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Abstract: As a substitute for the IEEE 754-2008 floating-point standard, Posit, a new kind of number
system for floating-point numbers, was put forward recently. Hitherto, some studies have proven
that Posit is a better floating-point style than IEEE 754-2008 in some fields. However, most of these
studies presented the advantages of Posit from the arithmetical aspect, but none of them suggested
it had a better hardware implementation than that of IEEE 754-2008. In this paper, we propose
several hardware implementations that contain the Posit adder/subtractor, multiplier, divider, and
square root. Our goal is to achieve an arbitrary Posit format and exploit the minimum circuit
area, which is required in embedded devices. To implement the minimum circuit area for the
divider and square root, the alternating addition and subtraction method is used rather than the
Newton–Raphson method. Compared with other works, the area of our divider is about 0.2×–0.7×
(FPGA). Furthermore, this paper provides the synthesis results for each critical module with the
Xilinx Virtex-7 FPGA VC709 platform.

Keywords: Posit; IEEE 754-2008; FPGA; floating-point arithmetic; adder; multiplier; divider;
square root

1. Introduction

In 2015, a new kind of number system named the universal number (Unum) system was put
forward by some researchers. Unum has developed three revisions so far. They are Type-1 [1–3],
Type-2 [4,5], and Type-3 [6,7]. The latest revision was Type-3 and also called Posit. The developers
of Unum claimed that Unum was used to replace the IEEE 754-2008 floating-point standard [8]
with more efficiency and high precision. Comparing with IEEE 754-2008, both Unum and Posit have
many advantages such as a better dynamic range, higher coding space utilization, tapered accuracy,
parameterized precision, and so on [6].

Posit arouses the interest of many researchers in the community. As a result, there are many
studies on exploiting the advantages of Posit from the arithmetical aspect. Meanwhile, there are many
software tools for using Posit such as Julia, C, C++, and so on. Reference [9] conducted a thorough
investigation on training deep neural networks (DNNs) with low bit posit numbers, a Type-III Unum.
Through a comprehensive analysis of quantization with various data formats, it is demonstrated that
the posit format shows great potential to be employed in the training of DNNs. To propagate Posit
and replace IEEE 754-2008 in some fields such as deep learning, it is better to design an excellent Posit
processing unit (PPU) for microprocessors because Posit is more accurate near zero. There are some
open-source hardware implementations. This paper aims to exploit a basic arithmetical processor
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for Posit, including adder/subtractor, multiplier, divider, and square root. Before introducing these
modules, let us go through a brief background of Posit in this section.

The format of Posit is flexible since its word width and exponent width are arbitrary. Unlike only
the four formats that the IEEE 754-2008 standard defined, the format of Posit can be adjusted freely
according to the users’ needs. By adjusting the format, Posit has a suitable precision and dynamic
range for different applications.

The precision of Posit is tapered since its sampling density function on the real axis is not linear [10].
The integration of the sampling density function is the cumulative density function. Interestingly,
the cumulative density function of Posit is the sigmoid function, which is often used as the activation
function in deep learning. It is easy to get the sigmoid function by left shifting Posit [6]. These two
functions are presented in (1). Most parts of the coding space of Posit fall in the range from −1 to
one. In deep learning, most network weights also fall in this range. Reference [11] proved that Posit is
better than IEEE 754-2008 floating-point numbers in the deep learning field.{

f (x) = σ(x)(1− σ(x)),
σ(x) =

∫
f (x)dx = 1

1+e−x .
(1)

The coding style of Posit is elegant in mathematics. There is only one kind of bit pattern for zero,
and the encoding is symmetric around one. In addition, the hidden bit of Posit is always one. On the
contrary, the IEEE 754-2008 standard defines positive zero and negative zero, which are different and
have different behaviors. To underflow gradually, the IEEE 754-2008 standard defines two hidden bits,
which are one and zero. This means that the calculation of Posit is more accurate and simpler.

Posit makes good use of coding space since no bit patterns are redundant. There are only two
abnormal cases in Posit. One of them is zero, and the other is NaR (not a real number). If all bits of a
Posit number excluding the most-significant bit (MSB) are zero, it is NaR. If the MSB is also zero, it is
zero. Otherwise, the Posit number is a normal case. As IEEE 754-2008 defines, there are many invalid
bit patterns for NaN (not a number). NaN has an adverse effect on calculation, which makes the circuit
complex. NaR is not identical to NaN. NaR means it is a number, but not a real number. For example,
the square root of −1 is i, which is an imaginary number that NaR can represent. NaN is produced by
uninitiated memories or exceptional operations.

