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Abstract: The security of communication and computer systems is an increasingly important issue,
nowadays pervading all areas of human activity (e.g., credit cards, website encryption, medical
data, etc.). Furthermore, the development of high-speed and light-weight implementations of the
encryption algorithms is fundamental to improve and widespread their application in low-cost,
low-power and portable systems. In this scientific article, a high-speed implementation of the AES-128
algorithm is reported, developed for a short-range and high-frequency communication system, called
Wireless Connector; a Xilinx ZCU102 Field Programmable Gate Array (FPGA) platform represents
the core of this communication system since manages all the base-band operations, including the
encryption/decryption of the data packets. Specifically, a pipelined implementation of the Advanced
Encryption Standard (AES) algorithm has been developed, allowing simultaneous processing of
distinct rounds on multiple successive plaintext packets for each clock period and thus obtaining
higher data throughput. The proposed encryption system supports 220 MHz maximum operating
frequency, ensuring encryption and decryption times both equal to only 10 clock periods. Thanks to
the pipelined approach and optimized solutions for the Substitute Bytes operation, the proposed
implementation can process and provide the encrypted packets each clock period, thus obtaining a
maximum data throughput higher than 28 Gbit/s. Also, the simulation results demonstrate that the
proposed architecture is very efficient in using hardware resources, requiring only 1631 Configurable
Logic Blocks (CLBs) for the encryption block and 3464 CLBs for the decryption one.

Keywords: field programming gate array; encryption; advanced encryption standard; wireless
connector; 5G communication; experimental testing

1. Introduction

With the advances of information technology (IT) applications involving sensitive data, the
network security is an ever-current topic for business activities; therefore, the development of robust,
in computational terms light and efficient encryption algorithms is required for supporting the
continuous increase of data volume and throughput in IoT applications, as well as video streaming,
real-time communications, mobile transmissions and so forth [1–4]. The Advanced Encryption
Standard (AES) remains the preferred encryption standard for governments, banks and high-security
systems around the world. This last is the most widespread encryption algorithm, for instance,
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employed in Gigabit Ethernet, Worldwide Interoperability for Microwave Access (WiMAX) and 5G
systems [5–7]. Also, this algorithm can be efficiently implemented both in hardware and software
platforms; the software implementations of AES require lower resources but offer lower physical security.
On the other hand, the growing demand for high-speed, high-volume secure data transmissions,
ensuring at the same time the physical security, strongly requires the hardware implementation of the
AES algorithm [8–10].

The Field Programmable Gate Array (FPGA) represents the ideal platform for implementing the
ciphering algorithm to ensure the network security; however, the implementation of high throughput
encryption/decryption algorithm is a challenge, given the limited resources of the considered platform;
therefore, the development of resource-efficient AES encryptor/decryptor on the FPGA platform is
crucial, as described above. The (Inv)SubBytes (Sbox) phase significantly affects the performance
of the whole encryption algorithm; therefore several approaches are developed for reducing the
computational load and resource, such as Composite Field Arithmetic (CFA) and look-up table (LUT)
methods [1].

The communication networks are usually arranged into four sections, namely radio access network
(RAN), core network, transport network and interconnection network; concerning the network security,
the supported network planes (signal, user and management ones) are exposed to different threat
typologies. Specifically, the network threats are classified in passive network threats and active network
ones; the first ones are aimed to intercept the traffic sent on the network, whereas the second type
includes all the attacks in which the execution of commands is involved to disturb the communication.

The introduction of the 5G technology signs the beginning of new concepts also in terms of
network security, such as the International Mobile Subscriber Identity (IMSI) encryption while it is
transmitted through the network, protecting it from external attacks. Furthermore, the 5G enables
the extension of security mechanisms employed in the cellular networks to other wireless networks,
ensuring the protection of the smart devices and stored data, a concept called “home network control.”
In this contest, the standardization is fundamental in order to guarantee full compatibility with the
different networks present around the globe.

As well known, the most widespread encryption algorithms for 5G and in general, for high
throughput applications, are the AES, SNOW 3G and ZUC ones [11,12]; the AES algorithm is very
robust against multiple attacks, such as the brute-force, linear and differential ones. However, the AES
algorithm requires hardware acceleration methods to reduce the execution time in the downlink,
keeping low the area and energy requirements for mobile devices. On the other hand, the SNOW
3G, updated into a faster version called SNOW-V, complies with all the requirements of 5G, ensuring
security, performance and flexibility. It is a word-based synchronous stream cipher, developed by
Thomas Johnasson and Patrik Ekdahl at Lund University and works on 32-bit words and 128-bit
(or 256-bit) keys; the algorithm is based on the combination of Finite State Machine (FSM) and Linear
Feedback Shift Register (LFSR), where this last determines the next state of the FSM. The ZUC is a
stream cipher designed by the Data Assurance and Communication Security Research Center (DACAS)
of the Chinese Academy of Sciences. The cipher forms the core of the 3GPP mobile standards 128-EEA3
(for encryption) and 128-EIA3 (for message integrity). It was proposed for inclusion in the Long Term
Evolution (LTE) or the 4th generation of cellular wireless standards (4G). ZUC is a word-oriented
stream cipher, taking a 128-bit initial key and a 128-bit initial vector (IV) as inputs and providing
as output a keystream of 32-bit words (called keywords). This keystream can be used for both
encryption/decryption phases. The ZUC algorithm has better resistance compared to the SNOW 3G
one against specific attacks, such as guess and deterministic ones, also showing a good flexibility in
balancing high throughput and consumed area [13].

This research work proposes a high-throughput implementation of the AES-128 algorithm
properly designed for a custom, very short-range and high-frequency communication system, called
Wireless Connector; in particular, this system was thought for high-throughput data transmission
on the frequency range around the 60 GHz between two mobile stations located at short range



Electronics 2020, 9, 1665 3 of 30

distance (1–10 m). A demonstrator of the Wireless Connector has been realized employing an FPGA
platform for performing the main tasks related to the communication, the base-band elaborations,
coding/decoding and the encryption/decryption phases. For these aims, the potentialities of the
FPGA, in terms of high-performance, low cost and development time, as well as re-configurability,
have been exploited [14,15]. Due to their great flexibility and wide applicability, FPGA platforms
are used on a wide range of application fields, such as video and imaging processing, military
applications, automotive, electronics for specialized processing and more. They are particularly useful
for prototyping Application-Specific Integrated Circuits (ASICs) or processors.

As known, the AES-128 stands out for robustness, efficient occupation of the logical cells for
the execution of the various operations and for being relatively computationally light, making it the
optimal choice to satisfy all requests of the project [16–18]. For instance, the time required to attack
the AES-128 algorithm and then to recover the key, is extremely high (∝ 2126 operations); for the
US government, it is considered sufficient for documents classified as secret, whereas, for top-secret
documents, the AES-192 or AES-256 algorithm is required.

The development of the AES-128 algorithm has been carried out employing the Zynq
Ultrascale+MPSoC ZCU102 platform (manufactured by Xilinx, San Jose, CA, USA), based on
Zynq Ultrascale+ XCZU9EG-2FFVB1156E MPSoC (Multiprocessor System-on-Chip), which combines
a powerful Processing System (PS) and Programmable Logic (PL) Ultrascale architecture into a
single device. The proposed implementation of the AES-128 employs multiple elaborations of the
incoming data packets for complying with the 3 Gbit/s data rate constraint (with a maximum value
of 28 Gbit/s) required by the Wireless Connector application, thus imposing an upper limit on the
time interval between successive packets equal to 42.67 ns. The proposed AES-128 implementation
employs a pipelined approach in the round-based elaboration of the AES algorithm, consisting of
in "assembly-line"-type processing, in which a new plaintext data packet is acquired, as soon as
the simultaneous elaboration of the ten rounds on the previous data packets is completed (i.e., the
corresponding FPGA logic section is available to be used). In this way, the round’s processing on
successive plaintext packets is carried out simultaneously during each clock period, with better
exploitation of the allocated resources and so reaching higher data throughput.

