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Abstract: Recently, Deep Neural Networks (DNNs) have been widely used in natural language
processing. However, DNNs are often computation-intensive and memory-expensive. Therefore,
deploying DNNs in the real world is very difficult. In order to solve this problem, we proposed
a network model based on the dilate gated convolutional neural network, which is very
hardware-friendly. We further expanded the word representations and depth of the network to
improve the performance of the model. We replaced the Sigmoid function to make it more friendly
for hardware computation without loss, and we quantized the network weights and activations to
compress the network size. We then proposed the first FPGA (Field Programmable Gate Array)-based
event detection accelerator based on the proposed model. The accelerator significantly reduced the
latency with the fully pipelined architecture. We implemented the accelerator on the Xilinx XCKU115
FPGA. The experimental results show that our model obtains the highest F1-score of 84.6% in the ACE
2005 corpus. Meanwhile, the accelerator achieved 95.2 giga operations (GOP)/s and 13.4 GOPS/W
in performance and energy efficiency, which is 17/158 times higher than the Graphics Processing
Unit (GPU).
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1. Introduction

With the rapid development of the Internet, it has become more and more important to extract
usefully structured information from massive amounts of unstructured texts. The Information
Extraction (IE) tasks aim to identify event descriptions (including entities, relationships, and events)
from the unstructured natural text, to classify them into predefined categories, and to store them in a
structured form for users to query and further analyze. Event Detection (ED), which aims to accurately
identify event triggers of specific types, is an important and challenging part of IE tasks. For example,
a “movement” event triggered by “force” should be extracted from the following texts “A wildfire in
California forced hundreds of people from their homes”.

Event detection systems today are commonly based on pattern matching [1–4] and machine
learning (ML) [5–8]. Pattern matching achieves high performance in a particular domain but less
portability. Whenever the system is ported to a new scenario, new patterns must be built. Tuning
patterns is a time-consuming process and requires considerable experience. Meanwhile, machine
learning does not require much guidance from domain experts and has better portability. With the
increasing abundance of various textual resources on the Internet, the corpus is no longer the bottleneck
for machine learning. At present, machine learning has become the main research method for
event detection.
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The ML-based approach relies on ML algorithms and deep learning models to identify and
classify trigger words. Specifically, methods such as a support vector machine, Convolutional Neural
Networks (CNNs), and Recurrent Neural Networks (RNNs) are used to determine whether a word
is the trigger. They focus on how to learn representation of the sentence in the text to improve
the accuracy of identification and classification. The advantage of this approach is that it requires
little manpower and knowledge of new domains. Recently, neural networks have been widely
used in event detection [9,10], which encodes the semantics of context in a high-dimensional feature
space. CNN [11–13] and RNN [14,15] are the most commonly used neural network models for event
detection today.

CNNs have gained great success and show dramatic performance in many tasks like
image recognition [16,17], video analysis [18,19], and natural language processing (NLP) [11,12].
Collobert et al. [20] applied CNN to NLP tasks and succeeded in avoiding task-specific engineering
as early as 2011. Instead, they relied on large unlabeled data sets and let the training algorithm
discover internal representations. Xia and Liu [21] further tested the performance on a Chinese event
detection task using a similar model and demonstrated the potential of CNNs for event detection
tasks. However, classical CNN may miss valuable facts when considering multiple-event sentences.
Chen et al. [22] proposed the dynamic multi-pooling convolutional neural network (DMCNN),
which uses a dynamic multi-pooling layer to reserve more crucial information. Lin et al. [23] further
developed DMCNN on Chinese and tried to solve the word-trigger mismatch problem by directly
proposing entire trigger nuggets centred at each character regardless of word boundaries. RNNs offer
the capability of recognizing long-term dependencies in sequential and temporal data. They are
very suitable for NLP naturally and have demonstrated state-of-the-art performance in various
NLP tasks, notably machine translation [24], Part-of-Speech (PoS) tagging [25], and named-entity
recognition [26]. Based on Long Short-Term Memory (LSTM) networks, Tai et al. [27] proposed
Tree-LSTM, a generalization of LSTMs to tree-structured network topologies. The results suggested
that Tree-LSTM is more effective for ED tasks compared to the classic bidirectional LSTM model.
However, LSTMs also face the problem of word trigger mismatch for Chinese. Thus, Ding et al. [28]
proposed the trigger-aware lattice neural network, which dynamically incorporated word and character
information to avoid mismatch problem. Xi et al. [29] proposed a similar method to improve
character-wise models by incorporating word information and language model representation into
Chinese character representation.