A normal Posit number is illustrated in Figure 1. The MSB is its sign bit. If a normal Posit number
is positive, the MSB is zero; otherwise, it is one. The field next to the sign bit is called the regime.
Presuming the word width of Posit is N, the minimum width of the regime is two, and the maximum
width is N − 1. The regime is leading ones or leading zeros, and its value is represented by the run
length of these bits. If the number of leading bits of leading ones is R, the value of the regime is R− 1.
Replacing the leading ones with leading zeros, the value will be −R. Table 1 shows the relationship
between the value of the regime and the leading bits.

s r r ̅r  … e₁ eₑₛ … f₁ …f₂  

sign bit regime bits exponent bits, if any fraction bits, if any

1-bit run-length 0 to ES-bit remaining-bit

Figure 1. Generic posit format for normal Posit cases. ES, exponent width.

Table 1. The leading bits of the regime and corresponding value.

Leading Bits 000 001 01? 10 ? 110 111

Value −3 −2 −1 0 1 2
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The exponent field will be demonstrated after the regime field if any bits remain. The exponent
field is an unsigned integer. Its maximum width includes a predetermined constant and the factor of a
variable named useed. Presume its maximum width is the exponent width (ES) and the value of useed
is determined by (2). The final field is the fraction, and it occupies all the remaining bits.

useed = 22ES
. (2)

The value of a normal Posit number can be calculated by (3). Because the regime is the exponent of
useed, the actual exponent of Posit consists of the regime and exponent field. In other words, the actual
exponent is 2ES × regime + exp, and the base number is two. This feature makes values with small
exponents have more digits of accuracy, and values with large exponents have fewer digits of accuracy.

Posit value = (−1)sign × useedregime × 2exp × 1. f . (3)

Posit<5, 1> means that the word width of Posit is five and the exponent width is one.
Combining with (3), the maximum positive value of Posit<5, 1> is 64, and its bit pattern is 011112.
This value is also called the maxpos. Similarly, the minposis 1

64 , and its bit pattern is 000012.
An important feature of Posit is that it is encoded in the two’s complement. That is, inverting
all bits of a Posit number and adding one will get its opposite number. For example, the opposite
number of 000012 is 111112, i.e., −minpos.

The calculating rules are simple. If one of the inputs is NaR or the operation is illegal, the
output must be NaR. Otherwise, the output must be zero or a normal number. The solution of
overflow and underflow is saturating the output. Specifically, if a positive output is greater than the
maxpos or less than the minpos, the output is trimmed to the maxpos or increased to the minpos,
respectively. Furthermore, a negative output must be from −maxpos to −minpos. The rules of
rounding are also simple. There is only one rounding mode, i.e., rounding the result to the nearest value.
However, IEEE 754-2008 defines many rounding modes. These modes make hardware implementations
more complex.

Ultimately, Posit is a novel number system that is better than the IEEE 754-2008 floating-point
number standard in some fields. It is flexible, simple, elegant, and accurate. Above all, the hardware
implementation of Posit is simpler than that of IEEE 754-2008 in theory.

2. Related Works

Because of the superiority of Posit, there have been several hardware implementations of
Posit. A parameterized adder/subtractor was presented in [12]. Similar to [12], a parameterized
adder/subtractor and a parameterized multiplier were presented in [13]. These two works used both
the leading ones detector (LOD) and leading zeros detector (LZD) to determine leading bits. To process
negative Posit numbers, these two works converted negative Posit numbers to the corresponding
opposite numbers. Although their algorithms are simple, the hardware implementations are not
ideal. They have two obvious shortcomings, i.e., both LOD and LZD produce redundant area while
converting the two’s complement to sign and magnitude.

Another work exhibited in [14] solved the first shortcoming. In its algorithm, only LZD is
used. Unfortunately, the second shortcoming still exists, and this work cannot make good use of the
advantages of Posit. Based on this work, Reference [15] indicated a parameterized divider with the
Newton–Raphson method.

Reference [11] not only studied the applications of Posit in software, but also gave a simple
hardware implementation. This implementation encodes Posit in sign and magnitude. This smart
solution simplifies circuits, but does not conform to the Posit standard.

Our work solves those two problems so that our implementation cost is small and gives a complete
solution for Posit arithmetic.
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3. Critical Common Modules

Due to the length of the regime field being floating, firstly, a Posit number must be decoded to
get its sign, exponent, and mantissa. Then, these three fields will be used to calculate and encode the
final Posit number. In a word, encoding and decoding are common stages in every Posit algorithm.
Figure 2 shows these three stages of a general Posit arithmetic flow.