Also, the developed AES implementation employs a Sbox containing 256 elements of 32 bits
each, instead of 8 bits of the standard implementation, thus obtaining the encrypted data packet in a
shorter time interval (only 10 clock periods) but requesting a greater area occupation on the FPGA.
As demonstrated below, the developed encryption system can support a maximum clock frequency of
220 MHz and is featured by an encryption time of only 10 clock periods; however, it is able to process
and provide the encrypted packets each clock period (namely, 4.54 ns = 1

220 MHz ), thus obtaining a

maximum data throughput higher than 28 Gbit/s (i.e., 128 bit/packet
4.54 ns = 28.16 Gbit/s).

Besides, a fast algorithm for the key expansion has been implemented, based on the combination,
by GF operations, of the previous sub-key with the current sub-key modified by the Sbox; in this
way, the key expansion operation is completed in only 174.55 ns, obtaining the 44 words from the
main key. The results above described have been obtained also thanks to the latest-generation FPGA
platform (Xilinx ZCU102 board) used to implement the encryption/decryption system, featured by high
performances, large memory capabilities and a wide set of peripherals [19]. Furthermore, the developed
encryption/decryption block implements all the control signals required to synchronize its operation
with the data generator block and the modem, placed upstream and downstream from it, respectively.
Besides, several blocks have been implemented to test the operation of the encryption/decryption
block, by deterministically inserting an error inside a known-plaintext data packet and detecting the
error in the encrypted/decrypted packet, notified by a proper error signal. Also, a proper mechanism
to change the encryption key during the operation of the encryption system has been implemented,
resulting in just three packets lost during the replacement process, as described in Section 3.

The following text is organized as follows: the Section 2 includes a literature analysis about
high throughput implementation of encryption/decryption algorithms based on FPGA platforms;
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furthermore, the demonstrator of the Wireless Connector, based on the Xilinx ZCU102 platform,
is described, demonstrating its proper operation. In the Section 3, the VHDL (acronym of
VHSIC-Hardware Description Language, VHSIC means Very High Speed Integrated Circuits) blocks to
implement and test the encryption and decryption algorithms are carefully described; also, the results
related to the performances of the proposed custom AES-128 encryption/decryption algorithm are
presented, in terms of encryption/decryption time, resource utilization and complexity. In the Section 4,
the discussion on the obtained results are reported, also solving with clock routing issues; furthermore,
in this section, the tests of the combined encryption/decryption system, after the loading on the ZCU102
board, are presented. Finally, the comparison of proposed AES-128 implementation with other similar
works reported in the scientific literature is reported.

2. Materials and Methods

2.1. Fundamentals of the AES-128 Encryption/Decryption Algorithm

The AES algorithm is a block cipher at the bit level, like the Data Encryption Standard (DES), where
each block length is fixed to 128 bits, whereas the key length can be equal to 128, 192 or 256 bits [20].
Each 128-bit data block is partitioned into 16 bytes, mapped on a 4 × 4 array named state, and each
byte of the state corresponds to an element of the Galois Field (GF) with 28 cardinality. Based on the
key length, the algorithm includes n iterations, called rounds, where n is 10, 12 or 14 when the key
length is 128, 192 or 256 bits, respectively. Each round of the encryption process, except for the last one,
consists of four operations:

• Substitute Bytes
• Shift Rows
• Mix Columns
• Add Round Key

All the operations are carried out sequentially within each round, except for the initial Add Round
Key; in the last round, the Mix Columns operation is not performed (Figure 1).

The Substitute Bytes step is a non-linear transformation, where each byte in the state array is
replaced with the entry of a fixed 8-bit Substitution Box (Sbox) implemented as a lookup table with
28 words of 8 bits each, used to hide the relationship between the key and the cipher-text. The used
Sbox is derived from the multiplicative inverse over GF

(
28

)
, combined with an invertible geometric

transformation, to avoid attacks based on simple algebraic properties, obtaining a 16 × 16 bytes table
(Figure 2). The permutation is obtained addressing the Sbox locations based on the most significative
nibble and the less significative one of the 8-bit input data.

The Shift Rows step operates on the rows of the state array, circularly shifting the bytes in each
row by a given offset. The first row is left unchanged, whereas each byte of the second row is shifted
one position to the left; likewise, the third and fourth rows are shifted respectively by two and three
bytes to the left. The Mix Columns step is a linear transformation mixing the column of the state
array; each column, treated as a polynomial over GF

(
28

)
, is multiplied, modulo z4 + 1, with a fixed

polynomial (i.e., c(z) = 03z3 + 01z2 + 01z + 02). Both the Shift Rows and the Mix Columns operations
are needed to hide the relationship between the cipher-text and the plain text.
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Figure 2. Sbox involved in the Substitute Bytes transformation.

In the Add Round Key step, the key is combined with the state array to make the cipher safer;
for each round, a subkey is derived from the expansion of the main key, obtaining, at the end of the
encryption process, an expanded key of 176 bytes, arranged in a linear array of 44 words (using a key
length of 128-bit). After the initialization of the word array (W[i] for 0 ≤ i ≤ 43), by inserting the key in
the first four words, the other ones are obtained using the following relation:

W[i] = W[i− 1]⊕W[i− 4]. (1)

A particular exception is made for the words with index multiple of four, for which, non-linear
relationships, different from bit-to-bit XOR are used:

Subword(Rotword(w[i− 1])) ⊕Rcon[i/4], (2)

where the Subword sub-function replaces each byte of the word, provided as argument of the
function, using the Sbox, whereas the Rotword sub-function simply shifts one byte to left; furthermore,
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the function Rcon[i] is a round constant, represented by the word array
[
xi−1, {00}, {00}, {00}

]
, where

xi−1 is the (i − 1)-th exponentiation operator in GF(28).
The encryption and decryption procedures employ two different algorithms; nevertheless, each

operation in the encryption process corresponds to an inverse equivalent one in the decryption process.
However, both are arranged in 10 rounds and both perform the Add Round Key step in the same way.
Thus, each round of the decryption process consists of the following operations:

• Inverse Sub Bytes
• Inverse Shift Rows
• Inverse Mix Columns
• Add Round Key

A further difference between the encryption and decryption processes is the order of functions
performed within a single round; in the decryption process, the first step is the Inverse Shift Rows,
followed by Inverse Sub Bytes, Add Round Key and finally Inverse Mix Columns. In particular, the
Inverse Shift Rows cyclically shift to the right by the same offset of the Shift Rows step but in the
opposite direction.

To invert the Mix Column operation, the Inverse Mix Columns step employs the corresponding
inverse matrix. The 4-byte columns of the state array are multiplied for the inverse 4 × 4 matrix
featured by constant entries for producing the output bytes; all operations involved in the matrix
multiplication are performed in GF

(
28

)
or equivalently by multiplying each column, modulo z4 + 1,

with a fixed polynomial b(z) = 0Bz3 + 0Dz2 + 09z + 0E, where b(z) = c(z)−1mod
(
z4 + 1

)
and c(z) is the

polynomial used in the Mix Columns step of the encryption.
The Inverse Substitute Bytes function is carried out similarly to the Substitute Bytes but using a

different Sbox (Figure 3), obtained applying the inverse affine transformation to the Sbox followed by
the multiplicative inverse in GF

(
28

)
.
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Since the encryption and decryption operations are not the same, a significant disadvantage
from the implementation point of view is obtained; however, there is an equivalent version of the
decryption algorithm, which involves the inverse functions in the same order as the encryption
algorithm. In particular, since the Inverse Shift Rows step changes the sequence of the bytes of the state
array, leaving the content unchanged, whereas the Inverse SubBytes step changes the content but not
the sequence of the bytes, their order has not relevance anymore, thus it can be exchanged. Moreover,
the Add Round Key and Inverse Mix Columns transformations, considering the key as a sequence
of words, both operate on the state array, column by column; therefore, the Inverse Mix Columns
operation can be applied to the phase key W[i], before adding it to the current state array, so obtaining
the data packet decryption with the same sequence of operations of the encryption algorithm.
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2.2. Implementation of Encrypting/Decrypting Algorithms With FPGA Platforms

In Reference [21], the authors proposed an inexpensive, low area and high throughput hardware
implementation of the Advanced Encryption Standard algorithm (AES) for low-cost embedded
applications, using a 128-bit key for both encryption and decryption, employing parallel operation
in the folded architecture. The hardware selected for the implementation is the Virtex-6 XC6VLX75T
FPGA device. In the folded architecture, the 128-bit blocks of input data are divided into four sub-blocks
of 32-bit each and all the operations are performed sequentially. Due to the inefficiency of this method,
along with the folded architecture, parallel computing is required to speed-up the algorithm execution.
The experimental results reveal that the algorithm can achieve a 37.1 Gbit/s data throughput with a
maximum clock frequency of 505.5 MHz.