However, the computational cost and memory requirements significantly increased with the
accuracy improved, which restricted the applications of CNNs and RNNs. Therefore, high-performance
Central Processing Units (CPUs) and Graphics Processing Units (GPUs) have been widely used to
process CNN and RNN models, which can achieve 10 tera operations (TOPs) per second on a chip.
However, large scale clusters with hundreds or thousands of computation nodes are still needed
to achieve inference performance of millions of words per second. For example, DMCNN [22]
takes 1.0 giga operations (GOPs) to process a single sentence with 30 words. Besides, it is quite
difficult for general-purpose processors to accomplish RNN computation in parallel due to irregular
computation and memory access. CPU and GPU platforms still have disadvantages of high power
and low performance per watt for complex CNN and RNN models. It means that a high-performance
accelerator is highly desired. Thus, various accelerators have been proposed recently. Considering the
performance, energy efficiencym and flexibility, it is obvious that FPGA (Field Programmable Gate
Array)-based accelerators are a sensible approach for complex CNN and RNN models.

Currently, there are many high-performance accelerators for images recognizing tasks [30,31]
and video processing tasks [32,33] but no accelerators for NLP tasks. On the one hand, NLP tasks
also have to process huge amounts of data just like images processing and video processing tasks.
On the other hand, some NLP tasks such as question-answering systems also require low latency.
Furthermore, all the current models only focus on the accuracy of the tasks, without considering
the obstacles brought by the enormous computational cost and memory requirements. To address
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these issues, we present the design of a Chinese event detection accelerator for FPGAs. In order to
reduce the computation and footprint, we design a novel CNN model based on multilayer Dilate
Gated Convolutional Neural Network (DGCNN). EE-DGCNN [34] demonstrated the potential of the
DGCNN for event detection tasks and FPGA implementations. DGCNN can reduce computation
complexity while obtaining long-term dependencies owing to the use of the dilated convolution.
This paper makes the following major contributions:

1. To our best knowledge, we are the first to study FPGA acceleration for NLP tasks. We present a
CNN model which overwhelms the previous event detection works on ACE 2005 Chinese corpus.

2. We improve the computational efficiency of the model on hardware by optimizing the activation
function and quantizing the model.

3. We implement our event detection accelerator on FPGA and show significant improvements over
CPU and GPU baselines.

The paper is organized as follows. Section 2 introduces the basic background of event detection
and the design directions of the accelerator. Section 3 presents our Chinese event detection model.
Section 4 shows our hardware-oriented model optimizing strategy. Section 5 introduces the architecture
of the accelerator. Section 6 reports the experimental results, and Section 7 concludes the paper.

2. Background

2.1. Event Detection

The event detection task in this paper was defined in Automatic Content Extraction (ACE) [35]
evaluations. The event consists of an event trigger and an event argument. The event detection
task mainly aims to find event triggers and to categorize events to predefined event types. To help
understand the task, we first introduce some event extraction terms.

• Event mention: The description of a specific event, including trigger words and argument.
• Event type: The specific predefined category of an event.
• Event trigger: Keywords or phrases that clearly express the occurrence of an event.
• Event arguments: The participants or attributes of the event.

The ACE 2005 evaluation has 8 types of events and 33 subtypes. In this paper, we ignore the
hierarchical structure and make 33 subtypes as 33 types of events. Besides, we add a NONE type to
predefined event types for non-trigger words.

2.2. Convolutional Neural Networks

Convolutional neural networks generally consist of various network layers such as the
convolutional layer, the fully connected layer, and the pooling layer. In particular, convolutional layers
are the heart of the convolutional neural network, which often occupy the main part of the computation
of the entire convolutional neural network. Therefore, it is critical for accelerating the convolutional
neural network to simplify the convolutional computation or to design an appropriate hardware
architecture to fit the computation. Methods such as the frequency domain convolution and Winograd
algorithm are widely used. The convolution can be categorized into one-dimensional (1-D) convolution,
two-dimensional (2-D) convolution, and others based on the dimension. The 1-D convolution is often
used in sequence problems, such as NLP tasks. The 2-D convolution is usually used in image processing
tasks, such as object recognition. However, there is a difference in the ED task. For traditional ED
models, the researches tend to use a whole sentence as an input to extract the dependencies of adjacent
words. Thus, they have to perform convolution operations within and between words at the same
time and they use a 2-D convolution instead of a 1-D convolution.

For simplicity, we introduce the 2-D convolution in ED tasks with a sentence that contains l words.
Assuming that each word is represented by a vector of length w, the sentence constitutes a 2-D matrix
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of the shape [l, w]. Suppose the kernel with the shape of [k, w] is used for the convolution operation,
where k is the height of the kernel. The convolutional window generates a series of sets of features by
sliding between words. By multiplying and summing each set of features with the convolution kernel,
we get the final result as shown in Figure 1. We use X for the input sentence, Y for the output, and W
for the kernel. Assuming the stride size of 1, the results are computed as the Equation (1).

Yi =
i+k−1

∑
j=i

(Xj
⊗

W) + bias (1)

bomb

car

went

off

outside

army

headquarters

A

WeightInput Output

Figure 1. Two-dimensional (2-D) convolution operations: applying 2-D convolution on a sentence.
When processing the Chinese corpus, each Chinese character has an embedding representation, just
like an English word.

