
electronics

Article

Artificial Neural Network Controller for a Modular
Robot Using a Software Defined Radio
Communication System

Luis Fernando Pedraza 1,* , Henry Alberto Hernández 2 and Cesar Augusto Hernández 3

1 Telecommunications Engineering Department, Universidad Distrital Francisco José de Caldas,
Bogotá 11021-110231588, Colombia

2 Control and Automation Engineering Department, Universidad Distrital Francisco José de Caldas,
Bogotá 11021-110231588, Colombia; hahernandezm@udistrital.edu.co

3 Electrical Engineering Department, Universidad Distrital Francisco José de Caldas,
Bogotá 11021-110231588, Colombia; cahernandezs@udistrital.edu.co

* Correspondence: lfpedrazam@udistrital.edu.co

Received: 11 July 2020; Accepted: 12 August 2020; Published: 2 October 2020
����������
�������

Abstract: Modular robots are flexible structures that offer versatility and configuration options for
carrying out different types of movements; however, disconnection problems between the modules
can lead to the loss of information, and, therefore, the proposed displacement objectives are not met.
This work proposes the control of a chain-type modular robot using an artificial neural network
(ANN) that enables the robot to go through different environments. The main contribution of this
research is that it uses a software defined radio (SDR) system, where the Wi-Fi channel with the best
signal-to-noise Ratio (SNR) is selected to send the information regarding the simulated movement
parameters and obtained by the controller to the modular robot. This allows for faster communication
with fewer errors. In case of a disconnection, these parameters are stored in the simulator, so they can
be sent again, which increases the tolerance to communication failures. Additionally, the robot sends
information about the average angular velocity, which is stored in the cloud. The errors in the ANN
controller results, in terms of the traveled distance and time estimated by the simulator, are less than
6% of the real robot values.

Keywords: artificial neural network (ANN); modular robot; software defined radio (SDR);
signal-to-noise ratio (SNR)

1. Introduction

Today, modularity is present in numerous areas of industry and robotics; therefore, modular
systems offer benefits such as versatility, robustness and low-cost manufacturing compared to
fixed-parameter conventional designs [1]. This has driven the use of modular robots whose structure
is made up of multiple modules that are combined in different configurations to carry out various
kinds of tasks. Some of these tasks include simple movements such as spinning or moving forward
and complex movements such as walking or crawling [2,3]. The scope and movements of the robotic
structure depend on the shape and number of degrees of freedom of each module, since these variables
can increase the processing capacity required to synchronize the articulations of each module [4,5].

The techniques to control a modular robot can be centralized, decentralized or hybrid. In the first
case, structure control is embedded in a single device [6]. In the second case, the controller can be any
module in the structure [7,8]. In the third case, the controller incorporates features of the previous
controllers; that is, there is a central controller that sends parameters to the modules that translate said
information to perform a task [9–11].

Electronics 2020, 9, 1626; doi:10.3390/electronics9101626 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-0997-6478
https://orcid.org/0000-0002-2323-0242
https://orcid.org/0000-0001-9409-8341
http://www.mdpi.com/2079-9292/9/10/1626?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9101626
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1626 2 of 14

The artificial neural network (ANN) has been used in robotics applications due to the high
computation rate and capacity to support nonlinear functions. The uses of ANN controllers in
robotics include the support of wireless connections for underwater swarm robots [12], the control
of a five-degrees-of-freedom robot [13] and a neural-learning-based sensorless control scheme in the
presence of an input dead zone for a robotic arm [14].

Furthermore, the evolution of communication systems throughout the years has led to their
application in robots to enhance their performance [15]. One of the more novel approaches in
communication systems corresponds to the development of software defined radio (SDR) technology,
which is a radio system where the components are implemented using software to interact with
hardware [16,17]. In this project, the Raspberry Pi 3 device was used to implement the SDR since
it allows for the development of wireless applications with a robust low-cost embedded system,
which has been used as a communication system for robot control in the monitoring and storage of
data in real time [18]. It has also been used for the control and communication of a robot that produces
basic motions and sends a video to an Android device [19]. Typically, communication in modular
robots is based on infrared or wired communication; however, some initiatives have been developed
to communicate the modules wirelessly using ZigBee [20] and Wi-Fi [21] technologies, although to
date, there are no reports on the use of SDR communication.

This work contributes to the literature with the use of a wireless ANN controller that builds the
path of an EMERGE modular robot in a simulator and sends the information to the modular robot
through an SDR communication network implemented in a Raspberry Pi 3. The result of this is the
approximation of the behavior of the robot before its start-up and in the use of a communication
channel that causes fewer errors and has a higher speed than those around it, at a low cost. This paper
is organized as follows: Section 2 describes the structure and operation of the system, while Section 3
presents and discusses the results obtained with the controller executed in the simulator and the robot.
Lastly, Section 4 presents the conclusions derived from the overall work.

2. System Development

The elements that compose the system are described below: the EMERGE modular robot,
the simulator, the ANN controller and the SDR communication platform, as shown in Figure 1.
Furthermore, this section details the concepts required to understand the operation of the EMERGE
modular robot, the control method and an explanation of the experiments carried out to evaluate
the controller.

Electronics 2020, 9, x FOR PEER REVIEW 2 of 14

previous controllers; that is, there is a central controller that sends parameters to the modules that
translate said information to perform a task [9–11].

The artificial neural network (ANN) has been used in robotics applications due to the high
computation rate and capacity to support nonlinear functions. The uses of ANN controllers in
robotics include the support of wireless connections for underwater swarm robots [12], the control of
a five-degrees-of-freedom robot [13] and a neural-learning-based sensorless control scheme in the
presence of an input dead zone for a robotic arm [14].

Furthermore, the evolution of communication systems throughout the years has led to their
application in robots to enhance their performance [15]. One of the more novel approaches in
communication systems corresponds to the development of software defined radio (SDR)
technology, which is a radio system where the components are implemented using software to
interact with hardware [16,17]. In this project, the Raspberry Pi 3 device was used to implement the
SDR since it allows for the development of wireless applications with a robust low-cost embedded
system, which has been used as a communication system for robot control in the monitoring and
storage of data in real time [18]. It has also been used for the control and communication of a robot
that produces basic motions and sends a video to an Android device [19]. Typically, communication
in modular robots is based on infrared or wired communication; however, some initiatives have been
developed to communicate the modules wirelessly using ZigBee [20] and Wi-Fi [21] technologies,
although to date, there are no reports on the use of SDR communication.