C. Guzmán et al. proposed a hardware implementation of the AES 128-bit algorithm with a
pipelined architecture, working on two non-feedback modes of operation, namely Encoded Code-Book
(ECB) and Counter (CTR), using a Xilinx Virtex 5 FPGA platform [22]. They compared the two
operation modalities in terms of resource utilization, throughput and robustness. The results revealed
that the CTR mode is more convenient than ECB one in terms of level security and area efficiency.
The proposed architecture reaches a clock frequency of 272.59 MHz corresponding to a throughput of
34.89 Gbit/s.

A triple key AES algorithm is presented in ref. [23]; such a framework requires 128 bits plaintext
input and 3 keys for combining the ciphertext. These lasts are combined by a common xor function
and, the resulting key is provided along with the plaintext to an "add round key" block, where they
are combined by xor function; afterward, the obtained data block and the combined key are sent in
input to a 128 AES encryption block for obtaining the cipher data (Figure 4). The proposed algorithm
was optimized, thus obtaining 867.34 Mbit/s maximum throughput, with a resource utilization of 3402
Configurable Logic Blocks (CLBs), 27,787 LUTs and 385 Input/Output Blocks (IOBs). By comparing the
proposed algorithm with other Xilinx devices, a 15% increase in throughput and a lower processing
delay were obtained.
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In ref. [24], A. Gopalan et al. described the development and implementation of an AES algorithm
on a FPGA platform (Xilinx XC6SLX16), comparing the designed infrastructure with a correspondent
software implementation. The developed encryption block required 10 clock cycles for processing each
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data block, thus corresponding to 100 ns processing time since the clock frequency is equal to 100 MHz.
Instead, the decryption block took 11 cycles (i.e., 110 ns), since an initial overhead is required. The two
main figures of merit used to evaluate the algorithm performance are the throughput (in Equation (3))
and latency (in Equation (4)):

T =
128 ∗ fclk

block_per_cycle
(3)

Lat =
10 ∗ stages_per_round

fclk
, (4)

where block_per_cycle is one for a fully-unrolled architecture, whereas it becomes greater than one if the
round output is re-used to elaborate the single input; stages_per_round is the number of clock cycles to
process a single round.

C. P. Fan et al. described a high-speed 128-bit AES encryption module both in sequential and
fully pipelined architectures, including a Content Addressable Memory (CAM)-based architecture
used to realize pipelined high-speed SubBytes and InvSubBytes blocks, a hardware-sharing solution
to carry out a high-speed MixColumns operation and a real-time key generation scheme to realize
the AddRoundKey block [25]. The latter generates 128-bit keys for both encryption and decryption
processes from the encryption key segmented into four 32-bit blocks and stored into different registers.
The last register output (named d register) is dispatched to ROT (shift of bytes), S-box and RCON
(XOR operation) blocks. The SubBytes and InvSubBytes operations were implemented by applying a
CAM-based architecture, providing as output the data lines value obtained from several register arrays
placed both between and inside the AES round computations, according to the matched address line
data. Also, the MixColumns and the InvMixColumns operations were carried out by means of the
row mapping permutations, based on two corresponding polynomials matrix. To reduce the resource
utilization, the InvMixColumns polynomials matrix was decomposed into three different matrices for
highlighting the hardware sharing of the two operations; in this way, a high-speed shared circuit for
implementing the two transformations was derived. The AES module, implemented on the Xilinx
XC2V3000-6 FPGA platform, reached in the sequential architecture a data throughput value up to
0.876 Gbit/s with a clock frequency of 75.3 MHz, both in the encryption and decryption phases. Instead,
the proposed fully pipelined AES architecture obtained 28.4 Gbit/s throughput with an operating
frequency of 222.2 MHz in the encryption phase.

In ref. [26], the authors proposed high-performance hardware implementation of the Data
Encryption Standard (DES) encryption algorithm, with a 16-stage pipelined architecture, operating
in CTR mode, on a Xilinx Virtex XCV1000-4 BG560 FPGA platform. In the proposed architecture, an
initial delay of 16 clock cycles is required to instantiate the functional block, where are included the key
expansion function, the Sbox function and the Pbox function; then, at each clock cycle, fixed-length
clusters of data are loaded into this block along with different keys, so allowing the use of multiple keys,
one for each of the 16 rounds of the DES algorithm. The major contribution was a parameterizable key
scheduling method, where the sub-keys are pre-computed and distributed to the functional blocks of
each round; furthermore, a skew core controls the availability overtime of the sub-keys to the different
function blocks, delaying their generation by the needed time amount. The results showed that the
proposed architecture achieves an encryption rate of 3.87 Gbit/s, guaranteeing a low area utilization
with only 6446 CLB slices used.

P. Chodowiec et al. proposed a compact implementation of the 128-bit AES algorithm on the
inexpensive Xilinx II XC2S30 FPGA, using a folded architecture and achieving good performance and
low area utilization [27]. The folded architecture described is the same reported in ref. [21], nevertheless,
the authors have introduced a new approach for implementing MixColumns and InvMixColumns
functions using shared logic resources. This architecture requires only 222 CLB slices and 3 blocks of
RAM, supporting a maximum throughput of 166 Mbit/s.

In ref. [28], the authors developed and evaluated hardware implementations, based on various
FPGA devices, of the DES encryption algorithm, introducing several pipelined architectures that stand
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out for power consumption, resource utilization and throughput; the most significant ones are an
8-stages pipelined architecture and a 37-stages pipelined architecture. In the first one, two rounds
at a time are collapsed into one stage and the output is saved into two intermediate registers of the
next stage, up to a total of 8 stages; instead, in the second proposed solution, the authors developed a
37-stages pipelined DES architecture, previously reported in ref. [29] but optimized by reducing the
utilization of resources by joining the logical operations by means of a processing block with 4 inputs
and 1 output. The second architecture was improved by removing the redundant E (Expansion) and
R (Reduction) boxes from the original design. With such modifications, the authors were able to
increase the throughput by a 1.1 factor compared to the original design, reaching 40 Gbit/s using a
Kintex7 platform. Regarding the proposed 8-stage pipelined implementation, a significant reduction of
resources utilization (of a 0.75 factor) and power consumption (of a 0.65 factor) compared to a similar
16-stages pipelined design was demonstrated.

