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Abstract: This paper presents a new control approach for the trajectory tracking of a quadrotor in the
presence of external disturbances. Unlike in previous studies using hierarchical control strategies,
a nonlinear controller is designed by introducing new state transformations that can use Euler
angles as virtual control inputs. Thus, the proposed method can eliminate the timescale separation
assumption of hierarchical control strategies. To estimate the external disturbances involved in
the translational and rotational dynamics of the quadrotor, disturbance observers are developed.
Using state transformations and estimates of external disturbances, we design a robust nonlinear
controller based on the dynamic surface control method. The stability of the closed-loop system is
analyzed without separation into two subsystems. From the Lyapunov stability theory, it is proven
that all error signals in the closed-loop system are uniformly ultimately bounded and can be made
arbitrarily small. Finally, simulation results are presented to demonstrate the performance of the
proposed controller.

Keywords: disturbance observer; quadrotor; state transformation; trajectory tracking; underactuated
system

1. Introduction

Quadrotors are widely used for military and commercial purposes because of their capabilities of
vertical take-off and landing (VTOL) and free mobility [1]. A quadrotor requires position and attitude
control for autonomous flight. However, it is difficult to design an appropriate controller because the
quadrotor model is underactuated and has strong nonlinear couplings between its dynamic states [2].
Furthermore, robustness against disturbances such as wind gusts during the operation of the quadrotor
is essential for control performance [3]. Therefore, various control methods have been proposed to
solve these problems.

To address the nonlinear coupling problem, linear control methods such as PID [4–6], LQR [7,8],
and H∞ [9,10] based on linearized models were proposed. To obtain a linearized model, the assumption
that the quadrotor is moving around a hovering position is required, which causes the performance
of linear control methods to degrade when aggressive maneuvers and external disturbances are
applied [11]. Therefore, as an alternative, nonlinear control methods have received considerable
attention recently. The main difficulty in designing nonlinear controllers is that a quadrotor is an
underactuated system with six DOFs and four control inputs. For such an underactuated system,
methods of designing controllers in accordance with particular flight modes were proposed in [12,13].
However, it is difficult to prove the overall stability and/or different flight control modes cannot
be used at the same time. To overcome this drawback, a hierarchical control strategy based on
inner- and outer-loop subsystems is generally used [14–23]. Using this strategy, it is possible to
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prove the stability of the closed-loop system and control the position and attitude of the quadrotor
simultaneously. Therefore, nonlinear controllers such as backstepping [16], adaptive [17,18], sliding
mode [19–21], and neural-network-based controllers [22,23] have all been proposed using hierarchical
control strategies. In a hierarchical control strategy, the control system is divided into two subsystems.
First, a position controller is designed to track the desired position. Then, the thrust force and desired
Euler angles are derived by the position controller under the assumption that the Euler angles track the
desired angles instantaneously. Furthermore, the desired Euler angles are derived without considering
the disturbances involved in the translational dynamics of the quadrotor, which can degrade the
tracking performance. Thus, the control performance of the position controller is directly affected by
the convergence rate and accuracy of the attitude controller. For a fast response of the attitude controller,
sufficiently large gains are required, but this can lead to a large overshoot of the control inputs [24].
It is well known that physical systems have limited control inputs and that a large overshoot of the
control inputs is impractical. Although command filter [24,25], finite-time control [26,27], and invariant
dynamic surface [28] methods were proposed to enable fast convergence of the attitude controller,
the final control systems are still designed using hierarchical strategies. Moreover, the stability analysis
is performed separately for the two subsystems due to the nature of hierarchical control.