Input Posit Number

Stage 1: Decode

Stage 2: Calculate

Stage 3: Encode

Output Posit Number

Intermediate Results 1

sign, exponent, mantissa

Intermediate Results 2

sign, exponent, mantissa

Figure 2. Three basic Posit arithmetic stages.

Using both LOD and LZD is a normal method for extracting the regime field in the decoding
stage and normalizing the mantissa in the calculation stage. However, our work only needs LZD.
Unlike other studies that only use normal LZD, the advanced LZD is used instead, which saves much
of the area when the width of the input is large. According to the synthesis results, the implementations
that only use LZD save about 5–10% of the area compared with those who use both LOD and LZD.

In this section, firstly, the advanced LZD is introduced. Secondly, two outstanding common
modules, the encoding module and the decoding module, are explained. The following is the design
ideas for the encoding module, the decoding module, and the LZD module.

3.1. The Optimization for LZD

Usually, LZD outputs a binary number to represent how many consecutive zeros from the
start-end to the first inverse bit of the input. For instance, inputting 00012 will get 112 (310). An N bit
input will produce an L(N) bit result. Equation (4) illustrates the way to calculate L(N).

L(N) = dlog2(N + 1)e . (4)

There are two kinds of zero sequence detectors in Figure 3, the shift comparison (left) and the
direct comparison (right). The direct comparison takes up fewer resources because the bit width to be
compared is shorter.
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Figure 3. Two kinds of leading zeros detector (LZD).

3.2. The United Intermediate Data Structure

To unify the interfaces among every stage, a kind of intermediate data structure is defined.
This data structure is the intermediate result in Figure 2. This intermediate data structure has six fields.
Table 2 lists all these fields and describes their meanings. Given that the word width of Posit is N and
the exponent width is ES, the maximum width of the regime is N− 2, and the width of its value can be
calculated with (4). Furthermore, the value of the regime needs one more bit as a sign bit. Therefore,
the width of the scale field is L(N − 2) + ES + 1. The maximum width of the fraction is N − ES− 3
because the whole Posit needs to remove a 1 bit sign, 2 bit regime, which is the minimum width itself
and the ES bit exponent.

Table 2. The six fields of the united intermediate data structure. NaR, not a real number.

Field Width Description

isNaR 1 Indicates whether the Posit number is NaR.
isZero 1 Indicates whether the Posit number is zero.
sign 1 The sign of the Posit number.
scale L(N−2)+ES+1 The actual exponent of the Posit number. It consists of the regime and exponent.
fraction N−ES−3 The fraction of the Posit number. It does not contain the hidden bit.
grs 3 Guard bit, round bit, and sticky bit. They are used to round the result.

Given that the word width of Posit is N and the exponent width is ES, L(N−2) uses (4) to calculate, and its
input is N−2.

3.3. The Decoding Module

The decoding module extracts an intermediate data structure from an input Posit number, and this
structure is used to calculate the result. The two’s complement is usually used in arithmetic since
the sign of the result is produced easily. As mentioned earlier, one of the advantages of Posit is that
its coding format has the two’s complement. If the output of the decoding module keeps the two’s
complement format, the calculation module will be simpler since it does not need extra logic to deal
with the sign and case of overflow. However, the related works [12–15] did not keep this advantage.
They converted the Posit numbers to sign and magnitude so that the decoding logic would be simpler.
Our work still uses the two’s complement.

As presented in Algorithm 1, the intermediate data structure is extracted from an input Posit
number without a conversion operation. Its explanation is as follows:

1. In positive Posit numbers, leading ones represent a positive regime, and leading zeros represent
a negative regime. The negative Posit numbers are opposite since they are the two’s complement.
A simple way to determine this is by using an XOR operation between in [N−1] and in [N−2].
The rSign field stands a positive regime when it is one (Line 7).

2. To use LZD solely to detect the regime, use an XOR operation between the regime and itself so
that leading ones become leading zeros and leading zeros stay the same. Apart from this, one
of the inputs of this operation must be left-shifted by 1 bit, which will produces the end bit for
the result. For instance, presume a regime is 11102, and an XOR operation between 11102 and
11002 will produce 00102. This is the reason for using an XOR operation between in [N−2:1]
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and in [N−3:0]. The potential exponent and fraction do not change the position of the end bit.
Therefore, this operation contains the possible maximum width of the regime. The result of this
operation is input to an ILZD module (inverting the final output of LZD) (Lines 8–9).

