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Abstract: The reinforcement learning problem of complex action control in a multi-player wargame has
been a hot research topic in recent years. In this paper, a game system based on turn-based confrontation
is designed and implemented with state-of-the-art deep reinforcement learning models. Specifically,
we first design a Q-learning algorithm to achieve intelligent decision-making, which is based on the
DQN (Deep Q Network) to model complex game behaviors. Then, an a priori knowledge-based
algorithm PK-DQN (Prior Knowledge-Deep Q Network) is introduced to improve the DQN algorithm,
which accelerates the convergence speed and stability of the algorithm. The experiments demonstrate
the correctness of the PK-DQN algorithm, it is validated, and its performance surpasses the conventional
DQN algorithm. Furthermore, the PK-DQN algorithm shows effectiveness in defeating the high level of
rule-based opponents, which provides promising results for the exploration of the field of smart chess
and intelligent game deduction.

Keywords: DQN algorithm; policy modeling; prior knowledge; intelligent decision

1. Introduction

AlphaGo defeated the world Go Chess champion Lee in 2016, which caused a new upsurge of
interest in artificial intelligence (AI), especially in the field of game AI. The goal of game AI is not
only to let machines play games, but also to simulate real-world operation through game simulation
environment [1]. AI researchers can experiments in games and transfer successful AI capabilities to the
real-world applications. Although AlphaGo is a milestone in the goal of general artificial intelligence,
in general, the problems it represents are still relatively simple compared with the real world [2].
Therefore, in recent years, researchers have focused on real-time strategy (RTS) games [3–6], such as
Dota2 [7] and StarCraft [8,9], which represent dynamic games of asymmetric information beyond the
Go game.

To master RTS games, players need strong skills in both macro-strategy operation and micro-execution.
In recent studies, micro-level implementation has been the subject of extensive attention and many
attempts [10–12]. So far, OpenAI has made the latest progress in using Dota2 AI (OpenAI Five) developed
by reinforcement learning (RL). OpenAI Five is trained directly in micro-motion space using proximity
strategy optimization algorithms and team rewards [13]. OpenAI Five demonstrated stronger team
fighting skills and coordination ability than the top professional Dota2 team in the 2018 international
competition [7]. The OpenAI approach does not explicitly model macro strategies, but attempts to use
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a micro-level game to learn the whole game. However, due to the weakness of AI’s macro strategic
decision-making ability, OpenAI Five failed to beat the professional teams [14,15]. Although some
achievements have been made in RTS games, there are still many difficulties in both OpenAI’s game AI
on Dota and Deepmind’s game AI on StarCraft [16–18].

On the other hand, a few scholars have studied wargame deduction. Round-robin confrontation
is closer to the AI achieved by AlphaGo, and it is easier to solve the problems of micro-strategy
modeling and macro-strategy modeling, so it is easier to achieve the AI expected by AlphaGo than
RTS games [19–22].

On this basis, we developed an intelligent game simulation environment, and verified its feasibility
through simulated experiments, where a series of basic functional interfaces can be configured to
realize the confrontation of different types of operators on different maps. Secondly, this paper
uses this platform to verify the feasibility of the DQN (Deep Q Network) algorithm in the field of
wargames. The DQN algorithm model combined with prior knowledge (PK-DQN) is established,
and the DQN algorithm is optimized to realize the PK-DQN algorithm. Compared with the DQN
algorithm, the PK-DQN algorithm has a better convergence effect, is more stable, and has a higher
winning rate in the intelligent war game simulation environment. Finally, via simulations, the PK-DQN
algorithm is proved to be able to defeat high-level rule-based opponents, which provide an important
foundation work for further exploration of deep reinforcement learning in turn-based games.

The value of this article is to use the reinforcement learning algorithm to implement the intelligent
AI in turn-based games, in order to explore the feasibility of the reinforcement learning algorithm in
wargaming, and we have further improved the DQN algorithm and proposed the PK-DQN algorithm.
In addition, we have built a deductive antagonism environment independently, which provides a good
basis for future research on reinforcement learning algorithms in wargames. Of course, in this field,
the current research still faces many difficulties to overcome in practical application, such as rules and
evaluation of closed-domain problems, robustness problems, algorithm migration problems, and the
problem of countering scene complexity, which are all the difficulties that existing research needs to
solve when applied in practice.

2. Intelligent Decision-Making Model of Tactical Wargame Based on Q-Learning

Through in-depth analysis of the Q-learning method, the intelligent decision-making model of
tactical wargame based on Q-Learning was initially implemented to provide basis for the construction
of intelligent wargames.

2.1. The Principles of Q-Learning

We create a table where you can calculate the expectation of the maximum future reward for each
action in each state. Based on this table, we can calculate the best action for each state. This is supposed
to have six directions of movement, and another static state. So we designed a total of seven states of
6 + 1, including East, West, Northeast, Northwest, Southeast, Southwest, and Stationary. Therefore,
each piece of land is surrounded by six pieces of land, and one is still, which adds up to seven states,
as shown in Figure 1. The 1811 grid marked with the red in Figure 2 represents the reward value of
each action of tank 1 moving southwest. The 1712 grid marked with the blue represents the reward
value for each move tank 1 makes to the East. Tank 1 is blocked by tank 2 when it moves Southeast,
so it cannot be moved. Furthermore, there is no return value for different actions of 1812 coordinates in
the southeast, so it is indicated by “-”.