This work contributes to the literature with the use of a wireless ANN controller that builds the
path of an EMERGE modular robot in a simulator and sends the information to the modular robot
through an SDR communication network implemented in a Raspberry Pi 3. The result of this is the
approximation of the behavior of the robot before its start-up and in the use of a communication
channel that causes fewer errors and has a higher speed than those around it, at a low cost. This paper
is organized as follows: Section 2 describes the structure and operation of the system, while Section
3 presents and discusses the results obtained with the controller executed in the simulator and the
robot. Lastly, Section 4 presents the conclusions derived from the overall work.

2. System Development

The elements that compose the system are described below: the EMERGE modular robot, the
simulator, the ANN controller and the SDR communication platform, as shown in Figure 1.
Furthermore, this section details the concepts required to understand the operation of the EMERGE
modular robot, the control method and an explanation of the experiments carried out to evaluate the
controller.

Figure 1. General diagram of the developed system. Figure 1. General diagram of the developed system.

Electronics 2020, 9, 1626 3 of 14

2.1. EMERGE Modular Robot

The EMERGE robot seen in Figure 2a is an open-use prototype; that is, the materials,
electrical circuits and procedure necessary for its assembly can be found in a repository [22].
Additionally, this prototype is flexible, which allows the user to adapt the circuits to particular
needs [23–25]. For instance, in this case, a printed circuit was added to the robot with the ESP32
microcontroller, which allows it to communicate with the Raspberry Pi using Wi-Fi wireless technology.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 14

2.1. EMERGE Modular Robot

The EMERGE robot seen in Figure 2a is an open-use prototype; that is, the materials, electrical
circuits and procedure necessary for its assembly can be found in a repository [22]. Additionally, this
prototype is flexible, which allows the user to adapt the circuits to particular needs [23–25]. For
instance, in this case, a printed circuit was added to the robot with the ESP32 microcontroller, which
allows it to communicate with the Raspberry Pi using Wi-Fi wireless technology.

This robot is basically composed of various modules, such as the one shown in Figure 2b, where
the user defines the grouping. Each module has four sides with magnets that can be connected to
other modules. The information is shared using the controller area network (CAN) protocol, which
can package, send and receive the information from or towards a specific module or device [23–25].

(a) (b)

Figure 2. EMERGE modular robot: (a) Assembly; (b) Individual module.

Although, in this application, chain-type morphologies were considered to carry out the
experiments, the CAN communication protocol and the structure of each module are flexible, which
allows the robot modules to be grouped with different types of morphologies and, therefore, perform
various tasks [22].

The traditional method to control the EMERGE robot is based on a centralized controller such
as the one in Figure 3a, that is implemented in the platform, so the controller has an embedded control
algorithm that is executed in real time during the operation of the platform [23]. However, when the
platform is turned off or a module is disconnected, the controller is desynchronized and the robot
stops moving. This is avoided with the control and communication strategy proposed in this paper.

(a) (b)

Figure 3. Local controllers: (a) Traditional; (b) Wi-Fi module.

The proposed controller modifies the centralized control technique using an evolutionary
algorithm that is executed locally in the controller. This is achieved by generating the control
parameters on the computer, in which the parameters are simulated and sent to the robot through

Figure 2. EMERGE modular robot: (a) Assembly; (b) Individual module.

This robot is basically composed of various modules, such as the one shown in Figure 2b, where the
user defines the grouping. Each module has four sides with magnets that can be connected to other
modules. The information is shared using the controller area network (CAN) protocol, which can
package, send and receive the information from or towards a specific module or device [23–25].

Although, in this application, chain-type morphologies were considered to carry out the
experiments, the CAN communication protocol and the structure of each module are flexible,
which allows the robot modules to be grouped with different types of morphologies and, therefore,
perform various tasks [22].

The traditional method to control the EMERGE robot is based on a centralized controller such as
the one in Figure 3a, that is implemented in the platform, so the controller has an embedded control
algorithm that is executed in real time during the operation of the platform [23]. However, when the
platform is turned off or a module is disconnected, the controller is desynchronized and the robot stops
moving. This is avoided with the control and communication strategy proposed in this paper.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 14

2.1. EMERGE Modular Robot

The EMERGE robot seen in Figure 2a is an open-use prototype; that is, the materials, electrical
circuits and procedure necessary for its assembly can be found in a repository [22]. Additionally, this
prototype is flexible, which allows the user to adapt the circuits to particular needs [23–25]. For
instance, in this case, a printed circuit was added to the robot with the ESP32 microcontroller, which
allows it to communicate with the Raspberry Pi using Wi-Fi wireless technology.

This robot is basically composed of various modules, such as the one shown in Figure 2b, where
the user defines the grouping. Each module has four sides with magnets that can be connected to
other modules. The information is shared using the controller area network (CAN) protocol, which
can package, send and receive the information from or towards a specific module or device [23–25].

(a) (b)

Figure 2. EMERGE modular robot: (a) Assembly; (b) Individual module.

Although, in this application, chain-type morphologies were considered to carry out the
experiments, the CAN communication protocol and the structure of each module are flexible, which
allows the robot modules to be grouped with different types of morphologies and, therefore, perform
various tasks [22].

The traditional method to control the EMERGE robot is based on a centralized controller such
as the one in Figure 3a, that is implemented in the platform, so the controller has an embedded control
algorithm that is executed in real time during the operation of the platform [23]. However, when the
platform is turned off or a module is disconnected, the controller is desynchronized and the robot
stops moving. This is avoided with the control and communication strategy proposed in this paper.

(a) (b)

Figure 3. Local controllers: (a) Traditional; (b) Wi-Fi module.

The proposed controller modifies the centralized control technique using an evolutionary
algorithm that is executed locally in the controller. This is achieved by generating the control
parameters on the computer, in which the parameters are simulated and sent to the robot through

Figure 3. Local controllers: (a) Traditional; (b) Wi-Fi module.

The proposed controller modifies the centralized control technique using an evolutionary algorithm
that is executed locally in the controller. This is achieved by generating the control parameters on

Electronics 2020, 9, 1626 4 of 14

the computer, in which the parameters are simulated and sent to the robot through the SDR network,
which connects to the robot’s Wi-Fi module (ESP32 microcontroller), presented in Figure 3b. This device
sends the received information to each module through the CAN bus [23].