Motivated by these observations, we propose a new theoretical control approach different from
hierarchical control for the trajectory tracking of a quadrotor in the presence of disturbances. In the
proposed approach, the controller is designed using new state transformations to handle the properties
of underactuation, nonlinearity, and strong coupling, and a fast attitude control response is not
required. Furthermore, disturbances in the translational dynamics of the quadrotor are considered to
obtain the desired Euler angles. This implies that unlike a hierarchical strategy, the proposed method
can achieve the desired tracking performance even if we choose low gains and disturbances exist in
the translational dynamics. To address disturbances including wind and unstructured uncertainty,
a disturbance-observer-based nonlinear controller is designed. From the Lyapunov stability theory,
the stability of the proposed method is established without separation into two subsystems. The main
contributions of this paper are twofold.

(1) A new control approach different from a hierarchical strategy is presented based on state
transformations. Since the proposed method does not require the instantaneous convergence of
attitude control and obtains the desired Euler angles while considering disturbances, the desired
tracking performance can be achieved with low gains.

(2) The stability of the proposed method is analyzed without separation into two subsystems.
Thus, the controller is designed without the restrictive assumption known as timescale separation
(see details in [29]).

This paper is organized as follows. The problem formulation is described in Section 2.
The disturbance-observer-based nonlinear controller is presented in Section 3. Simulation results
are provided in Section 4. Finally, conclusions are given in Section 5.

2. Problem Formulation

Consider the quadrotor configuration shown in Figure 1. A rigid-body model of the quadrotor
can be given as follows [30]:

p̈ = R(q)
F
m

+ d−G, (1)

q̈ = J−1C(q̇) + J−1τ + τd, (2)

where p = [x, y, z]> is the position vector of the center of mass in the inertial frame, q = [φ, θ, ψ]> is
the Euler angle vector that describes the orientation of the body-fixed frame with respect to the inertial
frame, G = [0, 0, g]> is the gravitational acceleration vector, J = diag(Jxx, Jyy, Jzz) is the inertia matrix
with respect to the body-fixed frame, d = [d1, d2, d3]

> is the disturbance vector for the translational
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dynamics, τd = [τd1, τd2, τd3]
> is the disturbance vector for the rotational dynamics, m is the total mass

of the quadrotor, F is the total thrust force exerted by the rotors, and τ = [τ1, τ2, τ3]
> is the torque

vector in the body-fixed frame. The vectors R(q) and C(q̇) are given below:

R(q) =

sin ψ sin φ + cos ψ sin θ cos φ

sin ψ sin θ cos φ− cos ψ sin φ

cos θ cos φ

 ,

C(q̇) =

(Jyy − Jzz)θ̇ψ̇

(Jzz − Jxx)φ̇ψ̇

(Jxx − Jyy)φ̇θ̇

 .

The angular velocity ωi of each rotor for i = 1, . . . , 4 can be calculated from the control inputs F
and τ. The relationship is given by

F
τ1

τ2

τ3

 =


b b b b
0 −lb 0 lb
−lb 0 lb 0
−c c −c c




ω2
1

ω2
2

ω2
3

ω2
4

 , (3)

where b is the lift coefficient, c is the anti-torque coefficient, and l is the distance from the rotor to the
center of mass. In this paper, we will focus on designing the control inputs F and τ.

Figure 1. Quadrotor configuration frame system with body fixed frame B and inertial frame E.

Assumption 1. The time derivatives of d and τd are bounded such that ‖ḋ‖ ≤ δd and ‖τ̇d‖ ≤ δτ , where δd
and δτ are unknown positive constants.

The control objective is to design the control inputs F and τ to track the reference trajectory given
by a reference position vector pr = [xr, yr, zr]> and a reference yaw angle ψr. That is, we will design
the control inputs to guarantee that

lim
t→∞
‖p− pr‖ ≤ µ0, (4)

where µ0 is a positive constant.

Assumption 2. The reference signals pr and ψr are chosen to be three times differentiable, and ‖pr‖+ ‖ṗr‖+
‖p̈r‖+ ‖

...pr‖+ |ψr|+ |ψ̇r|+ |ψ̈r| ≤ µ1 for any positive constant µ1.