During the calculation, we can convert the grid into a table.
This form is called q-table (Q stands for the “quality” of the action). Each column will represent

seven operations (East, West, Northeast, Northwest, Southeast, Southwest, and Stationary), with rows
representing states. The value in each cell represents the maximum future reward expectation for
a given state and a corresponding action. The score of each q-table will represent the maximum
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expectation of future reward obtained by taking corresponding actions under the given optimal strategy.
Each value in the q-table is obtained using the Q-learning algorithm.
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have a random strategy, which means we need to combine the results of all the different actions we 
take. In addition, the transition function can be random, that is, we may not end any state with 100% 
probability. When an action is selected, the environment returns to the next state. Even if an action is 
given, there may be multiple status returns. All these random factors are expected to be taken into 
account. In the simulation experiment, a reward value is calculated for each step, and the next action 
is selected according to the size of the reward value. Generally speaking, we choose the action that 
corresponds to the maximum reward value, which is Q*. 
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Figure 2. Transformation of q-table.

The action value function (or Q function) has two inputs: state and action. It will return for future
reward expectations for performing the action in that state.

Qπ(s, a) = Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |At = a, St = s ] (1)

where the sum of rewards rt discount by γ at each time step t, γ is a decay factor that represents
how much future returns affect the current situation, γ is the decay value used to control the effect of
future return on Q. The closer γ is to 1, the more forward-looking it will be as it focuses on the value
of subsequent states. When γ approaches 0, it will become more focused on the impact of current
interests. So for γ from 0 to 1, the algorithm will increasingly consider the impact of subsequent
returns. Achievable by a behavior policy π = P(a

∣∣∣s) , after making an observation(s) and taking an
action(a). In other words, it can give every action a score as a evaluation, but the future is full of
randomness, anything can be happen. Therefore the Q function cannot give you a definite answer,
it can only tell you the expectation, so the cumulative reward of the state-action can be expected by
subsequent states. Expectation is like an average; it is the return you expect to see. The reason we
use expectation is that when you reach a state, there will be some random events. You may have a
random strategy, which means we need to combine the results of all the different actions we take.
In addition, the transition function can be random, that is, we may not end any state with 100%
probability. When an action is selected, the environment returns to the next state. Even if an action is
given, there may be multiple status returns. All these random factors are expected to be taken into
account. In the simulation experiment, a reward value is calculated for each step, and the next action
is selected according to the size of the reward value. Generally speaking, we choose the action that
corresponds to the maximum reward value, which is Q*.

The general idea of intelligent decision-making modeling of tactical wargame based on Q-Learning
is described above, but there are still significant problems in using the algorithm of Q-learning to build
intelligent wargames. Although the Q-learning method can provide basic ideas for the construction
of intelligent wargame, the traditional table form stores the state and corresponding Q-value to find
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the best executive action. But in the case of a too complex state, the computer memory is limited,
it is difficult to achieve all storage, and it is also time-consuming work to search all tables. Therefore,
this paper further considers whether the improved DQN algorithm can be used to realize the behavior
decision-making modeling of intelligent wargames.

2.2. Deep Q Network (DQN)-Based Behavior Decision-Making Model of Intelligent Wargames

This paper first tries to use Q-learning to discover big problems in the process, and then tries to
use the DQN algorithm to model the behavior decision-making of intelligent wargames. Based on the
analysis of the DQN algorithm, an intelligent wargame model of the DQN algorithm is established,
and the intelligent wargame based on the DQN algorithm is successfully implemented.

DQN is an intelligent algorithm that combines deep learning with reinforcement learning. It mainly
uses deep learning to take state and action as input values of the neural network. After the analysis
of the neural network, it gets the Q-value, so it is unnecessary to record the Q-value in the table,
and directly uses a neural network to generate the Q-value. Then, it uses the correct Q value provided
by reinforcement learning and the Q-value to calculate the loss function, so as to improve the network
weight of deep-learning models. According to the output action value of the neural networks and
the principle of Q-learning, the method directly selects the action with the maximum value as the
next action to be done. It integrates the neural network and Q-learning method, namely the DQN
algorithm, the framework is shown in Figure 3.
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DQN initializes the memory library first, and assigns random weights to each target Q value,
initializes the queue according to each episode. It randomly selects an action with epsilon (epsilon is a
parameter that controls the probability of random exploration). Otherwise, it selects the action with the
largest Q value with epsilon 1-epsilon to perform this action, observes the return value and the next
state, updates the state, action and next round, and updates the state, action, return, and next state.
It saves the transition, then extracts samples from the transition using sample to learn, and then updates
the calculated Q value until the end of the round. It uses Q value to reverse update the parameters of
neural network, and are continuously tuned until the end. It adds the section in 7. It employs just
trial and error to store the data. Next, the data is stored to a certain extent, and each time the data are
randomly used, the gradient decreases. See the Appendix B for a detailed explanation of the algorithm.