2.2. Modular Robot Simulator

The simulation environment was developed in the 3D World Editor application in Matlab [26].
The dynamic interactions between the module chains, the environment and simulated obstacles are
displayed in the editor. This allows the user to know in advance the real movements of the robot.
Figure 4a shows the virtual module of the robot implemented in the 3D simulation. This module was
created in the SolidWorks software. The virtual modules are coupled to create the robot morphology
as shown in Figure 4b, and the movement is produced according to the rotation and translation data
received from the controller.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 14

the SDR network, which connects to the robot’s Wi-Fi module (ESP32 microcontroller), presented in
Figure 3b. This device sends the received information to each module through the CAN bus [23].

2.2. Modular Robot Simulator

The simulation environment was developed in the 3D World Editor application in Matlab [26].
The dynamic interactions between the module chains, the environment and simulated obstacles are
displayed in the editor. This allows the user to know in advance the real movements of the robot.
Figure 4a shows the virtual module of the robot implemented in the 3D simulation. This module was
created in the SolidWorks software. The virtual modules are coupled to create the robot morphology
as shown in Figure 4b, and the movement is produced according to the rotation and translation data
received from the controller.

(a) (b)

Figure 4. Virtual simulator: (a) Module developed in SolidWorks; (b) Design and assembly of the
robot in the 3D World Editor environment.

The sequence of movements in the simulator is generated using the motion control tables, which
were designed based on a sine function with an amplitude, frequency and phase shift for each
module. As a result of this function, values between 0 and π are obtained, and then a conversion is
performed for the start-up of the actuator of the module, which receives values between 0 and 1024
as shown in Figure 5. The conversion is limited in the range of [,], since any value outside this
range would compromise the mechanical structure of the robot.

Figure 5. Motion range for the module actuator.

The simulator user interface shown in Figure 6 allows the selection of the morphology and
environment to simulate the path. Three designed morphologies are available with 3 to 5 modules,
as well as three environments: a flat surface, a ladder as an obstacle and an L-shaped path. Then, the

Figure 4. Virtual simulator: (a) Module developed in SolidWorks; (b) Design and assembly of the robot
in the 3D World Editor environment.

The sequence of movements in the simulator is generated using the motion control tables, which
were designed based on a sine function with an amplitude, frequency and phase shift for each module.
As a result of this function, values between 0 and π are obtained, and then a conversion is performed
for the start-up of the actuator of the module, which receives values between 0 and 1024 as shown in
Figure 5. The conversion is limited in the range of [π4 , 3π

4], since any value outside this range would
compromise the mechanical structure of the robot.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 14

the SDR network, which connects to the robot’s Wi-Fi module (ESP32 microcontroller), presented in
Figure 3b. This device sends the received information to each module through the CAN bus [23].

2.2. Modular Robot Simulator

The simulation environment was developed in the 3D World Editor application in Matlab [26].
The dynamic interactions between the module chains, the environment and simulated obstacles are
displayed in the editor. This allows the user to know in advance the real movements of the robot.
Figure 4a shows the virtual module of the robot implemented in the 3D simulation. This module was
created in the SolidWorks software. The virtual modules are coupled to create the robot morphology
as shown in Figure 4b, and the movement is produced according to the rotation and translation data
received from the controller.

(a) (b)

Figure 4. Virtual simulator: (a) Module developed in SolidWorks; (b) Design and assembly of the
robot in the 3D World Editor environment.

The sequence of movements in the simulator is generated using the motion control tables, which
were designed based on a sine function with an amplitude, frequency and phase shift for each
module. As a result of this function, values between 0 and π are obtained, and then a conversion is
performed for the start-up of the actuator of the module, which receives values between 0 and 1024
as shown in Figure 5. The conversion is limited in the range of [,], since any value outside this
range would compromise the mechanical structure of the robot.

Figure 5. Motion range for the module actuator.

The simulator user interface shown in Figure 6 allows the selection of the morphology and
environment to simulate the path. Three designed morphologies are available with 3 to 5 modules,
as well as three environments: a flat surface, a ladder as an obstacle and an L-shaped path. Then, the

Figure 5. Motion range for the module actuator.

Electronics 2020, 9, 1626 5 of 14

The simulator user interface shown in Figure 6 allows the selection of the morphology and
environment to simulate the path. Three designed morphologies are available with 3 to 5 modules,
as well as three environments: a flat surface, a ladder as an obstacle and an L-shaped path.
Then, the ANN controller is executed to determine the position of each module of the robot.
The data are represented graphically in the virtual environment, and, if needed, these are sent to the
real robot through the SDR communication network.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 14

ANN controller is executed to determine the position of each module of the robot. The data are
represented graphically in the virtual environment, and, if needed, these are sent to the real robot
through the SDR communication network.

Figure 6. The simulator user interface.

2.3. Artificial Neural Network Controller

The ANN controller calculates the position of each robot module [27–30]. In this case, a
backpropagation ANN was implemented as shown in Figure 7a, which uses a training algorithm
based on the correction of the mean squared error. Basically, it is a margin of error (∈) that is estimated
as the average of the squares of the errors, as shown in the following equations—that is, the difference
between the expected value (), contained in a dataset, and the estimated value (), calculated by
the ANN. This difference is adjusted in each training iteration based on the weights () of each
ANN neuron, with an activation function , until the error is close to zero (in this case, a threshold
of = 4	 × 	10 is established). = (×)	 (1)

∈ = 1 (−) (2)

In this case, the training dataset, presented in Table 1, is a database containing the following
information: the number of modules, type of environment and position of the modules. Furthermore,
this dataset contains 1000 records of samples taken during the operation of the robot modules in
different environments, 750 records to be used for ANN training and 250 for validation of the
estimated results. The ANN controller inputs are the type of environment and the number of
modules, while the positions of the modules are the outputs. Afterward, the ANN is trained to
reproduce the set of movements in the simulator and, if required, in the robot, as shown in Figure 7b.
The number of hidden layers of the ANN was established as 25 since that is the minimum number to
estimate a set of continuous and stable movements with a low error, as is analyzed in chapter 3, and
using moderate computational resources during training. The training time is approximately 430 s.

Figure 6. The simulator user interface.