Remark 1. (i) Assumption 1 is commonly found in some works of the disturbance observer (DOB)-based control
for mechanical systems [31–33]. This assumption is reasonable when taking into account the finite available
energy of the disturbance [34]. (ii) Assumption 2 ensures that we can use the dynamic surface control method for
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controller design and stability analysis for continuous systems. This assumption is valid because the reference
signals can be chosen arbitrarily by the operator.

3. Main Result

The translational dynamics described by (1) are underactuated and involve strong nonlinear
couplings between the dynamic states. To address these problems, previously proposed controllers
have been designed using a linearized version of (1) under the assumption that the quadrotor is
operating very near a hovering position. However, this assumption restricts the quadrotor’s ability
to execute complex flight maneuvers [12]. Although nonlinear control using a hierarchical control
strategy can solve this problem, it requires the timescale separation assumption. To overcome these
limitations, we introduce the following state transformations:

φ̄ = tan φ, θ̄ = tan θ, (5)

where φ̄ and θ̄ are new state variables.

Remark 2. The state variables φ̄ and θ̄ are used as virtual controls. Then, the 3-DOF translational dynamics
given in (1) involves two virtual controls and one actual control input. This means that the underactuation
problem of the translational dynamics can be solved by using the state transformations in (5).

From (5), we obtain

cos φ =
1√

1 + φ̄2
, sin φ =

φ̄√
1 + φ̄2

,

cos θ =
1√

1 + θ̄2
, sin θ =

θ̄√
1 + θ̄2

.
(6)

Substituting (6) into (1) yields

ẍ =

(
φ̄ sin ψ√

1 + φ̄2
+

θ̄ cos ψ√
1 + θ̄2

1√
1 + φ̄2

)
F
m

+ d1,

ÿ =

(
θ̄ sin ψ√

1 + θ̄2

1√
1 + φ̄2

− φ̄ cos ψ√
1 + φ̄2

)
F
m

+ d2,

z̈ = −g +
1√

1 + θ̄2

1√
1 + φ̄2

F
m

+ d3.

(7)

To design the controller, let us define the following errors:

e1 = [e11, e12, e13]
> = Φ(ψ)(ėp + Γpep), (8)

e2 = [e21, e22, e23]
> = q̄−

[
ᾱ1

ψr

]
, (9)

e3 = [e31, e32, e33]
> = q̇− ᾱ2, (10)

v1 = [v11, v12]
> = ᾱ1 − α1, v2 = ᾱ2 − α2, (11)

where ep = p − pr = [ex, ey, ez]>, q̄ = [φ̄, θ̄, ψ]>, α1 = [α11, α12]
> and α2 = [α21, α22, α23]

> are
virtual controls and ᾱi for i = 1, 2 is the signal passed through a first-order filter, i.e., Γi ˙̄αi + ᾱi = αi
and ᾱi(0) = αi(0). In these expressions, Γp = diag(γp1, γp2, γp3), Γ1 ∈ R2×2, and Γ2 ∈ R3×3 are
positive-definite symmetric matrices, and the matrix Φ(ψ) is given below:

Φ(ψ) =

cos ψ sin ψ 0
sin ψ − cos ψ 0

0 0 1

 .
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Step 1: Using (7), (8), (9), and (11), we can write the error dynamics of e1 as

ė11 =(e22 + v12 + α12)
F

m
√

1 + θ̄2
√

1 + φ̄2
− ψ̇e12 + f11 + d1 cos ψ + d2 sin ψ,

ė12 =(e21 + v11 + α11)
F

m
√

1 + φ̄2
+ ψ̇e11 + f12 + d1 sin ψ− d2 cos ψ,

ė13 =
F

m
√

1 + θ̄2
√

1 + φ̄2
+ f13 + d3,

(12)

where f11 = cos ψ(γp1 ėx − ẍr) + sin ψ(γp2 ėy − ÿr), f12 = sin ψ(γp1 ėx − ẍr) − cos ψ(γp2 ėy − ÿr),
and f13 = −g− z̈r + γp3 ėz. To design the control laws F and α1, we take the Lyapunov function