3. All bits of the output of ILZD are inverted from those of LZD. On the one hand, the output of LZD
is the actual value of leading zeros, and it must be a non-negative number. On the other hand,
to represent a negative regime, the output of LZD should be inverted, plus one, and extended
with a 1 bit sign. Therefore, the output of ILZD is inverted when the regime is positive; otherwise,
the output of ILZD stays the same. In addition, the rSign field is the sign bit of the regime.
The length of leading zeros produced in the previous step is 1 bit less than the original length.
Occasionally, the value of a positive regime is one less than the length of leading bits. From the
point of view of the two’s complement, inverting all bits without adding one means taking a
positive number to negative and subtracting one. That means the sReg field represents the proper
value for the regime in the two’s complement (Lines 10–11).

4. The rLength field is one less than the original length. For the reduced one, the solution is to
remove the three most-significant bits from the original input since rLength + 3 equal the length
of the regime with a sign bit. Then, left shifting in [N−4:0] by rLength bit and the original input
will leave the exponent and fraction only, i.e., the expFrac field. This method avoids the use of
one additional adder and reduces the input width of the shift circuit (Lines 12–13).

5. If all bits of the input are zero except the MSB, the input is NaR. If the MSB is also zero, the input
is zero. Otherwise, the input is a normal number, and its sign bit is the MSB (Lines 14–16).

6. If ES is larger than zero, the ES most-significant bits of expFrac are the exponent, and the others
are the fraction. Note that a negative Posit number should invert its exponent. The scale field is
produced by concatenating the value of the regime and the exponent. If ES is zero, the scale field
is the value of the regime. Since the decoder does not have any right shift logic, the grs field is
zero (Lines 17–25).

To get the bit pattern of a negative Posit number, the corresponding positive Posit number will
invert all bits plus one. If every bit of the fraction is zero, inverting them plus one will give the exponent
a carry bit. One problem is that this carry bit will change the exponent. For example, a positive Posit
number is 0_110_11_002, and its opposite number is 1_001_01_002. In Algorithm 1, a negative Posit
number will invert its exponent so that the exponent is 102 (210). Its actual exponent should be 112

(310). That is to say, the scale produced by Algorithm 1 is one less than the actual scale when all bits
of the fraction of a negative Posit number are zero. Likewise, the regime will be one less than the
actual regime if its exponent is also zero or does not exist. Therefore, the final scale is one less than the
actual scale.

Another method is used to fix this problem. In the calculation stage, the mantissa encoded in
the two’s complement consists of the sign bit, hidden bit, and fraction. For the positive mantissas,
the sign bit is zero, and the hidden bit is one. The negative mantissas, except −1.0, are the opposite.
Therefore, a mantissa being used to calculate can be constructed with (5). Because the fraction of
a negative Posit number has been inverted plus one, this mantissa is the two’s complement. If all
bits of the fraction of a negative number are zero, the mantissa should have been 110000...2 (−1.010),
but (5) gives 100000...2 (−2.010). Coincidentally, this offsets the problem that the scale produced by
Algorithm 1 is one less than the actual scale.

mantissa = {sign, !sign, f raction} . (5)

Expression (6) sums up the range of the mantissa produced by our decoder. Note that all inputs
of the calculation module fall within this range. All outputs of the calculation module must also fall
within this range.

mantissa ∈ [−2,−1) ∪ [1, 2) . (6)
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Algorithm 1: The Posit decoder.

1 Given:
2 Posit word width: N
3 Posit exponent width: ES
4 Input: in[N−1:0]
5 Output: out
6 Decoder #(N, ES) (in[N−1:0], out):
7 rSign = in[N−1] xor in[N−2]
8 rXor[N−3:0] = in[N−2:1] xor in[N−3:0]
9 ILZD #(N−2) (rXor, ilzdOut[L(N−2)−1:0])

10 uReg[L(N−2)−1:0] = rSign ? !ilzdOut : ilzdOut
11 sReg[L(N−2):0] = {!rSign, uReg}
12 rLength[L(N−2)−1:0] = !ilzdOut
13 expFrac[N−4:0] = in[N−4:0] << rLength
14 out.isNaR = in[N−1] & !(|in[N−2:0])
15 out.isZero = !(|in)
16 out.sign = in[N−1]
17 out.fraction = expFrac[N−ES−4:0]
18 out.grs = 3’b0
19 if ES > 0 then
20 rawExp[ES−1:0] = expFrac[N−4:N−ES−3]
21 exp[ES−1:0] = in[N−1] ? !rawExp : rawExp
22 out.scale = {sReg, exp}
23 else
24 out.scale = sReg
25 end

