter, J.S. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput. Surv.

2015, 47. [CrossRef]
93. Benatia, A.; Ji, W.; Wang, Y.; Shi, F. Sparse matrix partitioning for optimizing SpMV on CPU-GPU

heterogeneous platforms. Int. J. High Perform. Comput. Appl. 2020, 34, 66–80. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/HPCC.2012.68
https://www-users.cs.umn.edu/~saad/software/SPARSKIT/
http://dx.doi.org/10.1145/2788396
http://dx.doi.org/10.1177/1094342019886628
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