V1 =
1
2
(e>1 e1 + d̃>d̃), (13)

where d̃ = d− d̂, with d̂ = [d̂1, d̂2, d̂3]
> being the estimate of the disturbance vector d. Differentiating

both sides of (13) along the solution of (12) yields

V̇1 =e11

{
(e22 + v12 + α12)

F
m
√

1 + θ̄2
√

1 + φ̄2
− ψ̇e12 + f11 + d1 cos ψ + d2 sin ψ

}
+ e12

{
(e21 + v11 + α11)

F
m
√

1 + φ̄2
+ ψ̇e11 + f12 + d1 sin ψ− d2 cos ψ

}
+ e13

{
F

m
√

1 + θ̄2
√

1 + φ̄2
+ f13 + d3

}
+ d̃>(ḋ− ˙̂d).

(14)

From (14), we choose F and α1 to be

F = mζ
√

1 + θ̄2
√

1 + φ̄2,

α1 =

[ 1
ζ
√

1+θ̄2 (−k12e12 − f12 − d̂1 sin ψ + d̂2 cos ψ)
1
ζ (−k11e11 − f11 − d̂1 cos ψ− d̂2 sin ψ)

]
,

ζ = ε1 + ε2(1− |sgn(ε1)|),

(15)

where ε1 = −k13e13 − f13 − d̂3; ε2, k11, k12, and k13 are positive design constants; sgn(·) is the signum
function; and d̂ is obtained from the following disturbance observer:

d̂ = ρ1 + L1 ṗ,

ρ̇1 = −L1R(q)
F
m
− L1d̂ + Φ(ψ)e1 + L1G,

(16)

with a positive-definite symmetric matrix L1 ∈ R3×3. Using (1) and (16), we have

˙̂d = L1d̃ + Φ(ψ)e1. (17)

Note that the positive design constant ε2 is used to prevent the singularity of the virtual control
α1 in (15).

Substituting (15) and (17) into (14) results in

V̇1 ≤− e>1 K1e1 − d̃>L1d̃ + d̃>ḋ + (e22+v12)e11ζ + (e21+v11)e12ζ
√

1+θ̄2 + ε2|e13|, (18)

where K1 = diag(k11, k12, k13).



Electronics 2020, 9, 1624 6 of 13

Remark 3. The filtered signal of the virtual control α1 will be used as the desired Euler angles to be tracked in
the next step. Unlike in hierarchical control, the Euler angles do not need to be the same as the desired angles,
and disturbances are considered when deriving the virtual control α1. Therefore, the proposed method does not
require instantaneous convergence of the attitude errors and can achieve improved tracking performance.

Remark 4. If we use the backstepping technique, the time derivative of the virtual control α1 is required
to design the actual torque τ in the next step; however, we can see from (15) that the time derivative of α1

includes the second time derivative of p with an unknown disturbance d. The dynamic surface control (DSC)
method [35] can be used to address this problem because it does not require the time derivative of the virtual
control. Thus, the DSC method is applied to design the virtual control α1.

Step 2: Using (5), (9), (10), and (11), we can write the error dynamics of e2 as

ė2 = Υ(q)(e3 + α2 + v2) +

[
Γ−1

1 v1

−ψ̇r

]
, (19)

where Υ(q) = diag(sec2 φ, sec2 θ, 1). To design the virtual control α2, we take the Lyapunov function

V2 =
1
2

e>2 e2. (20)

The time derivative of (20) along the solution of (19) is

V̇2 = e>2

{
Υ(q)(e3 + α2 + v2) +

[
Γ−1

1 v1

−ψ̇r

]}
. (21)