3.4. The Encoding Module

As the encoding module is the inverse process of the decoding module, its input is an intermediate
data structure, and its output is a Posit number. Compared to the decoder, the encoder focuses on
rounding the Posit number. Algorithm 2 describes the details of the encoder, and its explanation is
as follows:

1. Extract the value and sign of the regime and the exponent from the scale field. The end bit of the
regime requires a 1 bit XOR operation between the sign field and the sign of the regime. The end
bit is inverted to get the start bit. Concatenate the start bit, end bit, exponent, fraction, and grs
to get the refg (regime, exponent, fraction, and grs) field. Arithmetical right shifting refg by the
rLength bit will produce proper leading bits as the regime (Line 7–17).

2. The four least-significant bits are the last bit of the Posit number, guard bit, round bit, and sticky
bit, respectively. In the IEEE 754-2008 standard, the result will add one if GRSis larger than 1002

or GRS equals 1002, and the last bit is one. This work also takes this principle. Apart from this,
the Posit standard requires the result, which cannot be rounded to zero or NaR. If all bits of result
[N+1:3] are zero, concatenating it and the sign field will get 00000...2 (zero) or 10000...2 (NaR),
so the result must add one. On the contrary, the result should not add one if all bits are one. If the
result is not either of these cases, round it by GRS (Lines 18–26).

3. If the isNaR field is true, the output must be 10000...2 (NaR). If the isZero field is true, the output
must be 00000...2 (zero). Otherwise, the output is produced by concatenating the sign field and
rounded result. Note that isNaR and isZero cannot be true simultaneously, and the other four
fields are invalid if one of these two fields is true (Lines 27–33).
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Algorithm 2: The Posit encoder.

1 Given:
2 Posit word width: N
3 Posit exponent width: ES
4 Input: in
5 Output: out[N−1:0]
6 Encoder #(N, ES) (in, out[N−1:0]):
7 sReg[L(N−2):0] = in.scale >> ES
8 rSign = sReg[L(N−2)]
9 rLength[L(N−2)−1:0] = rSign ? !sReg : sReg

10 endBit = rSign xor in.sign
11 if ES > 0 then
12 exp[ES−1:0] = in.sign ? !in.scale[ES−1:0] : in.scale[ES−1:0]
13 refg[N+1:0] = {!endBit, endBit, exp, in.fraction, in.grs}
14 else
15 refg[N+1:0] = {!endBit, endBit, in.fraction, in.grs}
16 end
17 result[N+1:0] = refg >> rLength
18 last = result[3]
19 gourd = result[2]
20 round = result[1]
21 sticky = result[0]
22 carry = gourd & (last | round | sticky)
23 allZero = !(|result[N+1:3])
24 allOne = &result[N+1:3]
25 addOne = allZero | (!allOne & carry)
26 rounded[N−2:0] = result[N+1:3] + addOne
27 if in.isNaR then
28 out = 1’b1 << (N−1)
29 else if in.isZero then
30 out = 0
31 else
32 out = {in.sign, rounded}
33 end

3.5. The Posit Divider and Square Root Core

Using the Newton–Raphson method, we can design a fast divider, but the cost is the large area
and high power. The alternating addition and subtraction method is the opposite. According to the
synthesis results, the area and power produced by the alternating addition and subtraction method are
approximately equal to those of the Posit adder. The drawback of this method is low speed because it
produces only one bit of the result every clock period. Using LUTs to construct the Posit divider is
more sensible when the input width is small such as 8 bit.

The prerequisite of this method is that the absolute value of the dividend must be less than that of
the divisor. This ensures that the quotient must be a negative number when two inputs have different
signs. To achieve this, two mantissas are constructed with (5). Then, the dividend is extended with a
2 bit sign more, and the divisor is multiplied by four. The range of the temporary quotient is (−1, 1),
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and its binary point follows the MSB. To restore the result, the binary point can be considered to follow
the third-significant bit. The actual range of the mantissa of the quotient is presented in (7).

quotient ∈ [−2,−0.5] ∪ (0.5, 2) . (7)

All bits of the quotient are initialized to zero. Each bit from the MSB to the LSB is produced in
each clock period. In the first iteration, the dividend should subtract or add the divisor if their signs
are the same or different, respectively. Then, if the remainder has the same sign bit as the divisor,
the MSB of the quotient should be one; otherwise, it should be zero. Update the dividend with the
remainder if the dividend, i.e., the last remainder, is not zero.