2.3. Artificial Neural Network Controller

The ANN controller calculates the position of each robot module [27–30]. In this case,
a backpropagation ANN was implemented as shown in Figure 7a, which uses a training algorithm
based on the correction of the mean squared error. Basically, it is a margin of error (∈) that is estimated
as the average of the squares of the errors, as shown in the following equations—that is, the difference
between the expected value (ŷi), contained in a dataset, and the estimated value (yi), calculated by
the ANN. This difference is adjusted in each training iteration based on the weights (wi) of each
ANN neuron, with an activation function fi, until the error is close to zero (in this case, a threshold of
τ = 4 × 10−8 is established).

yi = fi(wi × yi + ε) (1)

∈i=
1
n

n∑
i=1

(ŷi − yi)
2 (2)

In this case, the training dataset, presented in Table 1, is a database containing the following information:
the number of modules, type of environment and position of the modules. Furthermore, this dataset
contains 1000 records of samples taken during the operation of the robot modules in different
environments, 750 records to be used for ANN training and 250 for validation of the estimated results.
The ANN controller inputs are the type of environment and the number of modules, while the positions
of the modules are the outputs. Afterward, the ANN is trained to reproduce the set of movements in
the simulator and, if required, in the robot, as shown in Figure 7b. The number of hidden layers of the
ANN was established as 25 since that is the minimum number to estimate a set of continuous and
stable movements with a low error, as is analyzed in chapter 3, and using moderate computational
resources during training. The training time is approximately 430 s.

Electronics 2020, 9, 1626 6 of 14Electronics 2020, 9, x FOR PEER REVIEW 6 of 14

(a)

(b)

Figure 7. Artificial neural network (ANN) configuration: (a) Implementation of the layers; (b) Robot
controller.

Table 1. Database segment used to train the ANN.

Inputs Outputs
Scenario Number of Modules Module 1 Module 2 Module 3 Module 4 Module 5

Flat surface 3 300 320 340 - -
Flat surface 4 325 345 365 385 -

Ladder 4 350 370 390 410 -
L-shaped 4 375 395 415 435 -

Flat surface 5 400 420 440 460 480
Ladder 5 425 445 465 485 505

In Algorithm 1, the instructions of the proposed ANN controller are presented, which delivers
the movements to the simulator and, if required, to the robot. The three environments over which the
robot can move, to evaluate the algorithm, are shown in Figure 8.

Figure 7. Artificial neural network (ANN) configuration: (a) Implementation of the layers;
(b) Robot controller.

Table 1. Database segment used to train the ANN.

Inputs Outputs

Scenario Number of Modules Module
1

Module
2

Module
3

Module
4

Module
5

Flat surface 3 300 320 340 - -
Flat surface 4 325 345 365 385 -

Ladder 4 350 370 390 410 -
L-shaped 4 375 395 415 435 -

Flat surface 5 400 420 440 460 480
Ladder 5 425 445 465 485 505

In Algorithm 1, the instructions of the proposed ANN controller are presented, which delivers the
movements to the simulator and, if required, to the robot. The three environments over which the
robot can move, to evaluate the algorithm, are shown in Figure 8.

Electronics 2020, 9, 1626 7 of 14

Algorithm 1. Control strategy

Function ANN (in i, out o, margin of error ε)
τ = 4 × 10−8 //Threshold as stop condition
ANN ← Inputs [i][1] //In vector layer
ANN ← Outputs [1][o] //Out vector layer
ANN ← Activation f unction (fi) // fi is a gaussian function (Equation (1))
ANN ← Hidden layers [10][25] //Matrix 10 neurons × 25 layers
ANN ← Initial weights //Initial weight assignment function
While τ < ε do

ANN ← optimize weights (i, o)
ε← test ANN //Validation of results

End While
return ANN

End ANN

Function Virtual enviroment ()
Load libraries 3D enviroment //Load virtual objects and robot
Start SDR port //Open port to establish communication
Create communication port read thread //Start communication routine
Create communication port send thread
Start GUIO (Graphical User Interface Objects) //Start program
i ← number o f modules //Select robot morphologie
j ← select escenario //Select enviroment
m ← mode //Select routine test or ANN mode
epochs← 0 //Start iterations
If mode == 1 then

θi ← movements database //Read predefined movements (Table 1)
else

θi ← ANN(i, j, in f) //Read ANN movements
//Note: inf is a initial value (can be > 10)
//for ε and start ANN weights

While epochs < 200 do
∝i← Generate movements in the virtual reality environment (θi)

//Nomalize the θi value and fixes it
//on the actuator scale

Send via serial port (∝i) //Send θi to each real module
Run the move routine for 100 milliseconds //Delay for the next movement

epochs ++

ε←MSE(θi) //Mean Squares Error routine (Equation (2))
θi ← ANN(i, j, ε) //Simulates the ANN and update weights

End While
End Virtual enviroment

Electronics 2020, 9, 1626 8 of 14Electronics 2020, 9, x FOR PEER REVIEW 8 of 14

(a) (b) (c)

Figure 8. Environments used to evaluate the controller algorithm: (a) Flat surface; (b) Ladder as an
obstacle; (c) L-shaped path.

2.4. Software-Defined Radio Communication System

The communications system developed, presented in Figure 1, is composed of the following.
First, there is a Raspberry Pi 3, which is configured as a wireless access point (WAP) in which the
SDR is performed and the wireless network is used to measure the power level of the channels of the
Wi-Fi network. Second, there is a router that provides an internet connection and sends the
information generated from the robot to the cloud. This router is also connected to a computer in
which the ANN controller is simulated and developed to send movements to the robot. Third, there
is an ESP32 microcontroller that communicates bidirectionally with the Raspberry, transmitting the
motion sequence to the robot and the angular velocity to the Raspberry, to be sent and stored in the
cloud.

In the WAP configuration of the Raspberry, the name of the wireless network (SSID), the
channel, and the level of security, among other settings, are edited. To provide internet access
through the WAP, a bridge between the Raspberry’s wireless interface and the ethernet network
adapter is created. Hence, the traffic is redirected through the network cable that is connected to the
router to access to the Internet.

The Raspberry Pi has limitations in the network interface, so a USB dongle is used to measure
the power of the surrounding wireless networks. After measuring the power of the channels in the
2.4 GHz band, this information is sent to the Raspberry Pi to start the SDR.