From (21), we choose α2 to be

α2 = Υ−1(q)
(
− K2e2 −

[
Γ−1

1 v1

−ψ̇r

]
−

e12ζ
√

1 + θ̄2

e11ζ

0

), (22)

where K2 ∈ R3×3 is a positive gain. Substituting (22) into (21) yields

V̇2 =− e>2 K2e2 + e>2 Υ(q)(e3 + v2)− e21e12ζ
√

1 + θ̄2 − e22e11ζ (23)

Step 3: Using (2), (10), and (11), we can write the error dynamics of e3 as

ė3 = J−1C(q̇) + J−1τ + τd + Γ−1
2 v2. (24)

To design the actual control τ, we take the Lyapunov function

V3 =
1
2
(e>3 e3 + τ̃>d τ̃d), (25)

where τ̃ = τd − τ̂d, with τ̂d being the estimate of the disturbance vector τd. Differentiating both sides
of (25) along the solution of (24) results in

V̇3 =e>3 (J−1C(q̇) + J−1τ + τd + Γ−1
2 v2) + τ̃>d (τ̇d − ˙̂τd). (26)
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From (26), we choose the actual control τ to be

τ = J
(
− K3e3 − τ̂d − Γ−1

2 v2 − Υ(q)e2
)
− C(q̇), (27)

where K3 ∈ R3×3 is a positive gain and τ̂d is obtained from the following disturbance observer:

τ̂d = ρ2 + L2q̇,

ρ̇2 = −L2 J−1(τ + C(q̇))− L2τ̂d + e3,
(28)

with a positive-definite symmetric matrix L2 ∈ R3×3.
Using (2) and (28), we have

˙̂τd = L2τ̃d + e3. (29)

Substituting (27) and (29) into (26) yields

V̇3 = −e>3 K3e3 − τ̃>d L2τ̃d + τ̃>d τ̇d − e>3 Υ(q)e2. (30)

Let VT = V1 + V2 + V3 +
1
2 (v

>
1 v1 + v>2 v2). We now present the main result of our paper in the

following theorem.

Theorem 1. Consider the quadrotor model given in (1) and (2), controlled by the control inputs F and τ given
in (15) and (27) together with the disturbance observers given in (16) and (28) under Assumptions 1 and 2.
For any initial conditions satisfying VT(0) ≤ µ2, where µ2 is a positive constant, it is ensured that VT(t) ≤ µ2

for all t > 0 and limt→∞ ‖p− pr‖ ≤ µ0, where µ0 is a positive constant that can be made arbitrarily small.

Proof. The time derivative of VT along the solutions of (18), (23), and (30) is

V̇T ≤− e>1 K1e1 − d̃>L1d̃ + d̃>ḋ + v12e11ζ + v11e12ζ
√

1 + θ̄2 + ε2|e13| − e>2 K2e2

+ e>2 Υ(q)v2 − e>3 K3e3 − τ̃>d L2τ̃d + τ̃>d τ̇d −v>1 Γ−1
1 v1 −v>1 α̇1

−v>2 Γ−1
2 v2 −v>2 α̇2.

(31)

From (15) and (22), one can show that ‖α̇1‖ ≤ η1(e1, e2, e3, v1, v2, d̃, pr, ṗr, p̈r,
...pr) and

‖α̇2‖ ≤ η2(e1, e2, e3, v1, v2, d̃, pr, ṗr, p̈r,
...pr, ψr, ψ̇r, ψ̈r) for some continuous functions η1 and η2.

By Assumption 2, there exists a set Q1 := {‖pr‖ + ‖ṗr‖ + ‖p̈r‖ + ‖
...pr‖ + |ψr| + |ψ̇r| + |ψ̈r| ≤ µ1}.