2.3. Dilated Convolutional Neural Networks

Dilated convolutional neural networks were first applied to the neural network by Yu and
Koltun [36] for solving the imperfect match between classical convolutional neural networks and
semantic segmentation requirements. Compared to classical convolution, the dilated convolution adds
an extra option for the kernel: the dilation. If the dilation is 1, the convolution is the same as a normal
convolution. If the dilation is 2, then a zero will be inserted between every two elements of the kernel.
In general, suppose the dilation is n, then n − 1 zeroes will be inserted between every two elements of
the kernel.

Figure 2 shows the information extraction capability of normal convolution and dilated
convolution with the same size of kernel and three convolutional layers. The nodes in the third
layer of normal convolution can obtain information from four nodes in the first layer at the maximum,
while the nodes in the third layer of dilated convolution can obtain information from eight nodes in
the first layer at the maximum. Moreover, the parameters and computations are exactly the same as
those of normal convolution. There are two main advantages of dilated convolution.

• The receptive field will expand as the dilatation rate increases.
• The number of computations and parameters do not change with the dilatation rate.

Normal convolutional neural networks generally perform worse than recurrent neural networks
(e.g., LSTM) in some NLP tasks [37]. A major reason is that the receptive field of the convolutional
neural network is limited by the size of the kernel. In contrast, recurrent neural networks naturally have
access to information over long distances. In general, each output feature can only capture information
from input features covered by kernels. There is no possibility to capture information from long
distances in the normal convolutional layer. For information at longer distances, the convolutional
kernel must be expanded. For 1-D convolution, the number of parameters and computations is
linearly related to the kernel size, while for 2-D convolution and other high-dimensional convolution,
expanding the kernel means the amount of computations explodes. The appearance of dilated
convolutional neural networks greatly alleviates this problem. By adjusting the dilatation rate,
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convolutional neural networks gained the perception of long-term dependence similar to recurrent
neural networks while keeping the characteristic of higher parallelizability than recurrent neural
networks. Therefore, dilated convolution is more suitable for NLP tasks as well as hardware
acceleration than normal convolution.

Traditional 1-D Convolution Dilated 1-D Convolution

DilatIon=2

DilatIon=3

Kernel size=3

Kernel size=3

Figure 2. Traditional convolutional neural networks vs. dilated convolutional neural networks.

2.4. Word Representation

Words are usually represented using vectors in NLP tasks. Early researchers used to encode
words with one-hot, but this approach cannot reflect the inner connection between words and it
often leads to the curse of dimensionality when facing a large corpus of text. Word2vec [38] was
proposed to solve these problems by mapping words to a vector space. It greatly reduced the data
dimension, and word vectors that share common contexts were located close to one another in the
space. However, they only had one representation for one word. It was helpless to deal with the
polysemy. Therefore, Peters et al. [39] proposed Embeddings from Language Models (ELMo), which
uses bidirectional LSTM to obtain the contextual information of each word and generates representation
for every word. OpenAI applied a similar idea and proposed the OpenAI GPT (generative pretrained
transformer) [40]. They used a transformer instead of the traditional bidirectional LSTM which ELMo
used. However, OpenAI GPT used unidirectional transformers and only the previous contextual
information was actually obtained. Therefore, Google [41] proposed BERT (Bidirectional Encoder
Representations from Transformers). BERT performed amazingly well on SQuAD (The Stanford
Question Answering Dataset) 1.1 and achieved the best performance in 11 different NLP tasks.
Later, Facebook [42] further optimized it and developed RoBERTa (Robustly optimized BERT approach),
which uses a larger model with more training data and outperforms BERT.

2.5. EE-DGCNN

EE-DGCNN was one of the best models in event extraction recently. It achieved the best
performance in ACE 2005 corpus with the help of the DGCNN. Its computation complexity was much
smaller than other models such as standard CNN and bidirectional LSTM. EE-DGCNN consisted of a
12-layer DGCNN and a fully connected layer. The DGCNN is a new structure based on the dilated
convolution combined with the gated linear unit and residual connection. Gehring et al. [43] first
proposed this structure and applied it to the NLP task. Figure 3 shows the basic structure of the
DGCNN. It can be calculated by Equation (2):

Y = 1DConv1(X)
⊗

σ(1DConv2(X)) (2)

where Y is the output result, X is the input vector sequence, σ is the Sigmoid function, and 1DConv1

and 1DConv2 are two 1-D convolutions with the same output size. This structure can avoid the
vanishing of gradients during training. On the one hand, it can accelerate the flow of information and
improve the performance of the model. We have implemented the EE-DGCNN model with the help of
Kan and Qiao and designed a Chinese event detection model based on it.
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Figure 3. Basic unit of dilated gated convolutional neural network.