The SDR system establishes the Wi-Fi transmission between the Raspberry and the ESP32, from
the beginning, using the channel with the highest SNR. To achieve this, the powers or received signal
strength indicators (RSSI) are captured from the channels of the access points found in the Raspberry
environment, which are measured by the USB dongle. Then, the power per channel is averaged based
on the RSSI measurements of the access points, as shown below:

= ∑
 (3)

where 	 is the average power of the Wi-Fi channel in dBm, is the channel power for
a wireless access point in dBm and N is the number of wireless access points that are present in the
same channel. The Gaussian white noise power is now calculated [31]:

_ = 10log	() (4)

where k is the Boltzmann constant 1.3806852 × 10−23 J/K; T is the ambient temperature in degrees
Kelvin—in this case, it is 298.15 °K; and B is the bandwidth of each Wi-Fi channel in Hz (20 MHz).
Therefore, _ is −131 dBm. Finally, the SNR of each channel can be determined as [32]: SNR = − _ (5)

Then, the channel with the highest SNR is chosen and set to the access point.

Figure 8. Environments used to evaluate the controller algorithm: (a) Flat surface; (b) Ladder as an
obstacle; (c) L-shaped path.

2.4. Software-Defined Radio Communication System

The communications system developed, presented in Figure 1, is composed of the following.
First, there is a Raspberry Pi 3, which is configured as a wireless access point (WAP) in which the
SDR is performed and the wireless network is used to measure the power level of the channels of
the Wi-Fi network. Second, there is a router that provides an internet connection and sends the
information generated from the robot to the cloud. This router is also connected to a computer in which
the ANN controller is simulated and developed to send movements to the robot. Third, there is an
ESP32 microcontroller that communicates bidirectionally with the Raspberry, transmitting the motion
sequence to the robot and the angular velocity to the Raspberry, to be sent and stored in the cloud.

In the WAP configuration of the Raspberry, the name of the wireless network (SSID), the channel,
and the level of security, among other settings, are edited. To provide internet access through the
WAP, a bridge between the Raspberry’s wireless interface and the ethernet network adapter is created.
Hence, the traffic is redirected through the network cable that is connected to the router to access to
the Internet.

The Raspberry Pi has limitations in the network interface, so a USB dongle is used to measure
the power of the surrounding wireless networks. After measuring the power of the channels in the
2.4 GHz band, this information is sent to the Raspberry Pi to start the SDR.

The SDR system establishes the Wi-Fi transmission between the Raspberry and the ESP32, from the
beginning, using the channel with the highest SNR. To achieve this, the powers or received signal
strength indicators (RSSI) are captured from the channels of the access points found in the Raspberry
environment, which are measured by the USB dongle. Then, the power per channel is averaged based
on the RSSI measurements of the access points, as shown below:

Pchannel =

∑N
i=1 Pchannel

N
(3)

where Pchannel is the average power of the Wi-Fi channel in dBm, Pchannel is the channel power for a
wireless access point in dBm and N is the number of wireless access points that are present in the same
channel. The Gaussian white noise power is now calculated [31]:

Pwhite_noise = 10 log (kTB) (4)

Electronics 2020, 9, 1626 9 of 14

where k is the Boltzmann constant 1.3806852 × 10−23 J/K; T is the ambient temperature in degrees
Kelvin—in this case, it is 298.15 ◦K; and B is the bandwidth of each Wi-Fi channel in Hz (20 MHz).
Therefore, Pwhite_noise is −131 dBm. Finally, the SNR of each channel can be determined as [32]:

SNR = Pchannel − Pwhite_noise (5)

Then, the channel with the highest SNR is chosen and set to the access point.
The communication between the Raspberry and the ESP32 is bidirectional. The Raspberry sends

the sequence of movements to the ESP32 located in the modular robot. The ESP32 sends the robot’s
average angular velocity to the Raspberry. The user datagram protocol (UDP) is used in this task.

The routine program in the Raspberry Pi was developed in Python, which directs the packets of
the robot’s motion sequence to the IP address of the ESP32, enables the input buffer to receive packets
from the ESP32, and executes a sub-process to connect to the ThingSpeak servers and thus send the
robot’s performance parameters to the cloud, which, in this case, are the average angular velocity of
each movement.

The programming algorithm contained in the ESP32 was developed in the Arduino IDE.
This contains the necessary instructions to interpret the commands sent from the Raspberry Pi
to move the robot, while it also collects and sends the data obtained by the robot connecting to the
Raspberry’s WAP.

The connection to the ThingSpeak server is established through a script that is executed as a
sub-process within the main UDP communication routine in the Raspberry, to store the data on the server.
The identification and password provided by the platform are used to access the previously created
channel. Subsequently, when the data transmission between the WAP and the ESP32 microcontroller is
successful, the routine sends the performance parameter to the server to be visualized after a delay of
around one minute.

3. Results and Discussion

The ANN controller simulation delivered results close to those obtained with the modular robot,
with the robot moving through the proposed environments in virtual and real scenarios as shown in
Figure 9. In each proposed environment, the modular robot with five modules traveled a distance of
1.8 m. In the ladder environment, the robot surpassed the obstacle. In the L-shaped path, the modular
robot turned 45◦ to the right after advancing 1.05 m. The times and distances obtained in the simulator
and the real modular robot are compared in Tables 2 and 3.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 14

The communication between the Raspberry and the ESP32 is bidirectional. The Raspberry sends
the sequence of movements to the ESP32 located in the modular robot. The ESP32 sends the robot’s
average angular velocity to the Raspberry. The user datagram protocol (UDP) is used in this task.

The routine program in the Raspberry Pi was developed in Python, which directs the packets of
the robot’s motion sequence to the IP address of the ESP32, enables the input buffer to receive packets
from the ESP32, and executes a sub-process to connect to the ThingSpeak servers and thus send the
robot’s performance parameters to the cloud, which, in this case, are the average angular velocity of
each movement.

The programming algorithm contained in the ESP32 was developed in the Arduino IDE. This
contains the necessary instructions to interpret the commands sent from the Raspberry Pi to move
the robot, while it also collects and sends the data obtained by the robot connecting to the Raspberry’s
WAP.

The connection to the ThingSpeak server is established through a script that is executed as a sub-
process within the main UDP communication routine in the Raspberry, to store the data on the server.
The identification and password provided by the platform are used to access the previously created
channel. Subsequently, when the data transmission between the WAP and the ESP32 microcontroller
is successful, the routine sends the performance parameter to the server to be visualized after a delay
of around one minute.

3. Results and Discussion

The ANN controller simulation delivered results close to those obtained with the modular robot,
with the robot moving through the proposed environments in virtual and real scenarios as shown in
Figure 9. In each proposed environment, the modular robot with five modules traveled a distance of
1.8 m. In the ladder environment, the robot surpassed the obstacle. In the L-shaped path, the modular
robot turned 45° to the right after advancing 1.05 m. The times and distances obtained in the simulator
and the real modular robot are compared in Tables 2 and 3.