The Algorithm 1 is as follows:
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Algorithm 1: Deep Q-learning with experience in reply.

Initialize reply memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q with weights θ− = θ
For episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)

For t = 1, T do
With probability ε select a random action at

Otherwise select at = argmaxaQ(φ(st), a;θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)

Store transition (φt, at, rt,φt+1) in D
Sample random minibatch of transitions

(
φj, aj, rj,φj+1

)
from D

Set yj =

 rj, if episode terminates at step j + 1
rj + γmaxa′Q̂

(
φj+1, a′;θ−

)
, otherwise

Perform a gradient descent step on
(
yj −Q

(
φj, aj;θ

))2
with respect to the network parameter θ

Every c steps reset Q̂ = Q
End For

End For

In this paper, we utilize the DQN algorithm to implement the operator’s action selection, which is
to set an RL_Brain to select actions. RL_Brain is a brain that deduces relative to the entire smart warfare
game. It is set up as a two-layer network, with 10 neurons in one layer and the ability to output actions.
The action selection of the red side obtains the XY coordinates of the rank of the red side, which is then
passed into the observation as an observation input array. XY coordinates are the coordinates of each
hexagonal grid in the wargame environment. Each hexagon has an XY coordinate. This coordinate
can determine the position of the other party when shooting, and also determine the destination of
our party. The RL_Brain-trained neural network selects the maximum Q-value action, decides the
output state action space value, calls the corresponding movement function or shooting function after
determining the value, and then determines the next action, as shown in Figure 4.Electronics 2020, 9, x FOR PEER REVIEW 6 of 22 
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3. Construction of Intelligent Wargame Model Based on Prior Knowledge-Deep Q Network
(PK-DQN) Algorithm

How to effectively make, evaluate and choose the action plan is a challenging problem that restricts
the intelligent decision system to enter the practical application. To solve this problem by traditional
methods, it is necessary to model the environment and rules reasonably. However, in many aspects of
modeling, human subjective factors are inevitably introduced, which greatly reduces the accuracy and
rationality of the final decision-making scheme. Therefore, we break through the traditional method of
action plan reasoning based on model knowledge, and explore the technical solution combining the
experience judgment and intuitive reasoning that fit the decision-making thinking of commanders.

As one of the methods to solve sequential decision making, reinforcement learning (RL) has
been predominantly combined with deep learning in the field of artificial intelligence in recent years,
which has achieved remarkable results and become a representative machine-learning method to break
through cognitive intelligence. These mechanisms and methods of reinforcement learning can be used
as the key technology of simulation, deduction and evaluation of the scheme, because they accord
with the decision-making thinking mode of commanders for complex combat problems.

This paper introduces the DQN algorithm in reinforcement learning for intelligent Red and Blue
Armies in military chess deduction. Red AI is built with the DQN algorithm, Blue AI is built with rules.
A Red operator based on DQN algorithm is trained with rules-based blue algorithm through a red-blue
game, which provides more realistic simulation scenarios and solves battle tactics. The practical
problem of a low AI level in military wargame deduction assists command and decision makers
in accurately understanding, rational thinking and quick decision-making of battlefield situations.
Based on the analysis of state space and the action space of wargame deduction, the feasibility
study is carried out by using the DQN algorithm of reinforcement learning. The state space of
wargame deduction can be defined as position coordinates X and Y, and the real-time state (maneuver,
concealment, design) of operators can form the state space of chess deduction. The action space of chess
deduction can also be defined as specific and limited operation. Therefore, this section first describes
the design of a smart chess system, then presents the expert knowledge model in the field of dispatching
chess, and builds the action strategy model based on the DQN algorithm, and finally establishes the
process model of integrating prior knowledge with the DQN algorithm i.e., the PK-DQN algorithm.

3.1. Design of Intelligent Wargame System

The red square operator of the whole intelligent wargame system inputs the state of a certain
moment (maneuver, concealment, shoot) as well as the XY coordinate, while the terrain reads the excel
table within the scope of battle, and the terrain hexagon lattice mainly includes the high level and label.
The whole deduction environment is based on this system setting.

The whole game environment is mainly composed of four modules, including learning module,
deduction environment module, distribution module and storage memory module. The relationships
among the modules are shown in the following Figure 5:

RL Learning module: the learning module is the core part of intelligent algorithm. By calling
status, action, return value and next step status in batch size, neural network parameters are constantly
updated. In order to reduce the cost function value efficiently, the learning module and memory
module use a storage structure together. The trained model synchronizes to the deduction environment
module in the form of point-to-point quickly, and then realizes the selection of the model of the action.
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Figure 5. Artificial intelligence (AI) Server implements how the AI model interacts with the environment.
The Allocation Module is a station for sample collection, compression and transmission. The Memory
is the data storage module, which provides training instances for the RL Learning. Note that these
modules are decoupled and can be flexibly configured, so that our researchers can focus on the algorithm
design and the logic of the environment. Such a system design is also applicable to other multi-agent
competitive problems. The details of these modules are provided below.