3. Model Design

From Section 2, the dilated CNNs can obtain long-term dependencies in NLP tasks while the
standard CNNs cannot. Although dilated CNNs cause irregularities in accessing memory during
computation, we can avoid it by designing FPGA hardware accelerators with a custom hardware
architecture. Inspired by EE-DGCNN, we chose DGCNN as the centre of our event detection network.
The performance of EE-DGCNN has demonstrated that DGCNN has adequate potential for event
extraction. However, there are two major limitations of the EE-DGCNN in Chinese event detection.

EE-DGCNN was originally designed to extract events for English. It lacks sufficient classification
ability when migrating to Chinese. We trained the EE-DGCNN model directly on ACE 2005 corpus.
Its performance is comparable to the previous work. The detailed results are shown in Table 1.

Table 1. Comparison of Chinese event detection.

Model Precision Recall F1-Score

DMCNN [22] 61.6 58.8 60.2
C-BiLSTM [7] 60 60.9 60.4

NPN [23] 60.9 69.3 64.8
TLNN [28] 64.5 71.5 67.8

Bi-LSTM+CRF [29] 66.4 76 70.9
BERT-CRF [44] no report no report 83.2

EE-DGCNN 90.5 60.8 72.7

Like most of the neural network models, the EE-DGCNN was not designed for hardware.
For example, the gated mechanism contained in the EE-DGCNN requires the Sigmoid function
as a gated function, but the Sigmoid function consumes huge resources to calculate in the hardware.

To address these, we modify the network structure based on EE-DGCNN to make it more suitable
for the Chinese event detection task and the hardware implementation. The biggest differences
compared to the EE-DGCNN are the following.

Wider word vector representation. Compared to English, event extraction studies on Chinese
are more difficult. The English event extraction task can capture more additional information at the
lexical level than Chinese. For example, English words are separated while Chinese lacks natural
delimiters. We can tell singular and plural by word form and part-of-speech tagging. English verbs
have morphological changes, and verbal nouns are easily distinguished from general verbs.

Therefore, we decided to expand the word representation with more linguistic features for
improving event detection performance. In the original EE-DGCNN, the authors used BERT to encode
the input text. When we used EE-DGCNN to process the Chinese language, we chose the Chinese
BERT model with a 12-layer transformer and 768 hidden units. However, the experimental result
was not satisfying. We decided to use the Chinese RoBERTa model with 1024 hidden units to encode
the Chinese text. We retrained EE-DGCNN based on RoBERTa and as shown in Table 2. The results
showed that using RoBERTa can significantly improve the classification performance of the model.

Deeper network. Unlike other CNN models (such as DMCNN), the EE-DGCNN model was
a character-wise classification model. Therefore, when we expanded the dimension of the word
representation, the receptive field was not enough to cover the whole word. There are two options
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to solve this problem: increasing the dilation or network depth. Obviously, expanding the dilation
can ensure that the receptive field is large enough to reach the entire word vector for one hidden
unit. However, large dilations may cause some information missing and may bring obstacles for
future hardware parallelism, especially for small capacity embedded hardware. Therefore, we chose to
increase the depth of the network for the performance of our model. Table 3 shows the performance of
the model with various depths.

Table 2. Comparison of Bidirectional Encoder Representations from Transformers (BERT) and
Robustly optimized BERT approach (RoBERTa).

Model Embeddings Precision Recall F1-Score

EE-DGCNN BERT 90.5 60.8 72.7
EE-DGCNN RoBERTa 93 68.4 78.8

Table 3. Comparison of different network depths.

Model Embeddings Depth Precision Recall F1-Score

EE-DGCNN RoBERTa 13 93 68.4 78.8
Model1 RoBERTa 16 93.6 68.5 79.1
Model2 RoBERTa 19 94.1 70.8 80.8
Model3 RoBERTa 22 95.5 69.5 80.5
Model4 RoBERTa 25 95.6 73.1 82.8
Model5 RoBERTa 28 94.2 72.7 82.1

4. Model Optimization

4.1. Optimization of Dilation

The dilation is a key parameter of the dilated convolution. It directly affects the accuracy of the
network, but at the same time, it also determines the locality of reference of the network, which is
crucial for the performance of hardware computations. The accelerator speeds up the computation by
increasing the parallelism, which requires the memory to provide more than one input simultaneously.
However, the Block Random Access Memory (RAM) on the FPGA chip can only provide two R/W
ports at most. We have to divide the memory when the parallelism is greater than 2. EE-DGCNN
used three dilations: 1, 2, and 5. Note that 5 is not a power of 2, which means that the memory
(buffers) needs to be divided into 5n parts. However, the size of both the Block RAM and our data
is divisible by 2. Therefore, using such dilations will inevitably waste memory resources to satisfy
the data throughput rate. Otherwise, the pipeline must be stalled to reduce the requirements for data
throughput rates, which further slows down the accelerator. Consequently, we modified the original
dilations and retrained the model to keep the performance of the model. The experiments show that
adjusting the dilations to 1, 2, and 4 can achieve better performance than 1, 2, and 5, and the results are
shown in Table 4.