In the second iteration, firstly, the new dividend should be left-shifted by 1 bit. Then, it should
subtract or add the divisor if their signs are the same or different, respectively. If the new remainder
is zero, the second-significant bit of the quotient should be the opposite of the MSB. Otherwise, this
bit is zero or one when the new remainder has a different or the same sign bit from or as the divisor,
respectively. Furthermore, update the dividend with the new remainder when the dividend is not zero.
Specifically, if the dividend is zero, the currently calculated bit of the quotient remains the same as the
MSB, and the dividend does not need to be updated, which means the division is complete.

Repeat the second iteration several times until sufficient bits are produced. Finally, the result
should add its sign bit because it is the one’s complement. Table 3 gives the decimal values, scale
biases, and final bit patterns for all quotients. If the MSB and the third-significant bit of the bit pattern
are the same, the scale bias is negative. Based on that, the scale bias is −2 only if the MSB and the
fourth-significant bit are the same.

Table 3. The calculation information of the mantissa of the quotient.

Decimal Scale Bias Binary

−2.0 0 110.0000...
−1.f 0 110.xxxx...
−1.0 −1 111.0000...
−0.ff −1 111.0xxx...
−0.5 −2 111.1000...
0.ff −1 000.1xxx...
1.0 0 001.0000...
1.f 0 001.xxxx...

0.ff represents greater than 0.5 and less than 1.

The alternating addition and subtraction method can be used to extract the square root. In each
iteration, the square value of the intermediate square root is compared with the original input. If the
square value is still less than the original input, the currently calculated bit is one; otherwise, it must
be zero.

In particular, if the square value equals the original input, the currently calculated bit is one, and
the remaining bits are zero since the calculation is complete.

If the scale of the input is even, the scale of the result is just half of it. If not, the scale should
subtract one, and the mantissa should left shift by 1 bit. Combining with (6), the range of the mantissa
of the square root is shown in (8).

square root ∈ [1, 2) . (8)

Algorithm 3 gives all the iterations in mathematics. According to (8), x1, the result of the first
iteration, must be one. Next, the keynote is the equation written in Line 16. It will implement the
coefficient of ri, i.e., 2i, that left shifts ri by 1 bit in each iteration. Then, the result should set the current
calculation bit to one. Compare (2i × ri) and (2xi + 2−i) and confirm whether the current calculation
bit is one or zero. After iterating N − ES− 2 times, the intermediate result is the final output.
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The Posit divider and the Posit square root have something in common. Firstly, their remainders
both need to be left-shifted by 1 bit in each iteration. Secondly, the Posit square root needs a “divisor”
to assist the calculation. Thirdly, the currently calculated bits of these two modules are both produced
by comparing the signs of the dividend and divisor. Ultimately, their current operations are both
determined with the signs of the dividend and divisor.

Algorithm 3: The iteration process of the square root.

1 Given:
2 Posit word width: N
3 Posit exponent width: ES
4 Input: in
5 Output: out
6 Intermediate result: xi
7 Currently calculated bit: ci
8 Remainder: ri
9 Calculation:

10 x0 = 0
11 xi+1 = xi + ci × 2−i

12 ri = in− xi
2

13 ri+1 = in− xi+1
2

14 = in− (xi
2 + 2−i × ci × (2xi + ci × 2−i))

15 = ri − 2−i × ci × (2xi + ci × 2−i)

16 2i × ri+1 = 2i × ri − ci × (2xi + ci × 2−i)

17 if (2i × ri) ≥ (2xi + 2−i) then
18 ci = 1
19 else
20 ci = 0
21 end
22 out = xN−ES−2

As Algorithm 4 presents, the division and square root can be solved with the same module.
A keynote is constructing the “divisor” for extracting the square root (Line 61). This “divisor” is
a variable. As mentioned earlier, the binary point of the dividend follows the fourth-significant
bit, and that of the intermediate result follows the third-significant bit. That means implementing
2xi does not require any operation for the intermediate result. Right-shifting bitMask by 1 bit
will get the currently calculated bit. If the current dividend is negative, i.e., 2i × ri − (2xi + 2−i)

is negative in the last iteration, it must add a complement after left-shifting. The complement
is 4xi + 2−i+1. Furthermore, the current dividend should subtract the current divisor, which is
2xi+1 + 2−i−1. Combining the complement and current divisor, the actual divisor is 2xi+1 + 2−i + 2−i−1

since xi+1 is just xi.