Deduction environment module: The deduction environment module consists of the interaction
between the deduction environment and AI model, as well as the basic functions of defining the whole
deduction environment. The functions comprise judging the winning conditions, checking the number
of rounds, reading in the deduction scenario, etc. It saves the basic parameters related to the deduction,
including both sides’ scores, both sides’ kill numbers, both sides’ survival numbers and both sides’
win numbers. The whole environment generates a confrontation environment of red side and blue
side, and sets a clear number of rounds, which enables playing a game within the number of rounds.

Allocation module: the allocation module is responsible for collecting the sample data obtained
from each step from the deduction environment module, including the current status, return value,
action and next step status, and passes the collected data into the storage memory module in the form
of an array.

Memory module: memory module is a part of memory space, which is used to set the size of
memory space, and it then transfers the allocated array data and stores them in turn. When the storage
space is larger than the memory space, the prior data are removed, and the data of batch size are also
extracted to the learning module to update the strategic network, so as to reduce the loss function.

3.2. Prior Knowledge of Intelligent Wargame

In the training process of intelligent wargame, it is found that only relying on DQN algorithm for
training, there is a large randomness of the results after each game starts, and the overall convergence
speed is slow. Therefore, this paper considers introducing the concept of prior knowledge. By adding
prior knowledge to the action selection process, it can prevent the algorithm from falling into local
optimum, reduce invalid exploration and improve the learning efficiency of the algorithm. The a
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priori knowledge considered in this paper is divided into two parts. The first part is the basic function
realization of intelligent wargame, including the basic definition of wargame action. Another part is
the prior knowledge based on the experience of domain experts, which can accelerate the convergence
of the training process.

3.2.1. Prior Knowledge of Basic Functions of Wargame

The design of an intelligent wargame must be based on the corresponding basic functions.
By invoking basic functions, the algorithm of intelligent wargame can be realized, and finally the
establishment of intelligent engine can be realized. Its main functions are as follows:

(1) Move function Initialize the starting position, assign the value in the scenario, calculate the X,
Y coordinates of each operator, obtain the coordinates of the surrounding hexagonal lattice, select a
coordinate to assign the value in the acquired hexagonal lattice coordinates, and then move the
coordinates, including the East, West, Northeast, Northwest, Southeast, Southwest six directions.

(2) Integral function of shooting reward Shoot the enemy operator, obtain the coordinates of the
enemy operator, and then judge whether the enemy operator exists after shooting. If it exists and
the coordinates correspond to the coordinates of the enemy operator, the corresponding reward
score will be obtained, otherwise no score will be obtained.

(3) Shooting function Obtain the coordinate position of the operator, judge whether the enemy
operator can be observed by calling the visual function, if the observed distance can be shot,
set the strike effect according to the enemy and distance.

(4) Obtain adjacent coordinate function Input the X and Y coordinate of the operator to represent
the coordinates of the hexagonal lattice, and output the list to represent the coordinates of the
surrounding hexagonal lattice in the form of a list.

(5) Query the distance between two hexagonal lattices Input X0, Y0, X1, Y1 as the coordinates of int,
indicating the coordinates of the hexagon lattice at the beginning and the hexagon lattice at the
end, and output as the distance between the two hexagon lattice.

(6) Obtain operator state information function The current coordinates of the operator and the
maneuvering state of the turn are obtained by the function.

(7) Check whether the operator can observe the opposite operator Input the state information of the
opposite operator, observe that the output of the opposite operator is true, but not false.

The rule of the whole intelligent wargame is that red and blue fight each other, and the operators
of both sides can move, hide, direct aim and indirect aim. In this way, ‘mobile’ means to input X and
Y coordinates, which represent the coordinates of adjacent hexagons, output effect, and move the
operators. ‘Hide’ means to ensure that the operators enter the concealed state, which is not conducive
to being attacked. The direct aim is to input enemy operators, the output phase should be the shoot
effect, the shoot enemy operator; input X, Y represent target hexagonal grid coordinates, output effect,
and indirect aim target hexagonal grid.

3.2.2. Prior Knowledge of Domain Experts

This paper designs the prior knowledge of the experts in the field of intelligent wargames,
which mainly include the moving strategy and shooting strategy of the intelligent wargame operators.
At the same time, this paper also constructs the sub-strategy of the professional players in the process of
the competition based on the data of the wargame competition, forms a static comprehensive potential
energy table, and realizes the prior knowledge of the experts in the field through a full simulation,
combining the prior knowledge of the experts in the field with DQN calculation. The method achieves
accelerated convergence of loss function. The designed operator action strategy based on prior
knowledge of domain experts is shown in Figure 6:
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Firstly, read the location, terrain and contention point information of both sides. Then, taking
the point of contention as the center, the coordinates around the point that can maneuver to the
control point in a round are calculated, and the coordinate list is stored. Determine whether the
current coordinates of the operator are in this list. If so, the shortest path of the computer movement,
the soldier moves 1 grid along the path to the point of contention. Judge whether the opponent’s
algorithm can be observed, and if so, prepare for long-range shooting. Then judge whether it meets
the shooting conditions. If so, it will strike the enemy’s current coordinates. If not, judge whether the
comprehensive potential energy table has been calculated. If not, according to the maneuverable range
and the comprehensive potential energy of the coordinates within the moving range of the computer,
move to the maximum potential energy coordinate. If the potential energy is in the same direction,
the killing potential energy is compared, and then the maneuver path from the current coordinate to
the coordinate a is generated, which is called repeatedly. Finally, the turn ends when it reaches the end
of the path sequence and moves to the next coordinate of the path sequence.
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3.3. Action Strategy Based on DQN Algorithm