(a) (b)

Figure 9. Modular robot movement with five modules: (a) Virtual environment; (b) Real environment.

Table 2. Comparison of the travel times for each environment in the simulator and the real scenario.

Environment Time Estimated by the Simulator Time in Real Scenario Error
Flat surface 11 min 11.6 min 5.45%

Ladder 13 min 13.75 min 5.76%
L-shaped 13 min 13.7 min 5.38%

Figure 9. Modular robot movement with five modules: (a) Virtual environment; (b) Real environment.

Electronics 2020, 9, 1626 10 of 14

Table 2. Comparison of the travel times for each environment in the simulator and the real scenario.

Environment Time Estimated by the Simulator Time in Real Scenario Error

Flat surface 11 min 11.6 min 5.45%
Ladder 13 min 13.75 min 5.76%

L-shaped 13 min 13.7 min 5.38%

Table 3. Comparison of the traveled distances for each environment in the simulator and the
real scenario.

Environment Distance Estimated by the Simulator Distance in Real Scenario Error

Flat surface 1.8 m 1.77 m 1.66%
Ladder 1.8 m 1.71 m 5%

L-shaped 1.8 m 1.73 m 3.88%

Figure 10 shows the margin of error between the training data and the real data during the ANN
training, as well as the results of the movement of a module compared to the information stored in
the database.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 14

Table 3. Comparison of the traveled distances for each environment in the simulator and the real
scenario.

Environment Distance Estimated by the Simulator Distance in Real Scenario Error
Flat surface 1.8 m 1.77 m 1.66%

Ladder 1.8 m 1.71 m 5%
L-shaped 1.8 m 1.73 m 3.88%

Figure 10 shows the margin of error between the training data and the real data during the ANN
training, as well as the results of the movement of a module compared to the information stored in
the database.

(a)

(b)

Figure 10. ANN training: (a) Margin of error; (b) Movement result vs. measured value, for a single
module.

Initially, the most appropriate ANN configuration for robot control was established. Then, the
same ANN was tested by changing the number of hidden layers. The results in Figure 11 show that
the lowest error was obtained for 25 layers.

Figure 10. ANN training: (a) Margin of error; (b) Movement result vs. measured value, for a
single module.

Electronics 2020, 9, 1626 11 of 14

Initially, the most appropriate ANN configuration for robot control was established. Then, the same
ANN was tested by changing the number of hidden layers. The results in Figure 11 show that the
lowest error was obtained for 25 layers.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 14

Figure 11. ANN margin of error for different numbers of hidden layers.

Finally, the communications network based on SDR was tested. For this, the SNR at different
sites was obtained for the Wi-Fi channels connected to the Raspberry Pi, as seen in Table 4, and with
a Wi-Fi sensitivity, in the best scenario, of −98 dBm [33]. An adequate SNR value must be above 40
dB, which occurs for most selected channels.

Table 4. Average signal-to-noise ratio (SNR) for selected Wi-Fi channels at different sites.

Place Number Average SNR (dB)
1 69
2 46
3 66
4 36
5 58
6 49
7 59
8 53
9 46

The Wireshark software was used to find the lost packets and the latency between the Raspberry
Pi and the ESP32 module located in the modular robot, for approximately one hour of communication
tests. Out of 1647 transmitted and received packets, 0.162% were lost, and the average latency was
12.23 ms.

The average angular velocity information of the modular robot is stored in the cloud through a
server hosted by ThingSpeak, as presented in Figure 12.

Figure 11. ANN margin of error for different numbers of hidden layers.

Finally, the communications network based on SDR was tested. For this, the SNR at different
sites was obtained for the Wi-Fi channels connected to the Raspberry Pi, as seen in Table 4, and with a
Wi-Fi sensitivity, in the best scenario, of −98 dBm [33]. An adequate SNR value must be above 40 dB,
which occurs for most selected channels.

Table 4. Average signal-to-noise ratio (SNR) for selected Wi-Fi channels at different sites.

Place Number Average SNR (dB)

1 69
2 46
3 66
4 36
5 58
6 49
7 59
8 53
9 46

The Wireshark software was used to find the lost packets and the latency between the Raspberry
Pi and the ESP32 module located in the modular robot, for approximately one hour of communication
tests. Out of 1647 transmitted and received packets, 0.162% were lost, and the average latency was
12.23 ms.

The average angular velocity information of the modular robot is stored in the cloud through a
server hosted by ThingSpeak, as presented in Figure 12.

Electronics 2020, 9, 1626 12 of 14

Electronics 2020, 9, x FOR PEER REVIEW 12 of 14

Figure 12. Average angular velocity of the modular robot stored in the cloud.

4. Conclusions

In this paper, an ANN controller for a modular robot that uses an SDR communication network
was presented, where the Wi-Fi channel with the best SNR was selected, and then the information
regarding the simulated movements and obtained by the controller was sent to the modular robot,
as a contribution to the literature. The distance and time estimated by the simulator did not exceed
an error of 6% when compared to those of the real robot, as evidenced in Tables 2 and 3.

The developed ANN controller has 25 layers, two inputs and one output. It predicted the
movements of the robot with a training margin of error less than 5%, as seen in Figure 10.
Furthermore, this type of strategy is adaptive, which means that a single ANN configuration was
required for the robot to move around the environment. Another advantage of this control strategy
is that the robot can go through the path even when a module fails, given that the parameters are sent
from an external device, such as the Raspberry Pi.

The behavior of the ANN with different configurations of hidden layers showed an optimal
operation region for generating the robot controller. This region was found between 20 and 30 hidden
layers, since more than 50 layers or fewer than 10 layers caused the training algorithm to not converge
satisfactorily. This is depicted in Figure 11. Selecting a number of hidden layers outside the optimal
region implies that the controller cannot find an appropriate set of movements for the robot to use to
move from one place to another.

The innovative SDR communications network developed transmitted the information
corresponding to the robot movements from the simulator to the modular robot, using a WAP
developed with the Raspberry Pi and the ESP32 microcontroller located in the robot. This reduced
the controller disconnection, and the fault tolerance of the robot was increased. The Raspberry chose,
from the establishment of communication, the Wi-Fi channel with the highest SNR, which caused
little information loss and low transmission latency compared to in other channels with a lower SNR.
Furthermore, the transmitted information was stored and displayed in the cloud, corresponding to
the average angular velocity with which the robot moved.