Table 4. Comparison of different dilation.

Model Embeddings Depth Dilation Precision Recall F1-Score

Model4 RoBERTa 25 1,2,5 95.6 73.1 82.8
Model6 RoBERTa 25 1,2,4 94.8 74.5 83.4
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4.2. Simplification of Sigmoid

In DGCNN, the Sigmoid function is necessary for processing the output of the dilated convolution.
The formula for the Sigmoid function is expressed as Equation (3).

Sigmoid(x) =
1

1 + e−x =
ex

ex + 1
(3)

The Sigmoid function contains exponential operations and division operations, which are
expensive for hardware implementation. We optimized the Sigmoid function from the viewpoint
of accelerator implementation and network model to observe the effect of Sigmoid function on the
performance of the model. Firstly, we approximated the Sigmoid function using the Range Addressable
Lookup Table method. We can get the Sigmoid result directly by looking up the Block Random Access
Memory (BRAM). Experiments showed that the output of the Sigmoid function only requires 8-bit for
hardware calculation. The specific strategy is as follows.

(1) When the input is greater than 4, the output result is 1.
(2) When the input is greater than or equal to −4 and less than or equal to 4, use the 2 integer

digits of the input and 6 decimal digits as the address to get the result of the Sigmoid.
(3) When the input is less than −4, the output result is 0.
The approximated Sigmoid function is shown in Figure 4.
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8 6 4 2 0 2 4 6 8
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Hard Sigmoid (y=0.2x+0.5)
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0.2

0.4
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0.8
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8 6 4 2 0 2 4 6 8
Hard Sigmoid (y=0.125x+0.5)
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0.4
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0.8
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8 6 4 2 0 2 4 6 8
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0.2
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0.6

0.8

1.0

Figure 4. Sigmoid functions and hardware-friendly approximations.
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On the other hand, we carefully studied the structure of the DGCNN network and concluded
that the Sigmoid function is just used to provide a threshold value and is not irreplaceable.
Therefore, we replaced the Sigmoid function with the more hardware-friendly Hard Sigmoid function.
It is calculated by Equation (4):

f (x) = 0.2x + 0.5 (4)

Considering that sard Sigmoid still requires a multiplication operation and an addition operation,
we further modified the Hard Sigmoid function by modifying the factor 0.2 of x to 0.125 and 0.25, as
shown in Figure 4. The advantage of using these two factors is that the multiplication can be done
only by a shift operation, which greatly reduces the area usage of the chip. We retrained the modified
DGCNN and the results satisfied our conjecture. The F1-score with the Hard Sigmoid function of the
factor 0.125 improved by about 1% over standard Sigmoid, as shown in Table 5.

Table 5. Comparison of different gated functions.

Model Embeddings Depth Dilation Gated Function Factor Precision Recall F1-Score

Model6 RoBERTa 25 1,2,4 Sigmoid - 94.8 74.5 83.4
Model7 RoBERTa 25 1,2,4 Sigmoid(LUT) - 94.2 74.4 83.1
Model8 RoBERTa 25 1,2,4 Hard Sigmoid 0.2 95.2 74.9 83.8
Model9 RoBERTa 25 1,2,4 Hard Sigmoid 0.125 96.1 75.6 84.6

Model10 RoBERTa 25 1,2,4 Hard Sigmoid 0.25 95.6 74.4 83.7

4.3. Quantization

DGCNNs dramatically reduced the computational complexity, but all data representations were
using 32-bit floating-point, consuming much more resources. Recent works [45] demonstrated that
most neural networks do not require 32-bit in the inference process, and a 16-bit data bit width is usually
sufficient to hold the accuracy. In this paper, we quantized floating-point numbers into fixed-point
numbers and reduced the data bit width to the minimum while maintaining the accuracy. This can
achieve higher parallelism under the same area and power consumption while further reducing the
pressure on bandwidth and memory resources.

The quantization strategy was determined by the data distribution and was tested by software
simulation. Figure 5 shows the value distribution histogram. In this paper, various combinations of
data precision are tested, and it is finally determined that the weights and inputs of the network need
only 8 bits to meet the precision requirements, while the data and intermediate results need 16 bits to
keep the network precision. Table 6 shows the F1-score losses with quantization.

We finally design an event detection model suitable for hardware implementation through the
above design methods. The final network structure is shown in Table 7.

Table 6. The loss of quantization on F1-score.

Target Bitwidth Bitwidth for Integer Loss

Input 8 6 −0.03
Feature 16 8 −0.0006

Conv Kernel 8 2 <−0.01%
Bias 8 3 <−0.01%

FC Weight 8 2 <−0.01%
FC (Fully Connected) Bias 8 1 <−0.01%
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Figure 5. Histogram of value distribution: the horizontal axis indicates the range of values, and the
vertical axis indicates the occurrences. We noticed that the values of the parameters were mainly
concentrated in a very small interval, which was the basis of the quantization.

Table 7. Structure of the final network.