3.3.1. Policy Space Description

In order to realize the intelligent wargame based on DQN algorithm, the description of the
operator’s state space and action space should be made clear. The state space mainly includes the X
and Y position coordinates of the deduction scenario, and the number of values is 30 × 30. The action
parameters of the operator mainly include maneuver, shooting and concealment, as shown in Table 1.

Table 1. State space description of tactical command decision.

State Space Description of Tactical Command Decision

State Parameters Position Coordinate X Position Coordinate Y

Dimension 1 1
Number of values 30 30

Among them, the maneuverable directions of the operator are 7 states of East, West, Northeast,
Northwest, Southeast, Southwest and Static, which are defined as 0~6 respectively, as shown in Table 2.
The firing states of the operator in one cell are shooting, not shooting and concealing.

Table 2. Description of tactical action space.

Tactical Action Space Description

Action Parameters Move (Six Corners) Shooting

Dimension 1 1
Number of values 7 3

3.3.2. Reward Function Design

The reward function is mainly divided into distance reward and shooting reward. Distance reward
is used to obtain R1 reward values for the winning control point. The European distance between
the route selection operator and the winning control point is set as the greater the European distance
from the winning control point, the lower the reward value. If the winning control point is obtained,
the return value is set as a larger value. Finally, the observation values x, y coordinates, actions and
return values of each step are stored in the transition for later recall study.

reward = reward − distance2 (2)

If the shooting reward is to shoot and hit the enemy operator, R1 rewards will be given, otherwise no
reward value will be given.

3.3.3. Path Planning

According to path planning set by reward, the shortest distance from the control point will be
automatically found. In the early stage of training, the path selection will appear in the repeated
movement of a point, but in the late stage of training, we will see the red square operator and gradually
find the closest distance to the control point. As shown in the figure below, the red line behind the red
square operator is the trajectory of the operator’s movement. The operator has learned that the best
way to reach a hold point.

3.3.4. Shooting

In this paper, the reward value is to define the effect of shooting. Due to the large shooting space,
the training convergence will be too slow. Therefore, for the shooting part, the shooting rules are
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integrated to speed up the convergence of the training. The shooting rules mainly include two ideas:
whether it can be intervisibility, and if it can be intervisibility, direct shooting. Another idea is to
judge the distance between all operators of both sides and calculate the nearest distance between them.
According to the actual combat operation of professional players, when the distance between operators
is 12, the shooting effect is the best. Therefore, 12 is taken as the mark point. If the distance is greater
than 12, the operator moves towards the point of contention continuously. If the distance between
operators of both sides is less than or equal to 12, an enemy operator remains still. The state can be
used for shooting, otherwise the operator moves to the nearest distance of the control point and fire.

3.4. DQN Algorithm Model Combined with Prior Knowledge

This paper defines prior knowledge as follows:

(1) Let the state sequence of DQN algorithm be S, si represents the state of different stages and its
formula be:

S = [s1, s2, s3, . . . , si], i = 1, 2, 3 . . . (3)

(2) Let the action sequence as A, ai represents actions performed at different stages and its formula is:

A = [a1, a2, a3, . . . , ai], i = 1, 2, 3 . . . (4)

(3) Let the characteristic state sequence of prior knowledge strategy be P, pi represents the
characteristic states of different stages and its formula be:

P = [p1, p2, p3, . . . , pi], i = 1, 2, 3 . . . (5)

When the characteristic state pi appears, the optimal action selection is a∗, then the state is set
as the characteristic state p∗. The mapping relation p∗ → a∗ between the characteristic state and
the optimal action is established. The rules formed by this mapping relationship are called prior
knowledge. Among them, the state sequence S is the input of the algorithm, the characteristic
state P may be the input of the algorithm or other signals, and the characteristic state and the
state sequence satisfy P∩ S =∅.

(4) According to the concept of Q value in DQN algorithm, the prior Q value vector is defined as Qp,
and the Qp formula is:

Qp =
(
Qpa1

, Qpa1
, Qpa1

, . . . , Qpai

)T
(6)

where Qpai
is the prior Q value of action ai, 0 < Qpai

< 1, and vector Qp is the set of prior Q values
of all actions when the prior knowledge is known.

(5) Because there are many factors that affect the result of decision-making, and prior knowledge
has only partial influence on the decision-making of action selection, therefore, the influence of
prior knowledge on action selection is not completely determined. According to the influence
degree of prior knowledge on action selection, this paper sets µ as the influence degree of prior
knowledge on action selection. When the feature state p∗ appears and the prior knowledge is
completely related to the selection action a∗, µ = 1. 0 < µ ≤ 1, there is no prior knowledge that
has no effect on action selection.