Consider the set Q2 := {e>1 e1 + e>2 e2 + e>3 e3 + v>1 v1 + v>2 v2 + d̃>d̃ ≤ 2µ2}. Since Q1 and Q2

are compact, there exist positive constants β1 and β2 such that η1 ≤ β1 and η2 ≤ β2 on Q1 × Q2.
Then, by Assumption 1 and Young’s inequality, (31) can be written as

V̇T ≤− e>1

(
K1 −

1
2

I3

)
e1 − e>2

(
K2 −

1
2

I3

)
e2 − e>3 K3e3 − d̃>

(
L1 −

1
2

I3

)
d̃

− τ̃>d

(
L2 −

1
2

I3

)
τ̃d −v>1

(
Γ−1

1 −
β2

1
2ε

I2 −
1
2

Ψ

)
v1

−v>2

(
Γ−1

2 −
β2

2
2ε

I3 −
1
2

I3

)
v2 +

δ2
d

2
+

δ2
τ

2
+

ε2
2

2
+ ε,

(32)

where I2 ∈ R2×2 and I3 ∈ R3×3 are identity matrices, ε is a positive constant, and Ψ = diag(ζ2(1 +

θ̄2), ζ2). Choosing K1 = 1/2I3 + K∗1 , K2 = 1/2I3 + K∗2 , L1 = 1/2I3 + L∗1 , L2 = 1/2I3 + L∗2 , Γ−1
1 =

β2
1/(2ε)I2 + 1/2Ψ + Γ∗1 , and Γ−1

2 = β2
2/(2ε)I3 + 1/2I3 + Γ∗2 results in

V̇T ≤ −c0VT + c1, (33)
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where c0 = min{λK∗1
, λK∗2

, λK3 , λL∗1
, λL∗2

, λΓ∗1
, λΓ∗2
} and c1 = (δ2

d + δ2
τ + ε2

2)/2+ ε. Integrating both sides
of (33) yields

VT(t) ≤
(

VT(0)−
c1

c0

)
e−c0t +

c1

c0
. (34)

One can design the control gains to ensure that c1/c0 < µ2. Therefore, from (34), VT(t) ≤ µ2 for
all t > 0. Additionally, VT(∞) ≤ µ0 where µ0 = c1/c0 and thus, limt→∞ ‖p− pr‖ ≤ µ0. By properly
choosing c0, we can make µ0 arbitrarily small. This completes the proof.

Remark 5. As shown in the proof of Theorem 1, the overall stability of the proposed method is proven
without separation into the inner- and outer-loop subsystems commonly used in hierarchical control strategies.
Therefore, the timescale separation assumption is not required. Furthermore, unlike [26–28], there is no need to
prove in advance that the attitude errors are bounded.

4. Simulations

In this section, we present simulations conducted to demonstrate the performance of the proposed
method. For comparison, simulation results for the robust backstepping sliding mode control (RB-SMC)
method [36] using a hierarchical control strategy are also given. To reduce chattering, we modified
the RB-SMC algorithm to use the hyperbolic tangent function instead of the signum function in the
simulations. The physical parameters of the quadrotor taken from [37] are summarized as follows:
m = 4.34 kg, Jxx = 0.082 kg·m2, Jyy = 0.0845 kg· m2, Jzz = 0.1377 kg·m2, and g = 9.8 m/s2.
To verify the robustness of the proposed controller, external disturbances d = [2.5, 1.25, 2]> and
τd = [sin(8πt)/

√
3/Jxx, sin(πt)/

√
3/Jyy, cos(4πt)/

√
3/Jzz]> were considered in the simulations.

The initial position of the quadrotor and the reference trajectory were chosen to be p = [0,−3, 1]>

and pr = [5 cos(πt/10), 4 sin(πt/10), 5 sin(πt/60)]>, respectively. The reference yaw angle ψr was set
to π/4. The design parameters of the proposed method were selected to be K1 = diag(3, 3, 3), K2 =

K3 = diag(5, 5, 5), L1 = L2 = diag(10, 10, 10), Γp = diag(1, 1, 1), Γ1 = Γ2 = diag(0.01, 0.01, 0.01),
and ε2 = 0.5. To show the efficiency of the proposed method, we selected the control gains of the
RB-SMC method necessary to achieve the same position tracking results as our method through trial
and error.