Layer Input Dim. Output Dim. Kernel Dilation Stride Ops(MAC)

Input - 1024 - - - -
Conv1 1024 1024 3 1 1 3072
Conv 2 1024 1024 3 2 1 3072
Conv 3 1024 1024 3 4 1 3072
Conv 4 1024 1024 3 1 1 3072
Conv 5 1024 1024 3 2 1 3072
Conv 6 1024 1024 3 4 1 3072
Conv 7 1024 1024 3 1 1 3072
Conv 8 1024 1024 3 2 1 3072
Conv 9 1024 1024 3 4 1 3072

Conv 10 1024 1024 3 1 1 3072
Conv 11 1024 1024 3 2 1 3072
Conv 12 1024 1024 3 4 1 3072
Conv 13 1024 1024 3 1 1 3072
Conv 14 1024 1024 3 2 1 3072
Conv 15 1024 1024 3 4 1 3072
Conv 16 1024 1024 3 1 1 3072
Conv 17 1024 1024 3 2 1 3072
Conv 18 1024 1024 3 4 1 3072
Conv 19 1024 1024 3 1 1 3072
Conv 20 1024 1024 3 2 1 3072
Conv 21 1024 1024 3 4 1 3072
Conv 22 1024 1024 3 1 1 3072
Conv 23 1024 1024 3 1 1 3072
Conv 24 1024 1024 3 1 1 3072

FC 25 1024 34 - - - 34,816
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5. Hardware Implementation

5.1. Overall Architecture

Figure 6 shows the overall architecture of the accelerator designed in this paper. The FPGA
accelerator consists of a controller, on-chip memory, input/output buffers, and several computation
units. The controller is responsible for receiving commands from the host CPU and controlling the
state of the accelerator. The on-chip memory consists of BRAM of different sizes for storing weights.
The input/output buffer is composed of two 512-bit wide FIFOs (first-in, first-out) that buffer the data
between the off-chip memory and the on-chip memory.

In most CNN accelerators, the size of feature maps between two layers often significantly
overflows the size of the on-chip memory in the FPGA. This requires that the intermediate results be
stored to off-chip memory, which takes up lots of time. However, the feature maps between the two
dilated convolutional layers of our network is only 2 kilobytes at most and we do not need to cache all
intermediate results with fully pipelined architecture. Therefore, our accelerator only accesses off-chip
memory for obtaining inputs and returning outputs.
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CPU

Memory

Hard Sigmoid

MAC MAC MAC

MAC MAC MAC

MAC

MAC

MAC

MAC

MAC

MAC
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Figure 6. Overall architecture of our accelerator (left) and Dilate Gated Convolutional Neural Network
(DGCNN) unit (right).

5.2. Compute Unit Architectures

Mapping Unit. The different dilations result in different requirements for loading in parallel.
In order to meet the parallel computing requirement, we need to split and regroup the input data to
make sure that the computing unit can access the necessary input data at the same time. The mapping
unit mainly consists of mapping logic and a variable number of linebuffer. Suppose the input
parallelism is p and the dilated rate is d, then the data needs to be split into 2 × (d − 1) + p banks.
Figure 7 shows how the input data is partitioned when p is 4 and d is 2.
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Figure 7. Example for input mapping strategy with p = 4 and d = 2.

DGCNN Unit. The DGCNN unit is the most critical part of the accelerator. As shown in Figure 6,
the DGCNN unit consists of the mapping unit, input buffer, MAC (Multiply ACcumulate) array, CONV
(CONVolution) buffer, and gate MAC array. Particularly, every weight of a dilated gated convolutional
layer only involves three 8-bit numbers which can be stored in on-chip memory easily. Input buffer
and CONV buffer are composed of several line buffers, which are used to cache the data in the pipeline.
The MAC array contains 3 × p Digital Signal Processing (DSP) slices, where p is the parallelism of the
input data. The gate MAC array consists of p DSP slices for gate mechanism and addition logic for
residual structure. The computational flow of DGCNN unit includes 5 stages.

1. Regroup the input by the mapping unit.
2. The MAC array computes the convolution, while the input buffer caches the inputs for the

gate structure.
3. Get the sigmoid results of convolutional results by shift and addition operations.
4. The gate MAC array calculates the result of gated convolution.
5. Calculate the residual results.

FC Unit. The structure of the FC unit is comparatively simple. It consists of the input buffer,
MAC array, and output buffer. Each cycle input buffer loads the output result of the previous layer and
broadcasts it in the MAC array. The MAC array performs multiplication and accumulation calculations
based on the control signal and updates the output buffer.

Softmax Unit. Softmax is often the last activation function of a neural network to normalize the
output of a network to a probability distribution over predicted classes. It is defined as Equation (5):

Softmax(xi) =
exp(xi)

∑j exp(xj)
(5)

Obviously, Softmax is as unsuitable for hardware computing as Sigmoid. The difference is that
the purpose of the Softmax function is to find the most probable category, which corresponds to the
maximum value of inputs. Therefore, we ignored the complex mathematical calculations and used a
pipelined comparator with 34 inputs to get the Softmax result.