(6) According to the above definition, after the prior knowledge is added, the final action selection Q
value is QF. First normalize Q, then calculate QF, and the QF calculation formula is:

QF = µQp + (1− µ)Q (7)

where Q is the Q value vector selected by DQN algorithm according to the action estimated
by the current state. When the characteristic state p∗ appears, the QF value of each action is
calculated according to Formula (7), and the action is directly selected according to the maximum
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QF value; when the characteristic state pi does not appear, the Q value of the action is estimated
according to the DQN algorithm, and then the action is selected according to the ε− greedy rule.
There are three main advantages: firstly, by introducing prior knowledge, when the feature state
p∗ is detected, it can affect the action selection process according to the prior knowledge p∗ → a∗ ,
reducing unnecessary exploration; second, the introduction of prior knowledge does not affect
the training process of the algorithm; finally, when there is no feature state, it can judge the action
selection through the algorithm to fully explore the state space. The introduction process of prior
knowledge is shown in Figure 7.
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By introducing prior knowledge and intervening in the action selection process of the DQN
algorithm, valuable information can be fully used during algorithm training. Prior knowledge such as
domain expert knowledge, feature signal and classification feature can be added to algorithm training,
so that the improved model can effectively avoid invalid exploration. The improved algorithm
improves the convergence speed and accuracy of the algorithm, which can effectively improve the
training efficiency and save the training cost. During the training process, the PK-DQN algorithm
selects actions and controls the selection process according to whether there is characteristic state.
According to the definition of a priori knowledge, a priori Q value and µ in the above formula, the a
priori knowledge is introduced into the DQN algorithm to build the PK-DQN algorithm, and the
PK-DQN algorithm is shown in Figure 8.Electronics 2020, 9, x FOR PEER REVIEW 13 of 22 
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Algorithm: Prior Knowledge-Deep Q Network (PK-DQN) is combined with prior knowledge.
Input: state s, output: Q neural network weight.

Step 1: Initialize experience value D with capacity N
Step 2: Initialize Q neural network and set the random weight as θ;
Step 3: At the beginning of iteration t = 1, input the initial state st;
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Step 4: If the characteristic state p∗ appears, calculate the QF value from the formula, and select
the action a∗ with the largest QF value to output; otherwise, output the action at according to the
ε− greedy rule;
Step 5: Executes action a∗ or at;
Step 6: Obtains the feedback rt value and st+1;
Step 7: Store (st, at, rt, st+1) in the experience pool;
Step 8: Judge whether the data amount in the experience pool reaches n. if it reaches n, train Q neural
network, and update the weight θ of target Q neural network after constant C time steps; if it does not
reach n, repeat steps 3–8. When the value θ is less than the threshold value, the algorithm is considered
to reach the convergence state.

The above figure is the detailed flow chart of the algorithm, in which the dotted line part indicates
the introduction of prior knowledge into DQN algorithm. This is the comparison between the
workflow of PK-DQN and DQN. The part of PK-DQN which introduces prior knowledge is not found
in the original DQN algorithm. The improvement of this work will significantly improve the effect
of the whole method. Next, through specific experiments to verify the improvement effect of the
PK-DQN algorithm.

4. Experimental Verification

In this paper, the training environment is based on the intelligent game simulation environment
independently designed and developed by our team. The PK-DQN algorithm and DQN algorithm
control operators are used to fight each other, including autonomous arrival at the point of contention
and shooting each other. The stability and convergence rate of the two algorithms are compared to
verify the influence of the introduction of prior knowledge on the training effect of the algorithm.

4.1. Experimental Platform

In order to verify the effectiveness of the PK-DQN algorithm, this paper uses the self-developed
simulation environment as a test example, and the main configuration of the experiment is listed as follows:

(1) Win 10: operating system, various task processing.
(2) CUDA v8.0: GPU C language library. Calculate the same device architecture.
(3) cuDNN (v6.0.21): deep learning primitive library based on CUDA.
(4) Tensorflow (v1.0): a deep learning framework developed by Google.

The whole environment includes the DL (Deep Learning) server and AI server. The AI server is
configured with the DQN algorithm and PK-DQN algorithm for data training, which is transmitted
to the DL server after training to form a deep neural network model. The cloud server transmits the
original confrontation data and action sequence to the AI server, and receives the action sequence and
cognitive model processed by the AI server. The cognitive model and action sequence formed are
further transmitted to the intelligent decision-making system, and then to the experimental environment
for simulation and deduction through decoupling. The experimental environment obtains new data
through deduction, which is aggregated and then transmitted to the intelligent decision-making system.
The intelligent decision-making system retransmits the new data, AI configuration and action sequence
to the cloud server for a new round of training, as shown in Figure 9.

Scenario Description:
In this experiment, two operators, red and blue, are supposed to fight in the environment.

The winning condition is to seize the red flag to seize the control point or to destroy all the operators of
the enemy. At present, the urban residential area map is used, and the terrain of the main battlefield
area is shown in the Figure 10 below.
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intelligent assistant decision system and database environment, the architecture of the intelligent wargame
system is constructed.
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Figure 10. Scenario description: red and blue have two operators (tanks) to fight each other. The red
flag in the middle is the key point. The deeper the color is, the higher the elevation is. The grid of urban
residential areas is indicated in black, which is conducive to concealment. The black line represents
the first class road and the red line indicates the second class road. The operator (tank) has different
moving speed on the first road and the second road respectively.