Author Contributions: The modular robot and artificial neural network controller were made by H.A.H.; the
software-defined radio system was implemented by L.F.P.; the simulator was designed by H.A.H. and executed
by C.A.H.; and H.A.H., L.F.P., and C.A.H. performed the experiments, analyzed the results, drew conclusions,
and reviewed and edited the paper. All authors have read and agreed to the published version of the manuscript.

Figure 12. Average angular velocity of the modular robot stored in the cloud.

4. Conclusions

In this paper, an ANN controller for a modular robot that uses an SDR communication network
was presented, where the Wi-Fi channel with the best SNR was selected, and then the information
regarding the simulated movements and obtained by the controller was sent to the modular robot, as a
contribution to the literature. The distance and time estimated by the simulator did not exceed an error
of 6% when compared to those of the real robot, as evidenced in Tables 2 and 3.

The developed ANN controller has 25 layers, two inputs and one output. It predicted the
movements of the robot with a training margin of error less than 5%, as seen in Figure 10. Furthermore,
this type of strategy is adaptive, which means that a single ANN configuration was required for the
robot to move around the environment. Another advantage of this control strategy is that the robot
can go through the path even when a module fails, given that the parameters are sent from an external
device, such as the Raspberry Pi.

The behavior of the ANN with different configurations of hidden layers showed an optimal
operation region for generating the robot controller. This region was found between 20 and 30 hidden
layers, since more than 50 layers or fewer than 10 layers caused the training algorithm to not converge
satisfactorily. This is depicted in Figure 11. Selecting a number of hidden layers outside the optimal
region implies that the controller cannot find an appropriate set of movements for the robot to use to
move from one place to another.

The innovative SDR communications network developed transmitted the information
corresponding to the robot movements from the simulator to the modular robot, using a WAP
developed with the Raspberry Pi and the ESP32 microcontroller located in the robot. This reduced
the controller disconnection, and the fault tolerance of the robot was increased. The Raspberry chose,
from the establishment of communication, the Wi-Fi channel with the highest SNR, which caused
little information loss and low transmission latency compared to in other channels with a lower SNR.
Furthermore, the transmitted information was stored and displayed in the cloud, corresponding to the
average angular velocity with which the robot moved.

Author Contributions: The modular robot and artificial neural network controller were made by H.A.H.;
the software-defined radio system was implemented by L.F.P.; the simulator was designed by H.A.H. and executed

Electronics 2020, 9, 1626 13 of 14

by C.A.H.; and H.A.H., L.F.P., and C.A.H. performed the experiments, analyzed the results, drew conclusions,
and reviewed and edited the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Centro de Investigaciones y Desarrollo Científico (CIDC)—Universidad
Distrital Francisco José de Caldas with the project code: 1-273-597-19.

Acknowledgments: We express our gratitude to CIDC—Universidad Distrital Francisco José de Caldas for the
support. We also appreciate the recommendations of the reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baca, J.; Ferre, M.; Campos, A.; Fernandez, J.; Aracil, R. On the Analysis of a Multi-task Modular Robot
System for Field Robotics. In Proceedings of the 2010 IEEE Electronics, Robotics and Automotive Mechanics
Conference, Morelos, Mexico, 28 September–1 October 2010; pp. 475–480.

2. Zhao, J.; Wei, Y.; Fan, J.; Shen, J.; Cai, H. New Type Reconfigurable Modular Robot Design and Intelligent
Control Method Research. In Proceedings of the 6th World Congress on Intelligent Control and Automation,
Dalian, China, 21–23 June 2006; pp. 8907–8911. [CrossRef]

3. Jingtao, L.; Tianmiao, W.; Yongling, H. The Modular Approach Based on Functional Components Division for
Modular Reconfigurable Walking Robot. In Proceedings of the International Conference on Reconfigurable
Mechanisms and Robots, London, UK, 22–24 June 2009; pp. 540–544.

4. Hayakawa, T.; Kamimura, T.; Kaji, S.; Matsuno, F. Autonomous Distributed System for Gait Generation
for Single-Legged Modular Robots Connected in Various Configurations. IEEE Trans. Robot. 2020, 1–20.
[CrossRef]

5. Ye, C.; Chen, N.; Chen, L.; Jiang, C. A Variable-Scale Modular 3D Printing Robot of Building Interior
Wall. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation,
Changchun, China, 5–8 August 2018; pp. 1818–1822. [CrossRef]

6. Giusti, A.; Althoff, M. On-the-Fly Control Design of Modular Robot Manipulators.
IEEE Trans. Control Syst. Technol. 2017, 26, 1484–1491. [CrossRef]

7. Zhao, B.; Liu, D. Event-Triggered Decentralized Tracking Control of Modular Reconfigurable Robots through
Adaptive Dynamic Programming. IEEE Trans. Ind. Electron. 2019, 67, 3054–3064. [CrossRef]

8. An, T.; Men, X.; Zhang, X.; Li, Y.; Dong, B. Adaptive Dynamic Programming-based Decentralized Sliding
Mode Optimal Control for Modular and Reconfigurable Robots. In Proceedings of the 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 31–36.

9. Alattas, R. Hybrid evolutionary designer of modular robots. In Proceedings of the 2016 Annual
Connecticut Conference on Industrial Electronics, Technology & Automation (CT-IETA), Bridgeport, CT, USA,
14–15 October 2016; pp. 1–4.

10. Karimoddini, A.; Karimadini, M.; Lin, H. Decentralized hybrid formation control of Unmanned Aerial
Vehicles. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014;
pp. 3887–3892.

11. Ahmad, S.; Aminnuddin, M.; Shukor, M.A.S.M. Modular hybrid control for double-link two-wheeled mobile
robot. In Proceedings of the 2012 International Conference on Computer and Communication Engineering
(ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 807–813.

12. Vicmudo, M.P.; Dadios, E.P. Artificial neural network controller for maintaining underwater swarm
robots’ wireless connections. In Proceedings of the 2015 International Conference on Humanoid,
Nanotechnology, Information Technology, Communication and Control, Environment and Management
(HNICEM), Cebu City, Philippines, 9–12 December 2015; pp. 1–6.