5.3. Layer Fusion

Unlike common CNNs, each convolutional layer of our DGCNN model has the same
computational complexity and its throughput rate is exactly the same. Therefore, this paper constructed
a fine-grained pipeline by fusing all network layers to reduce computational latency.

Intralayer Pipeline. For a convolutional layer, the fastest way to start outputting the results is to
compute simultaneously within the same convolutional window. The ideal situation is to complete all
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computations for a group of inputs at the same time. In this paper, this means that we need to calculate
3072 multiplications and additions at the same time. This not only requires a large number of multiplier,
but also needs high memory bandwidth. It is obvious that computing in full parallel is extremely
difficult on the hardware. In our model, the dilated convolution is a 1-D convolution. The data
dependence of different layers is unidirectional. Therefore, it is important to focus on outputting the
results as quickly as possible when computing in parallel in the layer. We fully unrolled the loop
of the kernel and limit the unrolled between sliding windows to balance resource constraints and
performance requirements.

Interlayer Pipeline. We designed a fine-grained interlayer pipeline to reduce the overall latency
of the network. All layers of the network are fused to one layer. Take the example of the 3-layer
network shown in Figure 8. The computation of the second layer will be started immediately when
all the blue elements of the first layer are ready. Similarly, the computation of the third layer starts
immediately after the second layer has computed the yellow elements. After the third layer finishes
calculating, the results are saved instantly to reduce unnecessary memory usage. In brief, the latencies
of the different layers are overlapped. Therefore the overall latency is much smaller than the sum of
the latencies of all layers.

Layer 1
Dilation rate = 2

Layer 2
Dilation rate = 4

Layer 3
Dilation rate = 1

Figure 8. Data dependency of DGCNN.

Figure 9 shows the traditional pipeline and the layer-fused pipeline. It is clear that the layer-fused
pipeline can significantly reduce the data processing latency.

Char1 Char2 Char3

Char1 Char2 Char3

Char1 Char2 Char3

 

Char1 Char2 Char3

Char1 Char2 Char3

Char1 Char2 Char3

 

Layer 1

Layer 2

Layer 3

Time
a. Traditional pipeline b. Fine-grained inter-layer pipeline

Time

Figure 9. The proposed fine-grained interlayer pipeline for layer fusion: (a) in a traditional interlayer
pipeline, subsequent computations require all of the previous layer’s results. (b) The proposed
fine-grained interlayer pipeline requires only a small number of results for starting computations.

Figure 10 shows the latency of each layer and the entire network. The overall latency is only
1.7 times greater than the single layer.
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Figure 10. The latency of each layer and total network.

6. Experiments

6.1. Experimental Setup

The ACE 2005 corpus is based on real-world radio, news, and web blogs. It can reflect the
performance of models in real-world scenarios. We used the same data split for training and testing
as in previous studies [44]. Accuracy cannot properly measure the performance of the model with
uneven class distribution, which is common in NLP tasks. Therefore, we used precision, recall, and
F1-score to evaluate our event detection model. Precision is the ratio of correctly predicted positive
labels to the total predicted positive labels. Recall is the ratio of correctly predicted positive labels to
all labels except for NONE. We can tell that both precision and recall only measure the model in an
isolated dimension. The F1-score takes both precision and recall into account and provides a better
measure of model performance. It can be calculated by Equation (6):

F1-score =
2 × precision × recall

precision + recall
(6)

A trigger is considered to be correct if its type and offset match the correct label. In most trainings,
we set the learning rate to 1e− 3, the maximum sequence length to 128, and the batch size to 4 and used
Adam as the gradient descent optimizer.

The accelerator is based on the Xilinx XCKU115 FPGA chip. It is written in Verilog, and all
syntheses are from Xilinx Vivado 2018.3. The general purpose processing platform is based on the
Intel Core i7-8700k CPU and the NVIDIA GTX 1080 GPU. The code leverages Keras and calls CUDA
(Compute Unified Device Architecture) for GPU.

6.2. Evaluation of the Model

We chose previous works which are also based on the ACE 2005 corpus as the baseline for
comparison. As shown in Table 8, our model significantly outperformed previous works before 2019.
Our results also outperformed previous BERT-based works. Compared to the original EE-DGCNN
model, our optimization strategy results in a nearly 12% point improvement in F1-score. Moreover,
our model is more suitable for hardware acceleration than other works (e.g., Bi-LSTM [29] and
NPN [23] (Nugget Proposal Networks)).

Table 8. Model performance comparison.