The details are as follows:

(1) Elevation: elevation information is represented by color depth. There are five different colors to
represent five different elevations. Elevation gradually increases with color from light to depth,
and the height difference between adjacent changing colors is 20 m.

(2) Operators: two for red and two for blue, each of which represents platoon, the minimum
resolution unit of the army armored synthetic battalion. The attributes describing the operators
mainly include two categories: tactical command decision state space and tactical action space.
Consumption: since the movement of the operator will consume oil, the initial oil quantity is set
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in the environment. The oil quantity will be consumed every time the operator moves a grid;
the oil consumption varies with different elevations, and the higher the elevation, the greater the
oil consumption.

(3) The map size is 66 × 51 and the map number is 83.
(4) There is a total of 1 control point, which are: control point, coordinate 80,048, score 80.
(5) There are two pieces in the red and blue sides respectively. The initial position and terrain of the

two tanks are described as follows Table 3:

Table 3. Initial situation of opposing parties.

Initial Position Red Blue Terrain

Tank1 80,015 90,015 Plain
Tank2 70,081 80,081 Plain

4.2. Experimental Results and Analysis

In this experiment, PK-DQN algorithm is applied to the self-developed confrontation environment,
and the performance of the algorithm is tested and compared with the DQN algorithm. Through the
comparative analysis of the experimental results, the experimental results are shown in Figure 11.
The horizontal axis in the figure represents every step of training. The vertical axis loss represents the
size of the cost function Li(θi).
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the cost curve value Li(θi).

(1) In terms of convergence speed, the DQN algorithm needs about 1500 steps to reach the convergence
threshold of the algorithm, which is still not less than 1000, while the PK-DQN algorithm can reach
the convergence threshold of the algorithm in 1500 steps. Compared with the DQN algorithm,
the PK-DQN algorithm is faster and more stable. See Figure 11 for details. The reason is that by
introducing prior knowledge, the PK-DQN algorithm reduces the number of times of exploration
in the training process, speeds up the optimization speed of Q neural network, and the algorithm
converges rapidly with little fluctuation, so it can reduce the intervention of prior knowledge
in the action selection process after the algorithm converges, and at the same time ensure the
training efficiency and stability of the algorithm.

(2) In the aspect of algorithm winning rate, to verify the faster convergence of PK-DQN, we guarantee
that PK-DQN and DQN will be trained together for 24 h at the same time, then PK-DQN and
DQN will be used as red AI and rule-based Blue AI to compete against each other, and then
observe the winning rate of the two algorithms compared with rule-based Blue AI. The winning
rate of the DQN algorithm and the PK-DQN algorithm is 57% and 67% respectively, as shown in
Figures 12 and 13. It shows that the introduction of prior knowledge can obviously improve the
intelligence of operators. The specific winning games are shown in the Tables 4 and 5 below.
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(3) In terms of algorithm efficiency: to verify the efficiency of training, we use the 80% winning rate
as the verification standard to see how long it takes for PK-DQN and DQN to reach 80% winning
rate. Both algorithms are against the rule-based blue AI. It takes 23 h and 17 min for PK-DQN to
be stable to win rule-based AI in the confrontation, and 32 h and 39 min for the DQN algorithm
alone. This further shows that the introduction of prior knowledge can significantly accelerate
the convergence speed of the algorithm. The experimental results are shown in Table 6, where T
is the total training time and N is the number of operators (tanks) in the antagonism.
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Table 6. Stable winning training time comparison.

Algorithm T (Total Time) N (Number)

DQN 32 h 39 min 4
PK-DQN 23 h 17 min 4

The experimental results show that the PK-DQN model can reduce the number of times to explore
during training, and improve the problem that the DQN algorithm takes too long to train. It shows
that the introduction of prior knowledge improves the performance of the DQN algorithm, and has a
certain theoretical significance for improving the efficiency of the algorithm, the detail score is shown
in Figure 14.
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5. Conclusions