As above described, a LUT-based solution has been used to implement the Sbox in the proposed
AES algorithm, which is not an optimal solution for area-limited hardware but offers better performances
in terms of data throughput compared to other solutions, for instance, based on combinatorial logic,
aimed to minimize the resource utilization, as demonstrated in Reference [30]. In this context,
in Reference [31], the author proposed an overview of the different strategies to implement compact
Sbox function, based on both polynomial and normal bases. Furthermore, they introduced a compact
Sbox implementation based on a multi-level representation of GF operations, obtained properly
selecting a particular basis (isomorphism) and making appropriate improvements to the circuital
solution. The proposed solution has demonstrated improvements of 20% compared to the most compact
Sbox implementation reported in Reference [32]. Besides, T. Good et al. proposed two new FPGA
implementations of the AES algorithm [33]; the first one, implemented on Xilinx Spartan-III (XC3S2000)
FPGA, relies on fully parallel loop unrolled architecture, reaching a 25 Gbit/s data throughput value.
The latter, implemented on Spartan-II (XC2S15) FPGA, is based on state data and LUTs to carry
out the AES operations, such as Substitute Bytes and Mix Columns, combined into a single matrix,
called “T-box”; this implementation is featured by low area utilization, achieving 2.2 Mbit/s maximum
throughput. The Sbox implementations proposed in these works can be applied to our solution to
significantly reduce the used hardware resources but probably reducing the maximum throughput,
representing the main prerogative of the Wireless Connector communication system.

2.3. Description of the “Wireless Connector” System’s Demonstrator and Relative Communication Tests

In this sub-section, the preliminary demonstrator of the Wireless Connector system is presented,
which includes two PEM003 RF radio modules (manufactured by Pasternack, Irvine, CA, highlighted
with red box), interfaced with the base-band hardware consisting of Zynq Ultrascale+ MPSoC ZCU102
platform (manufactured by Xilinx, San Jose, CA, USA, highlighted by the yellow box), an ADFMCDAQ2
acquisition board (manufactured by Analog Device, Norwood, MA, USA, highlighted by the purple
box), four power splitter combiners (model ZFSCJ-2-4+, manufactured by Mini-Circuits, Brooklyn,
NY, USA, highlighted by the green box), four pre-DAC anti-alias low-pass filters (model VLFX-300,
manufactured by Mini-Circuits, highlighted by the orange box) and a personal computer for the system
management (highlighted by the blue box).

The ADFMCDAQ2 acquisition board includes a dual-ADC (model AD9680, manufactured by
Analog Device) featured by 14-bit resolution 1.0 Gsps sample rate and with JESD204B interface and also
a 16-bit resolution quad-DAC (model AD9144, manufactured by Analog Device), featured by 2.8 Gsps
sample rate and JESD204B interface; furthermore, a clock generator is placed onboard by employing a
14-outputs AD9523-1 low jitter IC (manufactured by Analog Device), along with components for the
power management.

The Pasternack’s PEM003 development kit consists of a transmitter (Tx) and a receiver (Rx)
module, operating at a frequency band around 60 GHz, supporting complex modulations through
a pair of modulation signals I and Q. Each module is equipped with a USB interface, for setting the
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main parameters by connecting it to a PC but also ensuring its power supply. The baseband I and Q
signals are applied to the input of the Tx module or available at the output of the Rx module, through
the Micro Coaxial Connector (MCX) placed on the back of each board; the obtained signals are in the
differential format (i.e., I+ and I−, Q+ and Q−). The 60 GHz section terminates with two Tx and Rx
antennas connected to the UG-385/U flange which acts as an interface with the WR-15 waveguide.
A reference design based on an embedded microprocessor system (uBLaze Xilinx) has been used to
characterize the ADC/DAC devices. By using the internal logic resources of the FPGA device, the
embedded MicroBlaze processor is generated by employing the Vivado/SDK design tool. The drivers
for the management of the Ethernet protocol, a UART interface for the information exchange and
system management and an external DDR memory for the management of user data are directly
connected to the MicroBlaze processor.

The reduced performance of the acquisition board and the logical resources of the FPGA device
allow the installation of the Quadrature Phase-Shift Keying (QPSK) modulator-demodulator with
low-performance Forward Error Correction (FEC) modules (e.g. Reed-Solomon). In Figure 5,
a functional scheme of the system described above is provided, whereas in Figure 6 the realized
experimental setup to perform the 60 GHz communication tests is shown, supporting a data-rate up to
3 Gbit/s, constraint previously defined for the whole 5G communication system.
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Figure 6. Picture of the experimental setup using the Zynq Ultrascale+MPSoC ZCU102 platform
baseband system interconnected to the PEM003 radio system, operating in QPSK modulation.

The QPSK modulation is carried out by generating the I(t) and Q(t) coefficients, to be sent to the
two quadrature mixers, where they are mixed with the carrier signal (I(t)) and the latter phase-shifted by
90◦ (Q(t)), respectively, both produced by the modem block. A representation of the modulated signals
can be made on the complex plane, obtaining four symbols which constitute the QPSK constellation
(as shown in Figure 7).
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Figure 7. Graphic representation of the QPSK constellation related to the received signals, using the
Analog Devices software tool IIO Oscilloscope.

The QPSK demodulation is based on the principle of coherent demodulation, which requires
an appropriate reconstruction of the base-band symbols. The ADC component included on the
ADFMCDAQ2 acquisition board provides the samples of the received I(t) and Q(t) signals, subsequently
processed by First-in First-Out (FIFO) systems for modifying the data-flow on 64-bit registers at a
500 MHz frequency. These data are sent to a threshold decision-maker block for reconstructing
the symbols on the receiver side. The constellation of received symbols (Figure 7), with 500 Ms/s
symbol rate corresponding to 1 Gbit/s (but extendable up to 3 Gbit/s, as previously reported), has been
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displayed through a software application (Analog devices IIO Oscilloscope) for extrapolating the
transmitted symbol, processed by FPGA and sent to the PC via the UART port.

3. Results

3.1. Description of the VHDL Blocks Implemented for the AES Encryption/Decryption Algorithm

The VDHL block developed for implementing the encryption algorithm is shown in Figure 8
(red box); it accepts the plaintext in input and provides the ciphertext in output, both arranged into
128-bit blocks, via the AXI Stream bus.
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and for testing it.

The source files implementing the encryption block are shown in Figure 9; the first four files are,
AES_AXIS_KEY_v1, AES_AXIS_KEY_v1_0_S00_AXIS_inst, AES_AXIS_KEY_v1_0_S01_AXI_inst and
AES_AXIS_KEY_v1_0_M00_AXIS_inst, related to the implementation of the communication between
blocks, through AXI Bus Stream and AXI Lite; instead, the last two files contain the code for performing
the encryption algorithm, namely aes_encoding_block and cipher_key_expansion_block. The portion
of the firmware, contained in cipher_key_expansion_block, dealing with the expansion of the key is
shown in Figure 10, which performs the necessary operations to obtain the 44 words to make up the
10 sub-keys, used during the encryption rounds. Also, the start of the key expansion routine, whenever
a new key is validated by the processor, has been implemented using the expansion_key_start signal;
in order to obtain all the 44 words of the expanded key, only 174.5 ns are required.

As can be seen, the 44 words, constituting the sub-keys, are obtained by carrying out xor operations
between the 32-bit sections of the subkey at the previous round.
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Figure 10. Code section used to generate the 10 subkeys, for encrypting the 128-bit plaintext data packets.

A Sbox matrix is employed to expand the key (Figure 11); as mentioned above, each element of the
Sbox consists of 32 bits, instead of 8 bits, so allowing the algorithm to perform the related operations
and thus obtaining the encrypted data packets, in a shorter temporal interval but with greater resource
utilization of the FPGA device. This LUT-based solution was preferred over solutions that implement
Sbox through GF operations, as those reported in References [31,33], because the main prerogative of
the Wireless Connector is the operating speed rather than hardware resources utilization, given the
wide memory capability of the employed FPGA platform; as known, LUT-based Sbox solutions offer
better performances in terms of processing time to the detriment of area occupation, as demonstrated in
Reference [30], thus affecting the Substitute Bytes step, the most critical operation in the AES algorithm
but also the key expansion step in the proposed implementation.

Once the 10 sub-keys are obtained, the algorithm carries out the 10 rounds required by the AES-128
and implemented in the aes_encoding_block source file, which receives in input the sub-keys and the
plaintext and carried out the steps required to encrypt the plain text (Figure 1).
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In the first round, the xor operation between the plaintext and the cipher_key_table is carried out,
which contains the unexpanded encryption key (round_0 in Figure 12).
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Figure 12. Code Section related to the first round (called round_0) of the AES-128 algorithm.