The tracking results are provided in Figures 2 and 3. These figures show that both methods
can track the desired trajectory successfully and that there are no constraints on the Euler angles.
The steady-state root mean square errors are 0.003 and 0.024, with the proposed method being slightly
more accurate. The main difference can be seen from Figures 2d and 3d, namely, the settling time of
the RB-SMC method is more than two times as fast as that of our method. This observation indicates
that the proposed method can achieve results similar to those achieved through hierarchical control
without requiring fast convergence of the attitude errors. Thus, we can obtain a smaller overshoot of
the control inputs that can be achieved with the hierarchical control strategy because it is possible to
design the controller with low gains. This is verified by Figure 4. In Figure 2e,f, the disturbance errors
d̃ and τ̃ converge to the bounds of 0.001 and 0.05, respectively. Figure 5 shows the linear and angular
velocities of the quadrotor. It is demonstrated that both constant and time-varying disturbances can be
effectively estimated by the disturbance observers.
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Figure 2. Tracking results of the proposed method: (a) Three-dimensional trajectory; (b) Euler angles q;
(c) Position tracking errors; (d) Attitude tracking errors; (e) d̃ (solid: d̃1, dashed: d̃2, dotted: d̃3); (f) τ̃d
(solid: τ̃d1, dashed: τ̃d2, dotted: τ̃d3).
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Figure 3. Tracking results of the robust backstepping sliding mode control (RB-SMC) method:
(a) Three-dimensional trajectory; (b) Euler angles q; (c) Position tracking errors; (d) Attitude
tracking errors.

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

F
(N

)

0 0.5 1 1.5 2 2.5 3 3.5
−100

0

100

τ 1
(N

m
)

0 0.5 1 1.5 2 2.5 3 3.5
−50

0

50

τ 2
(N

m
)

0 0.5 1 1.5 2 2.5 3 3.5
−5

0

5

Time(sec)

τ 3
(N

m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

F
(N

)

0 0.5 1 1.5 2 2.5 3 3.5
−200

0

200

τ 1
(N

m
)

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1
x 10

4

τ 2
(N

m
)

0 0.5 1 1.5 2 2.5 3 3.5
−50

0

50

Time(sec)

τ 3
(N

m
)

(b)

Figure 4. Control inputs: (a) Proposed method; (b) RBS-SMC method.
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Figure 5. Velocities: (a) Linear velocities (solid: ẋ, dotted: ẏ, dashed: ż); (b) angular velocities (solid: φ̇,
dotted: θ̇, dashed: ψ̇).

To make the simulation results more realistic, we added normally distributed random noise with
mean 0 and covariance 0.001 to the measurements of the Euler angle vector q and the angular velocity
vector q̇. The tracking results in a noisy environment are depicted in Figure 6. These figures show
that even if there is noise, good tracking performance can be achieved with the proposed method.
Therefore, we can conclude that the proposed controller is effective for the trajectory tracking of a
quadrotor in the presence of external disturbances.
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Figure 6. Tracking results in noise environment: (a) Three-dimensional trajectory; (b) Euler angles q;
(c) position tracking errors; (d) attitude tracking errors.
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5. Conclusions

A disturbance observer-based nonlinear controller has been presented for the trajectory tracking
of a quadrotor in the presence of external disturbances. New state transformations are introduced
to design the controller without using a hierarchical control strategy, and disturbance observers are
developed to estimate external disturbances. Since the instantaneous convergence of attitude control is
not required, the desired tracking performance is achieved with low gains. The stability of the proposed
method is analyzed without separation into the inner- and outer-loop subsystems. Thus, the controller
is designed without the restrictive assumption known as timescale separation. From the Lyapunov
stability theorem, it is proven that all error signals in the closed-loop system are uniformly ultimately
bounded. Simulation results, including a comparison, demonstrate that the proposed controller is
effective for the trajectory tracking of the quadrotor in the presence of external disturbances. In future
work, we will validate the performance of the proposed method based on experimental results.
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