The main innovative work of this paper is to independently develop an intelligent wargame
deduction environment, which has been verified by experiments and configured with a series of basic
functional interfaces to achieve the confrontation of different types of operators on different maps.
It can provide validation and effect analysis for subsequent large-scale and different kinds of wargame
combat deduction experiments. We first used the Q-learning algorithm to design the game algorithm.
Q is Q (s, a), s is the state and a is the action. The main idea of the Q-learning algorithm is to construct a
Q-table to store static and action into a Q-table, and then select the action that can obtain the maximum
benefit according to the Q value. However, we find that it is problematic to use Q learning alone.
Q-tables are limited. If the state space and action space are very large, it is difficult for us to store them
all. Therefore, we introduce the DQN algorithm. We use function approximation to solve the problem
of too large state space, complex action space and insufficient computer memory. By expressing Q
(s, a) with a function instead of a Q table, the function can be linear or non-linear. At the same time,
this paper uses this platform to verify that the DQN algorithm can be applied in the field of wargames,
to achieve the deduction of intelligent wargames, and to explicitly verify that the DQN algorithm
can defeat high-level rule-based opponents, which provides the first step of work verification for the
exploration of the field of intelligent wargames and the deduction of intelligent games. At the same
time, it is found that DQN training is difficult to converge for a long time during the training process,
so a priori knowledge is introduced to improve the DQN algorithm, and a PK-DQN algorithm is
proposed. The experimental results show that the PK-DQN model can reduce the number of times it
is required to explore during training, and improve the problem that the DQN algorithm takes too
long to train. This shows that the introduction of prior knowledge improves the performance of the
DQN algorithm, and has a certain theoretical significance for improving the efficiency of the algorithm.
Subsequently, work will be undertaken on this platform, including the experimental validation of
the DDQN algorithm, A3C, PPO algorithm and a series of improved algorithms in the deductive
antagonism of intelligent wargame, as well as the study of collaboration between multi-agents.
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Appendix A

Explanation of Terminologies
Wargame: a combination of ‘game’, history and science. The simplest way is to think of wargame

as chess, but there are more complex ways to move the pieces and capture your opponents.
Operator: Each operator represents units in Chess of War, and in this paper mainly refers to tanks.
Point of contention: a hexagonal coordinate that means occupying a favorable terrain or a place

of strategic value.
Scenario: a specific antagonistic environment in chess deduction, including specific terrain and

operators and tasks to be performed.
The comprehensive potential energy: this is a comprehensive judgment of the quality of a

hexagonal lattice. The comprehensive potential energy is related to the snatch potential energy, the kill
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potential energy and the offline potential energy. It is necessary to calculate the three potential energies
of all coordinates in the maneuverable range, multiply them by the weight of the corresponding
potential energy, respectively, and then sum them. Snatch potential energy is a measure of the possibility
that a tank can reach a critical point when it is in the hexagonal lattice; kill potential energy is a measure
of the advantages and disadvantages of the hexagonal lattice in killing the enemy; off-line potential
energy is to analyze the previous deduction data and extract the advantages and disadvantages of
each hexagon to measure.

The comprehensive potential energy of each coordinate is equal to the three potential energies of
the coordinate multiplied by their respective coefficients, and then the sum is calculated.

Comprehensive potential energy = snatch potential energy * snatch potential energy coefficient a
+ kill potential energy * kill potential energy coefficient B + offline potential energy * offline potential
energy coefficient C.

Appendix B

Detailed Explanation of DQN Algorithm
Line 1, the playback memory D is initialized, and the number of data pieces it can hold is N
Line 2, the random weight θ is used to initialize the action value function Q
Line 3, initialize θ− = θ to calculate the action behavior value Q of TD target
Line 4, loop each event
Line 5, the first state s1 of the event is initialized, and the feature input corresponding to the state is
obtained by preprocessing
Line 6, loops through each step of each event
Line 7, use probability ε to select a random action at

Line 8, if the small probability event does not occur, the greedy strategy is used to select the action
at = argmax

a
Q(φ(st), a;θ) with the largest current value function. Note that the value function network

used in selecting the maximum action and the network used for approximating value function are the
same network, corresponding to θ.
Line 9, perform action at in the simulator, observe the return rt, and image xt+1

Line 10, set st+1 = st, at, xt+1, preprocess φt+1 = φ(st+1)

Line 11, store conversion (φt, at, rt,φt+1) in playback memory D
Line 12, a conversion sample data is randomly sampled from the playback memory D and represented
by (φ j, a j, r j,φ j+1).
Line 13, judge whether it is the termination state of an event. If it is, the TD target is r j. otherwise,
the TD target r + γmax

a′
Q(s′, a′;θ−) is calculated by using TD target network θ−.

Line 14, perform a gradient descent algorithm

∆θ = α

[
r + γmaxQ(s′, a′;θ−) −Q(s, a;θ)

a′

]
∇Q(s, a;θ)

Line 15 updates the network parameters approximated by the action value function θ = θ+ ∆θ
Line 16, the TD target network weight is updated every C step, that is, θ− = θ
Line 17, end the loop for each event
Line 18, end the loop between events

Appendix C

Main Rules of the Game
Maneuver: the intelligent algorithm sends maneuver or stop command to the operator (tank)

and specifies the maneuver route for the operator. The system automatically converts the operator’s
maneuver path into hexagonal lattice maneuver path according to the maneuver route specified by the
deduction personnel.
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Observation: the system updates the situation every 1 s, updates the position of operators (tanks)
of both sides according to the situation, automatically makes observation judgment and displays
the results.

Engagement: if the target is observable and within the range of the weapon, the operator (tank)
can fire at long range.

Win or lose: a game is judged by the net score. The net score is calculated as the difference
between one party’s “seizing the critical point + the score of its own surplus force + the score of
annihilating the opponent’s force” and that of the other party’s “seizing the critical point + the score of
its remaining force + the score of annihilating the opponent’s force” is the net score. If the net score is
positive, the game will win. If the net score of both sides is 0, it will be a draw.
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