Model Precision Recall F1-Score

DMCNN [22] 61.6 58.8 60.2
C-BiLSTM [7] 60 60.9 60.4

NPN [23] 60.9 69.3 64.8
TLNN [28] 64.5 71.5 67.8

Bi-LSTM+CRF [29] 66.4 76 70.9
BERT-CRF [44] no report no report 83.2

EE-DGCNN 90.5 60.8 72.7
Ours 96.1 75.6 84.6
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Moreover, the precision of the DGCNN-based model is significantly higher than the recall.
By analyzing the experiments and previous works, we believe that two causes resulted in this
phenomenon. First, the BERT-based word representation can significantly improve precision with
little effect on the recall. Balali et al. [46] obtained a 6.7% point increase in precision and only a 0.69%
point increase in recall using the BERT-based word representation compared to the glove-based word
representation with the same model. Second, DGCNN is a character-wise model. In contrast to the
word-wise model, the character-wise model lacks information about the location of the characters.
Meanwhile, our evaluation requires that a word be considered correctly classified only if all characters
inside the word are classified correctly. This also affects the precision and recall [29].

6.3. Evaluation of the Accelerator

The resource utilization of our implementation is reported in Table 9. We can tell that our DGCNN
accelerator is very small. All resource utilization percentages are less than 15%. This means that
our proposed hardware architecture can be implemented on the various resource-limited platforms
(e.g., embedding platforms).

We made comparisons with general purpose processing platforms. As shown in Table 10,
we compared based on the Intel Core i7-8700k and NVIDIA GTX1080. Note that the power of
the CPU is its thermal design power, the value of which is from [47], while the GPU power value
was from the nvidia-smi program. FPGA power was reported by Xilinx Vivado 2018.3. As we can
see, our accelerator is significantly superior to both CPU and GPU both in throughput and energy
efficiency. Our throughput and energy efficiency are 17× and 158× higher than the GPU, respectively.
We analyzed the reasons for the low performance of CPUs and GPUs. The reason could be caused by
the fact that the deep learning framework was not yet optimized for the DGCNN structure, resulting
in inefficient computation. This can be seen by the fact that the GPU with the thermal design power of
180 W [48] consumed only 66 W of power at full utilization.

Table 9. Resource utilization.

Resource LUT FF BRAM DSP

Utilization 42,146 52,765 309 619
Available 663,360 1,326,720 2160 5520

Utilization % 6.353413 3.977101 14.30556 11.21377

Table 10. Performance comparison between different platforms.

Platform CPU GPU FPGA

Model Intel Core i7-8700k NVIDIA GTX1080 Xilinx XCKU115
Frequency 3.7 GHz 1607 MHz 200 MHz

Latency (us) 154.0 43.0 2.5
Power (W) 95.0 66.0 7.1

Perf. (kWord/s) 6.5 25.8 438.6
Throughput (GOPS) 1.4 5.6 95.2
Efficiency (GOPS/W) 0.01 0.1 13.4

7. Conclusions

In this paper, we analyzed the event detection task and proposed a hardware-friendly Chinese
event detection model based on EE-DGCNN. We optimized the model by adjusting the dilation
and by replacing the Sigmoid function to make it more suitable for hardware implementation.
Additionally, we quantized the parameters and activations to further reduce hardware complexity
and resource utilization. The model achieved the best F1-score on the Chinese ACE 2005 corpus.
We further proposed an accelerator architecture and implemented it on a Xilinx XCKU115 FPGA.
Our accelerator adopted a full pipelined architecture, which significantly reduces the latency by



Electronics 2020, 9, 1666 16 of 19

combining interlayer and intralayer pipelines. Our experiments show that the accelerator achieved
95.2 GOP/s and 13.4 GOPS/W in performance and energy efficiency, which is 17 and 158 times higher
than the GPU. To our knowledge, we are the first to propose an accelerator for natural language
processing tasks. Future works should explore how to combine event detection and event arguments
extraction and should extend benchmark results to other datasets (e.g., KBPEval2017).
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Abbreviations

The following abbreviations are used in this manuscript:

1-D One-Dimensional
2-D Two-Dimensional
ACE Automatic Content Extraction
BERT Bidirectional Encoder Representations from Transformers
BRAM Block Random Access Memory
CNN Convolutional Neural Network
CONV CONVolution
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DCNN Dilate Convolutional Neural Network
DGCNN Dilate Gated Convolutional Neural Network
DMCNN Dynamic Multi-pooling Convolutional Neural Network
DNN Deep Neural Network
DSP Digital Signal Processing
ED Event Detection
ELMo Embeddings from Language Models
FC Fully Connected
FIFO first-in, first-out
FPGA Field-programmable Gate Array
GOP Giga Operation
GOPS Giga Operations Per Second
GPT Generative Pretrained Transformer
GPU Graphics Processing Unit
IE Information Extraction
LSTM Long Short-Term Memory
MAC Multiply ACcumulate
ML Machine Learning
NLP Natural Language Processing
NPN Nugget Proposal Networks
PoS Part-of-Speech
RNN Recurrent Neural Networks
RoBERTa Robustly optimized BERT approach
SQuAD The Stanford Question Answering Dataset
TOP Tera Operation
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