Algorithm 4: The Posit divider and square root core.

1 Given:
2 Posit word width: N
3 Posit exponent width: ES
4 MaxScale: (1 << ES) * (N−2)
5 MinScale: −MaxScale
6 Input: a, b, inValid, sqrt
7 Output: out, inReady, outValid, exc
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Algorithm 4: Cont.

8 Register: cycle[L(N−ES)−1:0], isNaR, isZero
9 signB, sqrtR, remR[N−ES:0],

10 scale[L(N−2)+ES+1:0],
11 fracB[N−ES−4:0], mantX[N−ES:0]
12

13 PositDivSqrtCore #(N, ES) (a, b, inValid, sqrt, out, inReady, outValid, exc):
14 divNaR = a.isNaR | b.isNaR | b.isZero
15 sqrtNaR = a.sign
16 isNaR_S = sqrt ? sqrtNaR : divNaR
17 divZero = a.isZero & !b.isZero & !b.isNaR
18 sqrtZero = a.isZero
19 isZero_S = sqrt ? sqrtZero : divZero
20 specialA_S = a.isNaR | a.isZero
21 specialB_S = b.isNaR | b.isZero
22 normal_div = !specialA_S & !specialB_S
23 normal_sqrt = !specialA_S & !a.sign
24 normal_S = sqrt ? normal_sqrt : normal_div
25 odd = sqrt & a.scale[0]
26 divScale[L(N−2)+ES+1:0] = a.scale − b.scale
27 sqrtScale[L(N−2)+ES+1:0] = a.scale >> 1
28 idle = cycle == 0
29 ready = cycle <= 1
30 entering = ready & inValid
31 en_normal = entering & normal_S
32 good = mantX[N−ES] xor mantX[N−ES−2]
33 skipCycle2 = (cycle == 3) & good
34 nc = sqrt ? (N−ES−1) : (N−ES+1)
35

36 if !idle | inValid then
37 cycle =
38 (entering & !normal_S) ? 1 : 0 |
39 en_normal ? nc : 0 |
40 (!idle & !skipCycle2) ? (cycle−1) : 0 |
41 (!idle & skipCycle2) ? 1 : 0
42 end
43 if entering then
44 sqrtR = sqrt
45 isNaR = isNaR_S
46 isZero = isZero_S
47 end
48 if en_normal then
49 scale = sqrt ? sqrtScale : divScale
50 end
51 if en_normal & !sqrt then
52 signB = b.sign
53 fracB = b.fraction
54 end
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Algorithm 4: Cont.

55 da[N−ES:0] = {3{a.sign}, !a.sign, a.fraction}
56 sda[N−ES:0] = da << 1
57 db[N−ES:0] = {b.sign, !b.sign, b.fraction, 2’b0}
58 dbR[N−ES:0] = {signB, !signB, fracB, 2’b0}
59 sb[N−ES:0] = 1 << (N−ES−3)
60 bitMask[N−ES−1:0] = 1 << cycle >> 2
61 sbR[N−ES:0] = mantX | (bitMask & (N−ES−3){rem[N−ES]}) | (bitMask >> 1)
62

63 rem[N−ES:0] = ready ? (odd ? sda : da) : remR
64 sRem[N−ES:0] = rem << 1
65 term[N−ES:0] = ready ? (sqrt ? sb : db) : (sqrtR ? sbR : dbR)
66 add = rem[N−ES] xor term[N−ES]
67 tRem[N−ES:0] = ready ? (add ? (rem + term) : (rem − term)) : (add ? (sRem + term) :

(sRem − term))
68 signXor = term[N−ES] xor tRem[N−ES]
69 trIsZero = !(|tRem)
70 remIsZero = !(|rem)
71 newBit = remIsZero ? mantX[N−ES] : (trIsZero ? !mantX[N−ES] : !signXor)
72

73 if en_normal | ((cycle > 2) & !remIsZero) then
74 remR = tRem
75 end
76 if en_normalCase | (!ready & newBit) then
77 mantX = ready ? (sqrt ? (1 << (N−ES−2)) : (newBit << (N−ES))) : (mantX | bitMask)
78 end
79