Afterward, the algorithm, using the intermediate data generated by the first round, proceeds with
the following 9 rounds required by the AES-128, performing in each round the Substitute Bytes, Shift
Rows, Mix Columns and Add Round Key operations (Figure 13a). These operations are iteratively
applied to the intermediate data obtained from the previous round, updated until the ninth round
(Figure 13b). The data obtained after this iteration, called intermediate_data (9), is provided to
round 10 for the last Add Round Key operation and the resulting ciphered data is stored into 128-bit
out_cipher_data packet (Figure 14).
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Figure 14. Code section related to the Add Round Key carried out in the last round (called round_10)
of the AES-128 algorithm.

By saving the results of each round (i.e., intermediate_data(i), i = 1, . . . , 9), a pipelined
implementation can be obtained, carrying out simultaneously the 10 rounds on successive data
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packets, thus allowing to start the processing of a new packet as soon as the round’s processing on the
previous ones is completed. Therefore, simultaneous processing on multiple packets is performed,
thus allowing better exploitation of the used hardware resources, so reaching higher data throughput.
As below reported, the proposed AES implementation takes only a clock period to complete the round’s
processing, allowing to provide an encrypted data packet for each clock cycle.

To test the correct behaviour of the implemented algorithm, a word generator, called
Data_Generator (green box in Figure 8), has been included in the tool offered by Vivado IP INTEGRATOR
for simulating the presence of the ethernet module, that provides 128-bit data packets at the input
of the encryption block, every 42.67 ns, via the AXI Stream bus. Instead, to insert and store the key,
an external block called Key_generator (purple box in Figure 8) and a memory block with 4 registers
of 32-bit each have been employed, connected via AXI Lite bus, so allowing the user to update the
key at any time. A Key_to_write block (orange box in Figure 8) writes the 4 words of the key (32 bits
each) in 4 registers, created during the AXI Lite bus implementation phase, asynchronously to the
processor, allowing the substitution of the encryption key during the normal operation of the algorithm.
Therefore, if the key in the registers is not changed, the algorithm performs the data encryption,
otherwise, if it differs from the current key, the expansion_key routine starts and the 10 sub-keys of the
new main key are generated.

The switching to a new key is enabled when the processor deems it appropriate by setting a bit
of an additional byte transmitted via the AXI Lite bus, stored in an additional 32-bit register, named
key_valid. The algorithm queries this bit every 42.7 ns and if it detects that its value is set high,
it reads the key stored in the registers and starts the key expansion routine; at the same time, the
value of the enabling bit is reset for indicating to decryption block the changing of the encryption key.
The developed key substitution mechanism represents an important functionality for the Wireless
Connector since a periodic key change is required, for guaranteeing the security of the data exchanged
between the two mobile stations constituting the communication system.

The correctness of the encrypted data packets is verified by a Pattern_Verificator block (blue box
in Figure 8), connected to the encryption block via the AXI Stream bus; this last simulates the presence
of the modem and contains a table with encrypted data packets corresponding to the plaintext data
packets provided at the input of the AES_TEST_AXI block by the Data_Generator block. It compares the
packets received from the AES_TEST_AXI block with those contained in the table; if the data received
is the same as that in its table, the encryption has been successful, otherwise, an error has occurred.
To verify the correct operation of the algorithm, an Insert_Error block (pink box in Figure 8) has been
implemented to change a bit in the 128-bit plaintext packet, thus verifying the presence of any errors
by the Pattern_Verificator. When an error is detected, this last set the error_sig bit in correspondence
with the encrypted data packet that does not match the stored ones in the Pattern_Verificator table.
The CLOCK block (yellow box in Figure 8) provides the clock to all the blocks with a frequency of
350 MHz. To synchronize the Pattern_Verificator with the encryption block, an impulse is generated
to indicate the end of encryption and the availability of a new encrypted data packets at the output
of the AES_AXIS_KEY block; this signal is associated to the m00_axis_tvalid pin of the AXI-Strem
bus. Besides, two other signals have been implemented, namely a support flag and a signal indicating
the packet of the Data_Generator table provided to the input of the encryption block, allowing the
Pattern_Verificator to keep track of the packets sent and to associate them to the corresponding entries
in its internal table.

Furthermore, an external signal has been defined, called s00_axis_tvalid, which indicates, through
an impulse, to the encryption block the availability of the packets at the input, enabling the immediate
acceptance of new data packets. To optimize the algorithm and to reduce the execution time, the
plaintext packets are acquired on the falling edge of the clock signal, thus allowing to start with the
encryption process in advance, so gaining 1.42 ns corresponding to half of the clock period.

The modem, located downstream of the encryption block and simulated by the Pattern_Verificator
block, works with 64-bit data packets; therefore, the encrypted packets have to be serialized in 64-bit
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packets each, determining some latency and timing problems. Therefore, the m00_axis_tready signal,
provided by the AXI Stream bus, has been implemented for indicating to the encryption block, when the
Pattern_Verificator is available, to accept new packets. When the signal is set, the algorithm accepts the
packets in input and performs the encryption process; otherwise, if it is reset, the algorithm stops and
waits for the signal to return high. Instead, the m00_axis_tvalid signal indicates to Pattern_Verificator,
that a new encrypted data packet is available at the output.

In Figure 15, the temporal trends of the signals involved in the developed encryption algorithm
are shown; the s00_axis_tvalid signal is generated on the falling edge of the clock, whereas encryption
of plaintext data packets starts on each rising edge of the clock. Also, to consider the case in which
the s00_axis_tvalid signal is set to zero, the last two packets are made available using two impulses
randomly spaced. Therefore, the algorithm accepts the plaintext data packets to perform encryption
and provides the corresponding encrypted data packets after an interval of 28.560 ns. From the above
considerations, the developed algorithm can supply 128-bit encrypted data packets every 2.856 ns
(equal to the clock period), so obtaining, for a 350 MHz operating frequency, a throughput value of
44.8 Gbit/s.
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Figure 15. Temporal trends of the signals involved in the encryption algorithm, with the plaintext data
packets encrypted on each rising edge of the clock, as indicated by the s00_axis_tvalid signal set to
one and the last two packets made available using two impulses spaced randomly over time (yellow
box); each encrypted data packet is available at the output after 28.560 ns (10 system clock periods at
350 MHz frequency), as indicated by the m00_axis_tvalid signal (orange box).

The temporal trends related to the expansion of the key are shown in Figure 16, previously
stored in the registers in an instant chosen by the user and validated through a signal provided by
the processor. During the expansion of the key, which lasts 174.55 ns, the m00_axis_tvalid signal is
reset indicating that no valid encrypted packets are provided from the encryption block. The error_sig
signal is set in correspondence to the key change because the table related to the new key is considered,
whereas the packets are still obtained with the old key; the signal returns to zero as soon as the
encrypted packets are obtained through the new key.

The implementation of all the control and synchronization signals, above described, is one of the
main contributions provided by the proposed work, fundamental for the correct operation of the whole
encryption/decryption system, ensuring correct interoperability of the developed encryption/decryption
block with the other sections of the Wireless Connector system.
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Figure 16. Temporal trends of the key expansion phase; the m00_axis_tvalid (orange box) signal
indicates that during this phase there are no valid packets at the output of the encryption block;
the signal that error_sig signal (yellow box) returns to zero as soon as the encrypted packets are obtained
through the new key.

Afterward, the VHDL block implementing the correspondent decryption algorithm, called
AES_128_DEC (red box in Figure 17), has been developed, along with the blocks employed to test it,
reproducing an operative scenario similar to that present in the final application.
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Figure 17. Overall scheme containing the VHDL blocks for both implementing the decryption algorithm
and testing it, reproducing the operative scenario of the final application.