13. Kern, J.; Jamett, M.; Urrea, C.; Torres, H. Development of a neural controller applied in a 5 DOF robot
redundant. IEEE Lat. Am. Trans. 2014, 12, 98–106. [CrossRef]

14. Peng, G.; Chen, C.L.P.; He, W.; Yang, C. Neural-Learning-Based Force Sensorless Admittance Control for
Robots with Input Deadzone. IEEE Trans. Ind. Electron. 2020, 1. [CrossRef]

15. Wan, J.; Tang, S.; Shu, Z.; Li, D.; Wang, S.; Imran, M.; Vasilakos, A.V. Software-Defined Industrial Internet of
Things in the Context of Industry 4.0. IEEE Sens. J. 2016, 16, 1. [CrossRef]

16. Ulversoy, T. Software Defined Radio: Challenges and Opportunities. IEEE Commun. Surv. Tutor.
2010, 12, 531–550. [CrossRef]

http://dx.doi.org/10.1109/WCICA.2006.1713722
http://dx.doi.org/10.1109/tro.2020.2992983
http://dx.doi.org/10.1109/ICMA.2018.8484433
http://dx.doi.org/10.1109/TCST.2017.2707336
http://dx.doi.org/10.1109/TIE.2019.2914571
http://dx.doi.org/10.1109/TLA.2014.6749524
http://dx.doi.org/10.1109/tie.2020.2991929
http://dx.doi.org/10.1109/JSEN.2016.2565621
http://dx.doi.org/10.1109/SURV.2010.032910.00019

Electronics 2020, 9, 1626 14 of 14

17. Muñoz, E.C.; Martínez, L.F.P.; Hernandez, C. Rényi Entropy-Based Spectrum Sensing in Mobile Cognitive
Radio Networks Using Software Defined Radio. Entropy 2020, 22, 626. [CrossRef]

18. Li, X.-Q.; Ding, X.; Zhang, Y.; Sun, Z.-P.; Zhao, H.-W. IoT Family Robot Based on Raspberry Pi.
In Proceedings of the 2016 International Conference on Information System and Artificial Intelligence
(ISAI), Hong Kong, China, 24–26 June 2016; pp. 622–625.

19. Guleci, M.; Orhun, M. Android based WI-FI controlled robot using Raspberry Pi. In Proceedings of the 2017
International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017;
pp. 978–982.

20. Cabrera, M.; Trifonov, R.S.; Castells, G.A.; Stoy, K. Wireless communication and power transfer in modular
robots. In Proceedings of the IEEE/RSJ IROS: Workshop on Reconfigurable Modular Robotics: Challenges of
Mechatronic and Bio-Chemo-Hybrid Systems, San Francisco, CA, USA, 21 September 2011.

21. Haxhibeqiri, J.; Jarchlo, E.A.; Moerman, I.; Hoebeke, J. Flexible Wi-Fi Communication among Mobile Robots
in Indoor Industrial Environments. Mob. Inf. Syst. 2018, 2018, 1–19. [CrossRef]

22. Easy Modular Embodied Robot Generator. Available online: https://sites.google.com/view/emergemodular/
home?authuser=0 (accessed on 20 June 2020).

23. Hernández, H.; Moreno, R.; Faina, A.; Gomez, J. Design of a Bio-Inspired Controller to Operate a Modular
Robot Autonomously. In Lecture Notes in Computer Science; Springer Science and Business Media LLC:
Berlin, Germany, 2018; pp. 314–325.

24. Liu, C.; Liu, J.; Moreno, R.; Veenstra, F.; Faíña, A. The impact of module morphologies on modular robots.
In Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China,
10–12 July 2017; pp. 237–243.

25. Moreno, R.; Liu, C.; Faina, A.; Hernandez, H.; Gomez, J. The EMeRGE modular robot, an open platform for
quick testing of evolved robot morphologies. In Proceedings of the Genetic and Evolutionary Computation
Conference, Berlin, Germany, 15–19 July 2017; pp. 71–72. [CrossRef]

26. 3D World Editor. Available online: https://la.mathworks.com/help/sl3d/the-3d-world-editor.html
(accessed on 5 May 2020).

27. Hellebrekers, T.; Chang, N.; Chin, K.; Ford, M.J.; Kroemer, O.; Majidi, C. Soft Magnetic Tactile Skin
for Continuous Force and Location Estimation Using Neural Networks. IEEE Robot. Autom. Lett.
2020, 5, 3892–3898. [CrossRef]

28. Li, C.; Fahmy, A.; Sienz, J. Development of a Neural Network-Based Control System for the DLR-HIT II
Robot Hand Using Leap Motion. IEEE Access 2019, 7, 136914–136923. [CrossRef]

29. Mano, M.; Capi, G.; Tanaka, N.; Kawahara, S. An Artificial Neural Network Based Robot Controller that
Uses Rat’s Brain Signals. Robotics 2013, 2, 54–65. [CrossRef]

30. Korovesis, N.; Kandris, D.; Koulouras, G.; Alexandridis, A. Robot Motion Control via an EEG-Based
Brain-Computer Interface by Using Neural Networks and Alpha Brainwaves. Electronics 2019, 8, 1387.
[CrossRef]

31. Penttinen, J.T.J. The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems,
1st ed.; Wiley: Chichester, UK, 2015; p. 785.

32. Dolińska, I.; Masiukiewicz, A.; Rządkowski, G. The mathematical model for interference simulation and
optimization in 802.11n networks. In Proceedings of the International Workshop CS&P’ 2013, Warsaw, Poland,
25–27 September 2013; pp. 99–110.

33. Behzad, A. Wireless LAN Radios: SYSTEM Definition to Transistor Design, 1st ed.; Wiley: Hoboken, NJ, USA,
2007; pp. 73–75.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e22060626
http://dx.doi.org/10.1155/2018/3918302
https://sites.google.com/view/emergemodular/home?authuser=0
https://sites.google.com/view/emergemodular/home?authuser=0
http://dx.doi.org/10.1145/3067695.3075616
https://la.mathworks.com/help/sl3d/the-3d-world-editor.html
http://dx.doi.org/10.1109/LRA.2020.2983707
http://dx.doi.org/10.1109/ACCESS.2019.2942648
http://dx.doi.org/10.3390/robotics2020054
http://dx.doi.org/10.3390/electronics8121387
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Development
	EMERGE Modular Robot
	Modular Robot Simulator
	Artificial Neural Network Controller
	Software-Defined Radio Communication System

	Results and Discussion
	Conclusions
	References