80 mBias[1:0] = good ? (mantX[N−ES] << 1) : mantX[N−ES]
81 rMant[N−ES:0] = mantX + mBias
82 rFrac[N−ES−4:0] = good ? rMant[N−ES−3:1] : rMant[N−ES−4:0]
83 sub = !(rMant[N−ES] xor rMant[N−ES−2])
84 not2 = rMant[N−ES] xor rMant[N−ES−3]
85 sub1 = sub & not2
86 sub2 = sub & !not2
87 sBias = {1’b0, sub2, sub1}
88 rScale[L(N−2)+ES+1:0] = scale − sBias
89 underflow = rScale < MinScale
90 overflow = rScale > MaxScale
91

92 out.isNaR = isNaR
93 out.isZero = isZero
94 out.sign = rMant[N−ES]
95 out.scale = overflow ? MaxScale : (underflow ? MinScale : rScale)
96 out.fraction = rFrac
97 out.grs = 0
98 outValid = cycle == 1
99 inReady = ready

100 exc = isNaR
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4. Implementation Results

All our algorithms were functionally verified against the open-source C++ program, which
is available at [16]. Furthermore, all RTL codes were implemented on FPGA platforms. The FPGA
platform was Xilinx Virtex-7 FPGA VC709, and the development tool was Vivado 2020.01. The synthesis
and implementation strategy was set to the Vivado default settings. The option, max_dsp, must be
set to zero, since using LUTs solely can get a more accurate comparison. Posit<N, 1> was selected
for comparison because PAC and HDL do not support Posit<N, 0>. The Posit<N, es> results in other
cases were similar to Posit<N,1>.

Two open-source implementations for Posit, PositHDL and PACoGen, are indicated in [17,18],
respectively. Compared with them, the greatest improvement of this work is in the multiplier maximum
net delay and divider resource utilization. The adder resource utilization and maximum net delay
are better than PACoGen, but worse than PositHDL, both in LUTs and delay. The multiplier is
only better than the two works in terms of delay by a difference of 3ns in the best case (at N = 20).
The implementation of these three works with the above conditions and the results are summarized in
Figures 4–6. To measure the timing, all inputs and outputs are connected to the registers since these
modules are the combination logic. Nevertheless, these extra registers are not counted in the area.

The adder and multiplier comparison with [14] on a Zedboard with a Zynq-7000 SoC is given in
Table 4. Our LUTs and delay are better than [14] when the bit configuration is Posit<16, 1>. The LUTs
are very close, but our delay is about 2ns better than [14] when the bit configuration is Posit<32, 1>.

PositHDL and [14] does not implement the Posit divider. The cost of the Posit divider of PACoGen
is very high since it is based on the Newton–Raphson method. Our divider and square root are based
on the alternating addition and subtraction method, so it takes N clock cycles to complete an operation
with Nbits. Compared with PACoGen, the cost of our work is much lower, and our Posit divider is
better in area (0.2×–0.7×); however, the calculation time is 3.1 (at N = 19) to 4.9 (at N = 32) times longer.

Table 4. The adder and multiplier comparison with [14].

Bit Configuration
Adder Multiplier

LUTs Max Net Delay (ns) LUTs Max Net Delay (ns) DSP

Posit<16, 1>: [14] 391 32.374 218 24.041 1

Posit<16, 1>: our 383 27.250 201 20.878 1

Posit<32, 1>: [14] 934 38.041 576 31.013 4

Posit<32, 1>: our 939 35.840 571 29.232 4

Figure 4. Posit<N,1> adder implementation results.
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Figure 5. Posit<N,1> multiplier implementation results.

Figure 6. Posit<N,1> divider and square root implementation results.

Our square root and divider are in the same module controlled by a signal. The square root LUTs
at Posit<16, 1> and Posit<32, 1> are 544 and 1088 on the VCU 108 FPGA in [19]. Compared with [19],
they are 386 and 832 in our work.

5. Conclusions

Recently, a new floating-point standard named Posit has become a popular study topic. The Posit
standard has shown some advantages over the IEEE 754-2008 standard.

This paper puts forward a series of new algorithms for the Posit adder/subtractor, multiplier,
divider, and square root. Besides, the most critical improvement is the redesign of two submodules,
i.e., the decoding module and encoding module. All algorithms of this paper can be applied to any
word width (N) and exponent width (ES) combination and comply fully with the Posit standard.
This work will enable more researchers to exploit more advanced designs and promote the application
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of Posit in low-power devices. Finally, this paper provides the data of our work on the Xilinx Virtex-7
FPGA VC709 platform. These data prove that our work is better than other works in multiplier delay,
divider resource utilization, and square root resource utilization. Our adder and multiplier resource
utilization is not the best because our LZD is not excellent. We will design the LZD based on this
dichotomy to improve it in the future.
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