The decryption algorithm has been implemented, as well as the encryption algorithm, parallelizing
many logical instructions on each rising edge of the clock; similarly to the encryption algorithm,
a Sbox matrix was used, consisting of 256 elements each of 32 bits. In Figure 18, the source
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files used to implement the code performing the decryption are shown; the first four files,
AES_128_DEC_v1_0, AES_128_DEC_v1_0_S00_AXIS_inst, AES_128_DEC_v1_0_S01_AXI_inst and
AES_128_ DEC_v1_0_M00_AXIS_inst are related to the implementation of the communication between
blocks by the means of AXI Bus Stream and AXI Lite. The files containing the code developed to perform
the AES-128 decryption algorithm are the last two shown in Figure 18, named aes_decoding_block and
cipher_key_expansion_block.
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Figure 18. Source files used to implement the code performing the decryption process.

In the cipher_key_expansion_block file, the code to implement the key expansion has been
implemented, to generate the 10 sub-keys employed during the decryption process; to expand the key,
the same matrix used for the encryption process is deployed (called sbox_encoding_4). The 10 rounds
for obtaining the plaintext data packets are implemented within the aes_decoding_block source file
and the rounds are developed in the same way, as done for the encryption operation.

In each round, the InvSubBytes, InvShiftRows and InvMixColumns operations are combined
to obtain the plaintext data packets. These operations are carried out by using the four 16 × 16
32-bit matrices, called sbox_decoding_0, sbox_decoding_1, sbox_decoding_2 and sbox_decoding_3,
equivalent to operations of the AES decrypting algorithm; in particular, the xor operations between
the intermediate data obtained during the different rounds of decryption algorithm and elements of
these matrices are carried out (Figure 19). These matrices allow obtaining the plaintext data packets in
only 10 clock periods, considerably reducing the necessary time to perform the decryption process;
however, greater resource utilization of the FPGA device is required.
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The developed decryption algorithm provides the plaintext data packets, at the output of
the AES_128_DEC block, in just 28.560 ns for 350 MHz clock frequency, thus obtaining the same
maximum data-rate as the encryption algorithm (i.e., 44.8 Gbit/s). Similarly to the encryption algorithm,
the s00_axis_tvalid signal, provided by the Cipher_Data_Generator block (green box in Figure 17),
indicates that the encrypted data packets are available for the decryption; the plaintext data packets
provided at the output of the decryption block are reported by the m00_axis_tvalid signal, as depicted
in Figure 20.
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Figure 20. Temporal trends related to the decryption phase; the time interval required to obtain
the plaintext data packet from the encrypted data packet is highlighted by time markers applied to
s00_axis_tvalid (yellow box) and the m00_axis_tvalid (orange box) signals.

The developed decryption block receives the new key and stores it in four 32-bit registers; the key
is validated setting the bit of the key_valid register, used for this purpose. The algorithm checks this
bit every 85.6 ns and if it is set, the new key is acquired and the flag bit is reset, thus communicating to
the processor that the change of the key has been received; afterward, the expansion key routine starts.
During this process, the m00_axis_tvalid signal is reset indicating that no valid decrypted packets are
available. This operation requires 205 ns, 177 ns more than the 28.56 ns needed to provide the first
valid decrypted packet for the new validated key.

To verify the correctness of the decrypted data packets and to check the sensitivity of the
implemented algorithm in detecting errors, the Insert_Error block (pink block in Figure 17) has been
implemented, similar to those implemented in the encryption algorithm; the sig_error signal triggers
the change a single bit in the input word and verify that the Pattern_verificator block (blue block in
Figure 17) detects the error; when it detects the error, the error_sig bit is set in correspondence with the
decrypted data packet that does not match with the word set stored in its internal table.

Finally, the s00_axis_tready signal has been configured, for indicating the availability of a
decryption block to accept a new encrypted data packet. As discussed above, the implemented
algorithm can accept encrypted data packets and thus perform the decryption, on every rising edge of
the system clock; therefore, it is always ready to accept new encrypted data packets, consequently, the
s00_axis_tready signal is reset only if the m00_axis_tready is reset, namely if the block downward the
decrypting block cannot accept decrypted data packets.

3.2. Post-Synthesis Simulation Results: Resources Utilization of the Encryption/Decryption Systems

In this sub-section, the simulations performed to determine the resource utilization on the
ZCU102 FPGA platform by the developed AES-128 algorithm are reported. At first, the post-synthesis
simulations have been performed on both encryption and decryption blocks, with data packets provided
on each rising edge of the 350 MHz clock signal; afterward, the simulation has been performed by
modifying the Data_Generator block to provide data packets at the input of the encryption/decryption
block every 42.7 ns, thus verifying that the hardware usage remains unchanged.

The resource utilization of FPGA related to the encryption algorithm is reported in Table 1;
considering the complete encryption system, in both cases discussed above, the percentages of
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hardware occupation equal to 5.48% for LUTs and 0.78% for FFs have been obtained. Afterward,
the simulation of the encryption system has been performed by removing all the blocks used to verify
the correct behavior of the algorithm, leaving only the blocks involved in the encryption algorithm;
the hardware resources utilization is 4.76% for the LUT and 0.71% for the FF. A reduction in hardware
occupation of 0.72% for LUTs has been obtained compared to the previous case including all the blocks.

Table 1. Hardware resources utilization of the ZCU102 Field Programmable Gate Array (FPGA)
platform related to the encryption algorithm; in particular, the complete encryption scheme, including
all the blocks to test the correct operation of the algorithm and only the encryption block have
been considered.

Simulation Resource Utilization Utilization [%]

Complete encryption system LUT 15,029 5.48
FF 4296 0.78

Encryption block LUT 13,043 4.76
FF 3877 0.71

Considering the decryption algorithm, the post-synthesis simulations have been performed both
when the data packets are provided on each rising edge of the 350 MHz clock signal and when
the Data_Generator provides encrypted packets every 42.7 ns (i.e., 23.4 MHz packet rate, Table 2);
in the first case, the hardware utilization of the FPGA device is 10.62% for LUTs, 0.79% for FFs and
0.25% relative to the Global Buffers (BUFG) used. In the latter case, the use of hardware resources is
equal to 10.64% for the LUTs, 0.79% for the FFs and 0.25% for the BUFGs. Finally, the post-synthesis
simulation of the decryption system has been performed by removing all the blocks used to verify
the correct behavior of the algorithm, leaving only the block involved in the decryption algorithm.
This configuration reveals a hardware utilization of 10.11% for the LUTs, 0.71% for the FFs and 0.25%
for the Global Buffer, obtaining a reduction in the hardware occupation of 0.53% for the LUTs and
0.08% for the FFs compared to the complete decryption scheme (Table 2).

Table 2. Hardware resource utilization related to the complete decryption scheme, including all the
blocks to test the decryption algorithm, both when the encrypted packets are received in input on each
rising edge of the 350 MHz clock signal and when they are provided every 42.7 ns (i.e., 23.4 MHz); also,
the resource utilization of only the decryption block are reported.

Simulation Resource Utilization Utilization [%]

Complete decryption system
(350 MHz packet rate)

LUT 29,111 10.62
FF 4339 0.79

BUFG 1 0.25

Complete decryption system
(23.4 MHz packet rate)

LUT 29,156 10.64
FF 4339 0.79

BUFG 1 0.25

Decryption block
LUT 27,713 10.11
FF 3912 0.71

BUFG 1 0.25

As it can be seen from Tables 1 and 2, showing the use of hardware resources for both the encryption
and decryption systems, the LUTs used on the FPGA by the latter are 1.94× more, considering the
only blocks that perform the decryption and 2.12×more, considering also the blocks needed to test it,
compared to the LUTs used by the encryption algorithm; this is due to the implementation of 4 matrices
(sbox_decoding_0, sbox_decoding_1, sbox_decoding_2 and sbox_decoding_3) in the decryption
algorithm, each containing 32-bit elements deriving from the operations of Inverse SubBytes, Inverse
Shift Rows and Inverse Mix Columns. In particular, the greater hardware resources consumption is
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attributable to the multiplication of the Inverse Mix Columns operation carried out in the decryption
block, because involve a large number of values such as 0×09090909, 0×0B0B0B0B, 0×0D0D0D0D,
0×0E0E0E0E; such multiplicative constants require the storing of numerous intermediate values inside
the LUT, occupying more hardware resources and consuming more power [34]. For this reason,
several strategies were proposed in the scientific literature for reducing resource utilization and power
consumption [35,36]. However, since the area occupation requirement is not as stringent as the
encryption/decryption speed for the specifications of the developed project, the implementation choice
fell on obtaining the data packets in the shortest possible amount of time at the expense of a greater
chip’s area occupation.

4. Discussion

In this section, the results of the carried out post-implementation simulations on the combined
system constituted by the cascade of the encryption system and the decryption one are reported,
to verify that the resulting performances are acceptable for the correct operation of the algorithm,
once the project is loaded on the FPGA-ZCU102 platform.

4.1. Post-Implementation Simulations: Clock Routing Issues and Overall Performances of the Combined
Encryption/Decryption System

The post-implementation simulations represent the closest emulation to downloading a design
to a device, providing useful indications related to the functional and timing requirements of the
developed system.

After setting the appropriate parameters and using synthesizable blocks, such as the Clocking
Wizard, for the system clock and the interface mappable pins on the board, for the clock signal and
the error_sig signal provided by the Pattern_Verificator, the post-implementation simulation on the
encryption system has been carried; the simulation results indicated a timing problem related to the
propagation of the signals within the FPGA-ZCU102 chip. In particular, for a 350 MHz system clock,
a Worst Negative Slack (WNS) parameter equal to −1.014 ns has been obtained, indicating excessive
delays in the propagation of the digital signals inside the FPGA chip, thus resulting in incorrect
scheduling of the performed tasks; therefore, a positive WNS is required, for ensuring the proper
operation of the developed encryption/decryption systems.

To overcome this problem, several post-implementation simulations, with a lower system
clock frequency, have been carried out, obtaining an improvement of the WNS parameter (Table 3);
in particular, by using a system clock frequency of 190 MHz, a WNS value equal to 0 ns was obtained,
as well as for 180 MHz operating frequency, a WNS equal to 0.056 ns resulted. Furthermore, to support
a greater system clock frequency, it is possible to use the implementation strategies provided by
the Vivado tool; therefore, a common strategy suitable for both the encryption and decryption
blocks has been chosen, since the final simulations have been carried out on the combined system.
The post-implementation simulation has been performed by setting 220 MHz system clock frequency
and adopting the Explore strategy, thus obtaining the WNS parameter equal to 0.005 ns for the
encryption system and 0.008 ns for the decryption one.

Table 3. Post-implementation simulation results carried out on the encryption system with different
clock frequencies to establish the maximum operating frequency with a positive Worst Negative Slack
(WNS) parameter.

Clock Frequency [MHz] Worst Negative Slack [ns] Total Negative Slack [ns]

180 0.056 0
190 0 0
200 −0.199 −0.353
250 −0.441 −0.895
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The area utilization resulting from the post-implementation simulations remains unchanged
compared to the results obtained through the post-synthesis simulations, showing, for the encryption
system, resource utilization of 5% of LUTs, 1% of FFs, 1% of I/O ports and 1% of BUFGs, as well as for
the decryption system, 10% of LUTs, 1% of FFs, 1% of I/O ports and 1% of BUFGs; finally, for both the
system, there is a 25% area utilization relative to the IP Clocking Wizard block used to generate the
system clock during the post-synthesis and post-implementation simulations. Before performing the
post-implementation simulations of the whole system including encryption and decryption blocks,
the behavioral simulations with 220 MHz clock frequency have been carried out. In Figure 21,
the temporal trends of the signals are shown, obtained providing the plaintext data packets (red box)
to the encryption/decryption system every 40.86 ns; this data-rate derives from the clock frequency
of 220 MHz, corresponding to 4.54 ns clock period, chosen to comply with the 3 Gbit/s throughput
required by the specifications of Wireless Connector system, as calculated below in Equation (5).

Data−Rate or Throughput =
128 bit

9 × clock_period
=

128 bit
9 × 4.54 ns

= 3.132 Gbit/s. (5)
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Figure 21. Temporal trends related to the behavioral simulations where plaintext data packets are
provided every 9 system clock periods at 220 MHz, corresponding to a data rate of 3.123 Gbit/s.

The encryption of the data packets is performed in 9.5 clock periods (white box); in fact,
the encrypted packets are provided at the output of the encryption block on the falling edge of the
clock, after exactly 9.5 clock periods and then acquired by the decryption block on the next rising
edge. Afterward, the data packet is decrypted in 9.5 clock periods (blue box) and provided at the
output of the decryption block after overall 10 clock periods. Therefore, the encryption and decryption
operations last 20 clock periods, which are equal to 90.8 ns, considering a system clock frequency of
220 MHz (Figure 21).

In Figure 22, the temporal trends related to the behavioral simulations are shown, with the plaintext
data packets provided to the system in each clock period (frequency 220 MHz). The s00_axis_tvalid
signal is constantly set, indicating to the receiving block that a new data packet is available at the
input, providing encrypted packets on each rising edge of the clock, thus allowing a data rate equal to
28.16 Gbit/s (220 MHz ∗ 128 bit = 28.16 Gbit/s).

Finally, the post-implementation simulation of the overall system constituted by the cascade of the
encryption (red box) and decryption (blue box) blocks has been carried out (Figure 23a). The simulation
has been performed by setting the Explore implementation strategy, provided by the Vivado tool.
The screenshots of the Project Manager, obtained after the post-implementation simulation, are shown
in Figure 23; a positive WNS parameter, equal to 0.056 ns, is obtained (Figure 23b), as well as the
hardware utilization of the overall encryption/decryption system is reported in Figure 23c. In particular,
the hardware resource utilization was equal to 15% LUTs, 1% FFs, 1% I/O ports, 1% BUFG, as well as a
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25% area utilization value relative to the IP Clocking Wizard block, used to generate the system clock,
was obtained.Electronics 2020, 9, x FOR PEER REVIEW 24 of 30 
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Figure 22. Behavioral simulation with the plaintext data packets (red box) acquired by the system on
each rising edge of the clock with frequency 220 MHz and a data rate of 28.16 Gbit/s; the encrypted
packets (white box) are obtained after 45.40 ns after receiving them and the decrypted ones (blue box)
after 90.80 ns.
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Figure 23. Block Design including the encryption (red box) and decryption (blue box) blocks connected
in cascade (a); screenshot of Project Manager, obtained by post-implementation simulation, using a
clock frequency of 220 MHz and Explore implementation strategy, showing the positive WNS parameter
(green-dashed box) equal to 0.056 ns (b) and the hardware usage of the overall system (c).

Besides, the estimation of the total on-chip power (sum of the static FPGA power and design
power) of the combined encryption/decryption system has been obtained from the post-implementation
simulation, providing plaintext data packets each clock period, which is equal to 1.77 W, with 26.7 ◦C
chip temperature, ensuring a thermal margin equal to 73.3 ◦C (i.e., temperature limit equal to 90 ◦C).
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Furthermore, post-implementation simulations have been carried out on both the encryption and
decryption systems individually, so obtaining the total on-chip power consumption equal to 1.17 W and
0.99 W with the chip temperature equal to 26.5 ◦C and 26.1 ◦C, respectively. By providing the plaintext
data packets in input to the encryption block every 40.86 ns, the post-implementation simulation on
the combined encryption/decryption system indicates a power consumption of only 365 mW, with a
25.5 ◦C chip temperature.

4.2. Testing of the Developed Encryption/Decryption Algorithm on ZCU102 Evaluation Board

After the generation of the bitstream file related to the developed project including the cascade of
the encryption and decryption blocks, the file has been loaded on the FPGA-ZCU102 evaluation board.
To monitor the interest signals, the IP Integrated Logical Analyzer (IL) has been added to the Block
Design; also, to verify the correctness of the decrypted packets, provided by the system constituted
by the encryption and decryption blocks connected in cascade, during the test phase, only a single
encryption key has been used, initially loaded into four 32-bit registers and subsequently automatically
validated; therefore, the error_sig signal produced by the Pattern_Verificator block remains low, thus
indicating the errors’ absence in the comparison of the packets received by the decryption block and
those contained in the Pattern_Verificator table.

The tests carried out on the board confirmed the proper operation of both encryption and decryption
algorithms, complying with the operation resulting from the post-implementation simulations
reported in the previous paragraph. In Figure 24, the temporal trends related to the complete
encryption/decryption system are shown, in which the plaintext data packets, provided every 9.5 clock
periods, are accepted by the encryption block (red box) and thus the encrypted packets are delivered to
the decryption block (white box), thereby obtaining the decrypted packets downstream (blue box in
Figure 24). As expected, the error_sig signal remains low along the observation period, indicating that
the processing of the packets is performed correctly, namely the packets leaving the decryption block
are equal to those provided at the input to the encryption block.
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Figure 24. Temporal trends with shown the plaintext data packets entering the system (red-dashed
box), the encrypted ones delivered by the encryption block to the decryption block (white-dashed
box) and finally decrypted packets provided in output by the decryption block (blue-dashed box);
as evident, the plaintext data packets provided in input to the system are equal to those provided by
the decryption block (as indicated by the red arrow), also demonstrated by error_sig signal, which
remains low along the observation period (yellow-dashed box).
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In Figure 25, the temporal trends related to the complete encryption/decryption system are shown,
in which the plaintext data packets are provided in input on each rising edge of the clock signal; as can
be noticed, also, in this case, the error_sig signal remains low, indicating the proper operation of the
encryption/decryption system.
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Figure 25. Temporal trends with shown the plaintext data packets provided to the system on each rising
edge of the clock; the packets are obtained from the decryption block after 20 clock periods, 10 of which
needed for encryption operation and the remaining 10 for the decryption one. The error_sig signal,
highlighted in yellow, is low along the whole observation interval, as expected. The packets leaving the
decryption block (blue-dashed box) are equal to those entering the encryption block (red-dashed box).

4.3. Comparison of the Proposed AES-128 Implementation with Other Works Reported in the Literature

For the Zynq SoC, just like other FPGA, the PL section is constituted by CLBs arranged according
to matrix structure; each CLB contains two slices, each including four LUTs and eight FFs and a
configurable switch matrix [37]. Therefore, from the results shown in Tables 1 and 2, the number of
CLBs and slices employed by the developed AES-128 encryption and decryption blocks are 1631/3262
and 3464/6928, respectively.

Table 4 reports the comparison between the proposed implementation of AES-128 encryption
algorithm with other pipelined implementations previously reported in the scientific literature, similar
for operative frequency and supported throughput; also, the platform employed to develop the reported
implementations are indicated, since the FPGA technology affects the performance of encryption and
decryption. However, the figure of merit chosen for comparing the different implementations is the
efficiency, defined as:

E f f iciency =
Throughput [Mbps]

# o f used slices
. (6)

Table 4. Comparison of the proposed AES-128 solution with other FPGA implementations.

Design. Platform Frequency
[MHz]

Throughput
[Gbit/s] Slices Efficiency

[Mbps/slice]

Zambreno J. et al. [38] (Enc) XC2V4000 184.1 23.57 16,938 1.39
Fan C.P. et al. [25] (Enc) XC4VLX200 250.0 32.00 86,806 0.36
Bulens P. et al. [39] (Enc) Virtex-4 250.0 2.90 1220 2.30

Standaert F. et al. [40] (Enc) XCV3200E8 145.0 18.56 10,750 1.66
Hodjat A. et al. [41] (Enc) XC2VP20-7 168.3 21.54 5177 4.16
Kotturi D. et al. [42] (Enc) XC2VP70-7 232.6 29.77 5408 5.50
Daoud L. et al. [43] (Enc) XC7Z020 192.0 1.29 431 2.99

Good T. et al. [33] (Enc/Dec) XC3S2000-5 196.1 23.65 16,693 1.42
Our solution (Enc) XCZU9EG 220.0 28.16 3262 8.63

Our solution (Enc/Dec) XCZU9EG 220.0 28.16 10,278 2.74
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In particular, this quantity is representative of how efficiently the FPGA hardware resources are
used to support a given output throughput.

As evident from the results reported in the following table, the proposed solution can reach high
data throughput values (up to 28.16 Gbit/s) but with commensurably lower utilization of the hardware
resources compared to other works, thus allowing higher efficiency. Considering the most performing
implementation, reported in Reference [42], our solution obtains a maximum data throughput slightly
lower (−5.3%) but also employs a lot less FPGA hardware resources (i.e., −39.7%), thus resulting
into a higher efficiency value (+56.9%). Also, comparing our solution implementing encryption and
decryption operation with those reported in Reference [33], a clear superiority of the former is evident,
indicated with a higher efficiency value (+92.9%).

As aforementioned, it must be considered that the comparison shown in the previous table is made
between solutions implemented with different platforms for technology, architecture and maximum
clock frequency; therefore, the enhanced performances of our solution are also attributable to the
advanced features and complex architecture of the used platform but mainly to the implemented
solutions aimed to speed up the encryption/decryption process. Such advanced specifications are
required to comply with the constraints imposed by the Wireless Connector system, also related to the
other functionalities included in the developed communication system. Finally, the platform typology
must be considered as a parameter of reported analysis to obtain a fair comparison.

5. Conclusions

In this research work, we have proposed a high-speed implementation of the well-known AES-128
algorithm properly developed for a custom, very short-range and high-frequency communication
system, called Wireless Connector; specifically, this last supports high-throughput data transmission
on a frequency range around 60 GHz between two mobile stations located at short-range (1–10 m).
The core of the communication system is constituted by a Xilinx ZCU102 FPGA platform, which
manages all the base-band operations, including the encryption and decryption of the data packets; the
prototype of the Wireless Connector was realized, demonstrating its proper operation. In particular,
a pipelined approach has been applied to the round-based elaboration typical of the AES algorithm,
allowing simultaneous processing of multiple successive plaintext packets each clock period and thus
reaching higher data throughput values; furthermore, a 32-bit 16 × 16 Sbox matrix was employed to
speed up the Substitute Byte step compared to the classic 8-bit implementation.

Encryption and decryption VHDL blocks have been developed on the Xilinx ZCU102 FPGA
platform, carrying out multiple elaborations of the incoming data packets to comply with the 3 Gbit/s
data rate, constraint required by the Wireless Connector application. The developed encryption system
can operate at a 220 MHz maximum clock frequency, supporting an encryption time of just 10 clock
periods. Thanks to the pipelined elaboration, the proposed implementation is able to process and
provide the encrypted packets each clock period (namely, 4.54 ns = 1

220 MHz ), reaching a maximum

data throughput higher than 28 Gbit/s (i.e., 128 bit/packet
4.54 ns = 28.16 Gbit/s). Similarly, the decrypting

system employs just 10 clock period for obtaining the plaintext data packets.
Furthermore, developed AES-128 encryption implementation is featured by higher efficiency

(8.63 Mbps/slice) compared to similar solutions operating on the same frequency range, requiring
just 1631 CLBs, 13043 LUTs and 3877 FFs. However, the decryption implementation requires higher
resource utilization compared to the encryption one (3464 CLBs, 27713 LUTs, 3912 FFs and 1 BUFG),
due to the four matrices derived from Inverse SubBytes, Inverse Shift Rows and Inverse Mix Columns
operations, each containing 32-bit elements; the greater resource utilization is associated with the
Inverse Mix Columns operation, given the multiplicative constants involved in its matrix representation
and its LUT-based implementation inside the FPGA, as detailed in the Section 3.2.
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